Architectural pre-processor for engineering
expert systems

Autor(en): Schmitt, Gerhard

Objekttyp: Article

Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte

Band (Jahr): 58 (1989)

PDF erstellt am: 11.09.2024

Persistenter Link: https://doi.org/10.5169/seals-44916

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-44916

////‘ 291

Architectural Pre-Processor for Engineering Expert Systems
Architecture d’un pre-processeur pour les systemes experts d'ingénieurs

Praprozessor fir architektonische Expertensysteme

Gerhard Schmitt, born in
1953, received his Architectu-
re degree from the University
of California at Berkeley and
his PhD from the Technical
University of Munich. Since
1984 Professor at Carnegie
Mellon University, USA, he
now holds the chair for CAAD.
at ETH..

Gerhard SCHMITT

Professor Dr. Ing.

Swiss Fed. Inst. of Technology
ZUrich, Switzerland

SUMMARY

In this paper, we present three issues important for the development of knowledge-based Archi-
tecture and Engineering design environments: first, intelligent interaction and feedback mecha-
nisms between engineering and architectural design and their computational treatment, introdu-
cing classes of design and classes of tools. Secondly, the critical presentation of ARCHPLAN,
a working prototype within IBDE, the Integrate Building Design Environment. Thirdly, thoughts
on the role of criticism between programs and their implementation.

RESUME

Dans cet article nous présentons trois domaines importants pour le développement d’environ-
nements de conception a base de connaissances en architecture et en ingénierie: Premiere-
ment, et les méchanismes intélligents d'interaction et d’information du retour (feedback) ainsi
que leur traitement interne par ordinateur, en introdusant un concept de classes de conception
et d’outils. Deuxiémement, la présentation critique d’ARCHPLAN, un prototype fonctionnant
déja dans I'environnement de conception IBDE (Integrated Building Design Environment - envi-
ronnement intégré de conception des batiments). Troisiemement, des réflexions sur le role de
la critique entre les programmes et leur implementation.

ZUSAMMENFASSUNG

In diesem Artikel stellen wir drei Gebiete vor, die fir Entwicklung von wissensbasierten
Architektur- und Ingenieur-Planungsumgebungen von Wichtigkeit sind. Erstens, intelligente
Interaktions- und Rickkoppelungsmechanismen, sowie deren computerinterne Behandlung,
wobei das Konzept von Entwurfsklassen und zugehorigen Entwurfswerkzeugen vorgestellt
wird. Zweitens die kritische Prasentation von ARCHPLAN, einem bereits funktionierenden Pro-
totyp innerhalb von IBDE (Integrierte Gebaude-Entwurfs-Umgebung). Drittens, Gedanken und
Rolle von Kritik zwischen Programmen sowie deren Implementation.

292 ARCHITECTURAL PRE-PROCESSCR FOR ENGINEERING EXPERT SYSTEMS

Abstract

High quality design under time constraints in architecture and the building industry
is becoming one of the critical requirements in the development of new products. In
their respective domains, knowledge based systems in diagnostics, maintenance, and
construction have reached a high degree of sophistication, whereas less examples
exist in the area of design and the integration of interdisciplinary knowledge. One of
the problems is the loss of vital, qualitative information in the process of transferring
an architectural design to further engineering synthesis and analysis. While only in
the fewest cases the structural engineer is expected to deliver the architectural design
or the architect is expected to complete the structural analysis, the two activities are
closely related by sensitive interdependences.

The purpose of this paper is to present a number of intelligent interaction and
feedback approaches between civil engineering and architecture and to suggest their
computational treatment within an environment of knowledge-based systems. If is
philosophical in the sense that it proposes and critically describes attempts rather
than solutions.

The paper is divided into three parts. Part One addresses feasible design processes and
their representations. Part Two describes an Integrated Building Design Environment
and the architectural preprocessor necessary to begin the engineering design as a
prototype system. Part Three presents thoughts on criticism mechanisms between
knowledge-based processes.

1. Part One: Feasible Design Processes and Representations in Architecture and
Civil Engineering

Effective communication and exchange of information between disciplines often
encounters a language and representation barrier. The use of different models to
describe and reason about the world complicates matters and in many cases prevents
designers from obtaining crucial feedback from other disciplines. There are, at the
moment, three possibilities to escape this dilemma:

¢ Reliance on known algorithms and rules. An extensive body of knowledge
exists in both the engineering and architecture literature describing solutions to
known design problems. A practical example is the book "Entwurfslehre” by
Neufert {1] which represents a significant collection of design knowledge and
has been used and updated for the last 35 years. Similar books exist in civil
engineering [2]. Books of this kind generally do not, however, help in solving
new or unexpected design problems.

¢ Principled representation. The successful search for a generalized and principled
representation that holds true for two or more disciplines could solve many of
the communication and feedback problems between architecture and
engineering. To solve similar representation problems is the central goal of
qualitative physics [3], where models based on principled representations are
extensively used [4]. Qualitative physics formalizes first-principles knowledge
about physical phenomena. The resulting library of domain models provides
knowledge for instantiating qualitative causal models of a physical system, such

G. SCHMITT 293

as a steam plant, a mechanism, a structural system, or a building. It provides a
uniform representation of a large class of phenomena, possibly covering several
domains. o

* Reasoning based on cases. The traditional knowledge representation paradigm
of Artificial Intelligence is that of general production rules. Applied to design, it
suffers from two shortcomings: (a) it is difficult to construct a coherent set of
rules for representing an extensive body of knowledge, and (b) it is not clear how
to formulate the knowledge needed to produce a complete design in the form of
general rules. Furthermore, there is strong psychological evidence that people
do not reason from general rules alone, but often refer to the memory of
previously solved similar problems, as shown by Schank [5] and Akin [6]. This
observation has led to the paradigm of case-based reasoning (CBR), which also
helps to eliminate some of the deficiencies of rule-based systems.

While principled representation and case-based reasoning for design are the subject
of on-going research, the first approach is computationally straight-forward and
applied in some integrated systém projects underway in Stanford [7], Carnegie Mellon
[8], and Liege [9] The ARCHPLAN preprocessor described in Part Two is also based on
this model and concentrates on sections of the architecture and civil engineering
domains to explore the use of one representation and one model to facilitate the
exchange of crucial information that goes beyond syntactic specifications. Levels on
which common representations and models are desirable are:

¢ Low level representation. This includes syntactic representations of objects and
functions to describe the geometry and purpose of designed artifacts. As
differences in describing geometry do exist, standards that allow the transfer of
descriptions between applications without information loss are of particular
importance. For product modeling, one of the standards proposed is the STEP
(STandard for the Exchange of Product model data) model [10].

* Intermediate level representation. This level mainly describes larger knowledge
entities and may combine syntactic and functional descriptions in one
representation. Commonly used are procedures, rules, frames, or objects, of
which frames have emerged as the most flexible.

* High level representation. This includes models of expression for semantics or
structures of design knowledge such as chunks and prototypes.

Beside these representations, compatible models of the design process itself in the
respective disciplines are needed to go beyond sequential and thus cumbersome
design simulations. Proposed by Gero, Maher, and Zhang [11], three different types of
design processes in both architecture and engineering are proposed: routine,
innovative, and creative design. Although such a simplification is not always
acceptable and will not completely describe real-world design, it is useful to divide
the otherwise too extensive field of design into manageable parts. The following is a
brief description of the three types of design.

294 ARCHITECTURAL PRE-PROCESSOR FOR ENGINEERING EXPERT SYSTEMS

1.1. Routine Design

Routine design is a goal-directed activity, characterized by prototype refinement or
instantiation of designs from a catalogue of parameterized examples. Beginning with
a given prototype of, for example, a piece of furniture or equipment, the designer
adjusts a number of parameters to the specifications of the design program. The
parameters, typically geometric properties or materials, are normally well understood
and are manipulated either in the designer's memory or with advanced modeling
systems. The functional requirements of the design are known and the semantics or
the teleology, (the purpose of each element) of the design are not changed but
accepted from previous examples. Routine design relies heavily on instantiation of
designs from a catalogue of parameterized examples which are considered relevant
for the design problem at hand. Without doubt, routine design is a good preparation
for innovative and creative design and its importance must therefore not be
underestimated. The refinement of a standard floor plan is a good example. It could
be claimed that most great architects started their career with routine design [12]. The
example described later in the paper refers to this type of design.

1.2. Innovative Design

According to Faltings [13], this type of design could be described as prototype
combination, which makes it a prime example for case-based reasoning. According to
Gero, innovative design is achievable with prototype modification [11]. In both cases,
the designer has a general idea of the desired object and the design process is, as in
routine design, a goal-directed activity. However, the design process cannot be
completed with routine design because the functional description or the object
properties are not achievable utilizing a given prototype. Therefore, the combination
of two or more prototypes which each have some of the desired properties is
necessary. An example would be the development of intelligent office buildings for
which some new information infrastructure needs are still unknown. Case-based
reasoning and explanation-based learning systems are of particular interest in
innovative design because they may selectively capture desired qualities of existing
buildings and avoid their shortcomings. Once these qualities have been discovered,
an existing prototype may indeed be modified to incorporate innovations.

1.3. _Creative Design

Creative design is the development of new solutions that may only be partially
defined at the outset. Both functional requirements and the object's properties are
not completely known. It is possible that a unique solution may be found to a
problem in which case the result would be an archetype. In most cases, prototype
creation is necessary, which later can be combined and modified (innovative design)
and instantiated (routine design). An example is the invention of a new machine,
such as the personal computer. Once sufficiently understood and formalized, creative
design becomes part of the mainstream and can be proceduralized. In some cases,
architectural language aspects of once creative design, such as the Barcelona Pavilion
or Richard Meier's residences, can be proceduralized or implemented in shape
grammars [12].

G. SCHMITT 295

1.4. Ievels of Design and Levels of Representation

‘Until recently, commercial CAD programs typically allowed manipulation of design
at the level of geometry or routine design: once a design is completed with traditional
means and input into the computer, manipulations are performed on the geometric
model. Macros containing simple checking rules for stair angles or distance
calculations could be seen as intermediate level representations of routine design
knowledge. And parameterized prototypes of furniture and stairs that interactively
generate more complex, but well defined building elements, are examples of higher
level representations in routine design. The existence of this complete set of
representation and manipulation tools, developed to support day-to-day design
activities, is one reason for the popularity of computers in routine design. In order to
build as powerful tools to support innovative and creative design, the following table
might serve as a preliminary attempt to relate types of design and levels of
representation:

Level of

Representation Routine Design Innovative Design Creative Design
Low Geometry Syntax Semantics
Intermediate Rules, Frames Rules, Frames Prototypes
High Prototypes Object Semantics Structures

2. Part Two: The IBDE Prototype

Based on the overview of design processes and representations in Part One, this
section describes the Integrated Building Design Environment (IBDE) which
eventually should have the capability to perform routine and innovative design at a
level of competence and completeness approaching that of a human designer and
out-performing a designer in terms of consistency and time required to complete a
design.

IBDE integrates 7 independent, knowledge-based computer programs. Their
declarative representation of knowledge permits rapid development and
modification. The prototype integrated environment serves as a test bed for
examining the following issues:

* Integration of multiple disciplines, such as architecture, engineering, and HVAC
design. A positive result is a more realistic simulation of the final building in
the design phase and the elimination of coordination problems that usually
occur during construction and can lead to costly changes.

¢ Discipline specific multiple views of a building design. This issue is important
because it allows complete and consistent observation of the design and
prevents the discovery of conflicts at too late a stage.

* Improvement of communication between disciplines. Although more a side
effect of the project, it has developed into one of its most positive aspects. An
integrated design environment helps eliminate most common
misunderstandings about engineering and architectural design.

296 ARCHITECTURAL PRE-PROCESSOR FOR ENGINEERING EXPERT SYSTEMS

integrated design environment helps eliminate most common
misunderstandings about engineering and architectural design.

e Automation of sub-processes to various degrees. Wherever possible, and
whenever enough knowledge is available for parameterization, processes may
be automated. Examples are layout of elevator core areas and an HVAC design
sub-system.

* Hardware and software independence. Traditionally hardware dependent
applications can be used in a distributed environment. Parallel execution of
individual processes is possible.

BLACKBOARD PROCESSES

ARCHPLAN

STRYPES

}) STANLAY

IR

COMMONUSER
DISPLAY INTERFACE

DATA MANAGER

CONTROLLER - DATA

TRANSLATOR
3

DATA PROJECT
TRANSFER DATASTORH
MANAGER

Figure 1: Schematic view of the IBDE architecture.

While the systems produces a complete and consistent design within reasonable time
(two to three hours) and describes the building to a high level of detail, the system
could be improved. One of the most important necessities is the implementation of
critiques that act between processes. The blackboard, which is now used for posting
status messages, needs to take on a more significant role. The individual processes
need refinement as well: as of now, IBDE can only simulate rectangular office
buildings with interior cores. Finally, development work is necessary on the
common display interface and on the individual program interfaces to provide the
designer with a more friendly discipline specific and unified view of the project.

G. SCHMITT 297

2.1. ARCHPLAN - The Architectural Preprocessor

ARCHPLAN - ARCHitectural PLANning expert system - is the first of the seven
knowledge-based processes and provides necessary input for IBDE to proceed.
ARCHPLAN assists in the development of the conceptual design of high-rise office
buildings. Input describes the site, the client's program, budget, and geometric
constraints. The output produces three-dimensional functional, circulation, cost and
massing information. ARCHPLAN uses prototype refinement to develop individual
solutions from a generic prototype and may therefore be seen as an example for a
routine design program. The user can freely move between four modules which are
the site, cost and massing module (SCM), function module, circulation module, and
structure selection module. Knowledge is stored in algebraic form and as heuristic

rules. The program is implemented in common LISP with object-oriented extensions
[14].

Figure 2: ARCHPLAN - designer's view of the extended site, cost, and massing (SCM)
module

ARCHPLAN interaction begins with the site, cost and massing module (SCM). The
designer finds a set of default values in an interactive window which can be modified
at will. After a building site is determined, preliminary design begins with the
development of a massing model that will accomodate a given budget and a range of

298 ARCHITECTURAL PRE-PROCESSOR FOR ENGINEERING EXPERT SYSTEMS

‘other parameters listed in Figure 2. Cost, site and massing options are inter-
dependent concerns. Site characteristics are considered to be facts and therefore fixed,
whereas building requirements are more flexible. The user describes the degree of
commitment to a certain requirement, such as floor-to-floor height or ground floor
area, by entering a certainty factor. The SCM module also contains simple
optimization options: minimum cost, maximum daylighting, or a combination of
the two. Cost data are based on the Means catalogue, a prominent summary of
building cost data in the United States. The calculated cost is a total per square-foot
number and includes interior and exterior construction as well as finishings. Design
factors are represented as objects. Relations and constraints between factors are
expressed within those objects [15].
Critical issues are the restriction to rectangular building shapes and the fact that
relations between individual knowledge objects can be changed only by modifying
the source code. User-defined additions of new considerations and non-monotonic
reasoning for the design phase are planned for the next release.

Y 7
Y VN'Y
3}"*' TR
QNN
“~
—

X X3
A

9.

2

Figure 3: ARCHPLAN - designer's view of the extended circulation module

A G. SCHMITT 299

The function module assists in the vertical and horizontal distribution of building
functions within the basic massing volume. Examples of building functions are
office, retail, atrium, mechanical and parking space. Each function has particular
requirements and affects the layout, appearance, and cost of the building.
ARCHPLAN proposes a three-dimensional layout scheme which is displayed in solid
or wire frame representation. Functional decisions are made and reflected locally,
unless the constants in the global building description object are violated. In this case,
the program backtracks and control is passed back to the SCM module where the
designer can choose either to automatically adjust the design description to the
information received from the function module or to implement changes manually.
Critical issues are the shallowness of the knowledge used to determine three-
dimensional functional layout. Although a number of existing buildings were used
as examples, we did not discover all reasons behind a particular layout. The function
module can therefore not explain its decision but executes them algorithmically. -

The circulation module addresses the problem of moving occupants and equipment
from floor to floor and within floors and guaranteeing the safe evacuation of the
occupants in emergencies. Circulation also has a major impact on the internal
functioning and on the architectural expression of a high-rise building. The two
extreme cases for the placement of vertical circulation are the internal (service and
elevator core in the centre of the building) or the external solution (service and
elevator cores attached to the outside of the building). ARCHPLAN concentrates on
creating vertical circulation proposals based on variations of these two prototypes.
The user manipulates the relative importance of each factor leading to the final
design proposal by sliding graphical bars, a more user-friendly but less exact
interaction than typing in weighting factors as in the site, cost, and massing module.
Figure 3 shows a view of the user interface for the circulation module.

Critical in this module is again the quality of knowledge that leads to a particular
placement and size of vertical elements. Future versions must include user-definable
criteria and their spatial consequences. The module does not provide for the decrease
in the number of elevators in the upper levels. This calculation is handled by CORE,
the elevator layout program developed by Flemming [16].

The structure module presents the user with a choice of eight structural systems,
some of which may apply for the proposed design. The program compares the state of
the design object with the characteristics of each structural type and decides which
type is not applicable and available for the present design. Adjustments to the
structural grid are still possible at this point. As these decisions are more competently
handled in STRYPES and STANLAY, the structure module is available only when
ARCHPLAN is used in stand-alone mode.

The program has gone through several revisions and is presently ported to a SUN 4
environment. In the absence of an established paradigm for architectural design
programs, documentation of the experimental LISP source code is sometimes
sketchy. ARCHPLAN is interesting for mainly two reasons:

* It makes architectural design knowledge explicit as it implements decision-
making design processes in various representations. Thus, critique may be
voiced openly and representation and knowledge manipulation methods for
design can be improved.

300 ARCHITECTURAL PRE-PROCESSOR FOR ENGINEERING EXPERT SYSTEMS %

* It addresses important user interface issues. The common display user interface
employs direct graphical object manipulation techniques to give immediate
feedback. Architectural decisions are visualized rapidly and facilitate the
commencement of design from either very little or very detailed client
information.

3. Part Three: On Criticism Between Processes

The introduction of criticism mechanisms between programs is based on the
assumption that (a) one program alone will not be able to provide a solution to a
complex problem, such as the design of a building, and that (b) a sequential execution
of related knowledge-based programs will render the design process too cumbersome
and .does not allow for the exploration of enough alternatives.

Common representation of design objects and design processes is one enabling
concept for the exchange of and the reaction to design criticism. It is assumed, as is
the case in the IBDE project, that a number of programs in a knowledge-based
environment (named controller, A, B, . . . in the following) are to interact, exchange
information and criticism, in order to improve the final design. Design criticism may
be grouped into several levels:

* The first level (on/off) is that program B, using input from program A, cannot
start. Program B posts the message "Unable to commence". It is the
responsibility of program A, another program, or the controller to react to the
message and provide new input so that the computation can begin. This is a low
level operation comparable to the range checking in data base input operations.

* The second level (impasse) is that program B, using partial input from program
A, encounters an impasse in its reasoning process that it cannot resolve with the
knowledge it has access to. Program B posts the message "Impasse”. It is the
responsibility of program A, another program, or the controller to react to the
message and provide new input so that the computation can proceed.

* The third level (quality) is that program B reaches a solution that is acceptable,
but has severe, definable drawbacks. Program B posts the message "Improve
Quality (in a specific area)". It is the responsibility of the preceding program(s) or
of the controller to provide new input.

The formulation of and the reaction to criticism becomes more difficult from the first
through the third level. In the IBDE project, these levels could map to the following
scenarios:

* First level. STRYPES, the structural system configurer (in the above example,
program B) needs not yet existing input from ARCHPLAN (in the above
example, program A). STRYPES posts the message "Unable to commence -
respect constraints in structural grid - longest span less or equal to 35 ft - shortest
span greater or eqal to 25 ft" on the blackboard, the controller initiates the
execution of ARCHPLAN; it re-starts STRYPES once ARCHPLAN has
completed a configuration.

m G. SCHMITT 301

* Second level. CORE, the space planner for the service core, attempts to fit the
necessary elevator banks and service areas into the space defined by
ARCHPLAN. CORE's knowledge base is unable to fit the required functions into
the given area. Rather than continuing and creating an inconsistency or
unilaterally updating the project data store, CORE posts the message "Impasse -
core size must be greater or equal to 550 sqft - smallest side longer than 10 ft".
The controller notifies ARCHPLAN which then should re-execute its
circulation module. Once CORE's critique is satisfied, the impact on the other
processes of changing the size and possibly the location of the elevator core in
ARCHPLAN must be checked: if necessary, parts of STRYPES, STANLAY,
CORE, SPEX, FOOTER, and PLANEX must re-execute as well.

e Third level. CORE has produced a layout for the elevator zone. A change in the
city zoning regulations requires re-execution of the circulation and function
module in ARCHPLAN. Although technically feasible, the orientation and
individual layout of the core zone is no longer satisfactory for the new situation.
This decision is either made manually after visual control of the core layout and
the new situation, or by an additional design quality knowledge module in
ARCHPLAN which regularly checks the architectural impact of solutions
proposed by CORE and the other processes. ARCHPLAN posts the message
"Improve Quality - re-configure core layout - core entrance should face east” on
the blackboard. The controller restarts CORE, given the new information
concerning orientation, and CORE proposes a new solution which is passed back
to ARCHPLAN. As in the second level, impact on the other processes must be
checked at this point. In re-executing processes, level one critiques have highest
and level three critiques have lowest priority.

One major problem in this scenario is the circularity of critique, re-execution, and
propagation of new results, possibly ending in endless loops of program execution.
The settling of conflicts created by reactions to critique from other processes is not a
mechanical, value-free activity, but involves judgement. This calls for high level
decision knowledge in the controller or in the individual processes which should
possibly allow for temporary inconsistencies in the building representation. We have
not found a solution to this important problem yet. However, a system of this type
would make any interdisciplinary cooperation of programs more realistic and
possibly improve the results.

4. Conclusions

In writing -an architectural preprocessor for engineering expert systems similarities
and differences between the two disciplines become apparent. The same would
probably hold true if more than two areas were involved. The first approach was to
use knowledge representations that were already tested in architecture and civil
engineering and to explore if there was a smallest common denominator for
representing architecture and engineering design. With the exception of the Tartan
grid as representation of geometry and frames as containers of knowledge, almost
everything was different. This lead to the present architecture of IBDE, in which a
global data store is the common depository of building data which is used as needed
by the individual processes, and the common user display interface which
interactively displays the content of the global data store. The advantage of this

302 ARCHITECTURAL PRE-PROCESSOR FOR ENGINEERING EXPERT SYSTEMS %

loosely coupled approach is a high degree of freedom in the processes; a drawback is
the inevitable loss of high level, application specific information which may be
crucial for the meaningful completion of other processes. The existence of the
blackboard eases this situation somewhat and the introduction of critique
mechanisms between processes is another means to achieve the appropriate balance
between global and local information preference. It shows, however, even more the
need for a general building description language which would be capable of operating
on a design and construction model of growing complexity.

5. Acknowledgements

The IBDE project is supported by the National Science Foundation of the United
States in the Engineering Design Research Center at Carnegie Mellon University in
Pittsburgh. Professors Steven Fenves, Ulrich Flemming, Chris Hendrickson, and
Mary-Lou Maher are the developers of IBDE and the individual knowledge-based
processes shown in Figure 1. Special thanks to research assistants Chen-Cheng Chen,
Chia Ming Chen, and Shen Guan Shih for their development work in ARCHPLAN.

6. References

1. NEUFERT, Ernst. Bauentwurfslehre - Grundlagen, Normen, und Vorschriften. Viehweg Verlag,

Wiesbaden. 1980.

SCHLEICHER, F. Taschenbuch fiir Bauingenieure - Tome I und II. Springer Verlag, Berlin. 1955.

HAYES, Patrick. The Naive Physics Manifesto. ISCCO Working Paper. 1978.

FORBUS, Ken. Qualitative Process Theory. Artificial Intelligence, Volume 24, 1984.

SCHANK, R. Dynamic Memory - A Theory of Reminding and Learning in Computers and People.

Cambridge University Press, 1982.

AKIN, Omer. Psychology of Architectural Design. Pion, London. 1986.

STANFORD University. CIFE - Center for Integrated Facility Engineering. Project description

summary. Terman Engineering Center, Stanford University, Stanford, CA. 1989.

8. FENVES, S. U. Flemming C. Hendrickson M. Maher and G. Schmitt. An Integrated Software
Environment for Building Design and Construction, Proceedings of the 2nd Int. Symposium on CAD
in Architecture and Civil Engineering, ARECDAO '89, Barcelona, Spain. April 1989.

9. DUPAGNE, A. Models of Building Representation Referred to Designing and Evaluating Process.
Proceedings of the 1st. Convegno Nazionale, Consiglio Nazionale deile Ricerche, Progetto
Finalizzato Edilizia, Sorrento, 1989,

10. GIELINGH, Ir Wim. Computer Integrated Construction, a major STEP forward. Proceedings of the
2nd International Symposium on CAD in Architecture and Civil Engineering, ARECDAO '89,
Barcelona, Spain. April 1989.

11. GERO, John, Maher, Mary Lou and Zhang, Weiguang. Chunking Structural Design Knowledge as
Prototypes. The Architectural Computing Unit. Department of Architectural Science, University
of Sydney, Australia. January 1988.

12. SCHMITT, Gerhard. Microcomputer Aided Design. John Wiley & Sons, New York. 1988.

13. FALTINGS, Boi. Qualitative Kinematics and Computer-Aided Design in: Proceedings of the
Second TFIP WG 5.2 Workshop on Intelligent CAD, Cambridge, UK. September 1988.

14. SCHMITT, Gerhard. "ARCHPLAN: An Architectural Front End to Engineering Expert Systems”, in
Rychener, Michael (ed.) Expert Systems for Engineering Design. Academic Press, New York. 1988.

15. GOSLING, James. Algebraic Constraints. PhD Thesis, Department of Computer Science, Carnegie
Mellon University, Pittsburgh, 1983.

16. FLEMMING, Ulrich, Coyne, R., Glavin, T., and Rychener, M. "A Generative Expert System for the
Design of Building Layouts - Version 2", in Gero, John (ed.) Artificial Intelligence in Engineering:
Design. Elsevier (Computational Mechanics Publications), New York. 1988.

S b e b

No

	Architectural pre-processor for engineering expert systems

