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Numerical Simulation of Fatigue Crack Growth

Simulation numérique de la propagation de fissures de fatigue
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SUMMARY
This paper compares fatigue test data on full-scale structural-steel details under both constant and
variable amplitude loading with results obtained through numerical simulation. Objectives include
modelling fatigue crack growth in structural details commonly used in steel constructions, such as
coverplates and web attachments. Random variability of parameters governing the fatigue crack
propagation process is accommodated.

RÉSUMÉ

Cet article compare les résultats d'essais de fatigue sur des détails de structures en acier de
dimension réelle sollicités sous charge d'amplitude constante et variable, avec les résultats
obtenus à l'aide d'une simulation numérique. L'un des objectifs consiste en la modélisation de la

propagation de fissures de fatigue dans des détails couramment utilisés en construction métallique,

tels que des semelles de renfort et des liaisons à l'âme. La variation aléatoire des
paramètres déterminants pour le comportement des fissures de fatigue est également prise en
compte.

ZUSAMMENFASSUNG
Der vorliegende Beitrag vergleicht Resultate aus Ermüdungsversuchen an Bauteilen, die sowohl
unter konstanter wie auch variabler Spannungsamplitude durchgeführt wurden, mit Resultaten
aus entsprechenden numerischen Simulationen. Eines der angestrebten Ziele ist es, das Wachstum

von Ermüdungsrissen, ausgehend von gebräuchlichen Stahlbau-Konstruktionsdetails, wie
beispielsweise Lamellen oder auf Stege aufgeschweisste Laschen, modellieren zu können. Die
Streuung der für den Rissverlauf massgebenden Parameter wird berücksichtigt.
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1. INTRODUCTION

Although in reality fatigue cracking is generally caused by random variable
amplitude loading, to date there are very few available results of long life
(N>10 cycles), variable amplitude loading fatigue tests carried out on full
scale structural elements [1]. This is due to the fact that full scale, random
loading fatigue testing, in the long endurance range, requires long testing
periods, with very high costs. While experimental research is absolutely
necessary and fundamental, the time and money needed for this type of approach
induces to take into consideration the possibility of studying numerical
procedures that, calibrated on few test results, may be able to supply useful
indications and improve our understanding of the problem under investigation.
Though a series of numerical models of fatigue crack growth are already
available in the literature [2-10], they deal with cases of ideal growth and
are not aimed at the study of details typically adopted in steel
constructions. Furthermore, for one way or another, none of the models to the
author's knowledge, can be regarded as complitely satisfactory for the
simulation of fatigue crack growth in structural steel details. In fact, the
existing numerical models can be subdivided into three main groups:
1) deterministic models, like [2], that allow the simulation of the detail

behavior during all phases of crack growth (fig. 1.1);
2) probabilistic approaches, capable of interpreting the low frequency random

aspects of crack growth, by assuming the coefficients in the crack
propagation law as random variables (fig. 1.2);

3) probabilistic approaches, capable of interpreting, during the intermediate,
linear, phase of crack growth even the high frequency aleatory components,
by means of the superposition of the Paris's Law with a random noise (fig.
1.3).

Fig. 1.1
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Recently, Castiglioni and Rossi [11] proposed a numerical model that
encompasses the characteristics of all the three types discussed above (fig.
1.4), i.e. capable of simulating both types of random non-homogeneity (at high
and low frequency), even in the two extreme phases of crack growth, i.e. in
proximity of the threshold value AKth and of the critical one AK of the
stress intensity factor range.
In fact, a propagation law is assumed of the type:

da/dN f(AK) Z(a) (1)

in which Z(a) is a random function, as proposed in [9], and f(AK) is the
deterministic function proposed by Newman [12]:

f(AK) C (1 - R)m AKn (AK - AK )p [(1 - R)K - AK]"q (2)th c

where C, m, n, p and q are material dependent parameters, considered to be
random variables. It is immediately recognized that (2) as a whole includes
the most commonly used propagation laws, as Paris's (m=p=q=0), Forman's
(m=p=q=l) and Walker's (p=q=0, m=n[m-l]).

W

The model presented in [11] takes into account:
1) various crack configurations and loading conditions (fig. 2)
2) retardation effects due to overloading according to Willenborg's model [13]
3) crack closure according to Newman's model [14]
4) stress concentrations due to geometric effects, and relative stress

intensity factor's correction factors
5) stress corrosion
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In this paper, some results are presented obtained by means of model [11].
The behavior of typical structural steel details is simulated and the
numerical results are compared with those of available experimental tests. In
the case of fatigue under constant amplitude loading cycles, the results
reported in the literature [15-17], relating to the weld toes at the ends of
web attachments and of coverplates on beam flanges, are taken into
consideration. Finally the influence of the loading history on the fatigue
life of some structural details is investigated. To begin with, in order to
determine the correspondence of the model with the physical reality, the case
is considered of a plate with a through crack, for which the test results are
widely presented in the literature. Attention is then focused on longitudinal
web attachments and, in order to make a comparison, geometries similar to
those adopted in the tests presented in [18] are considered.

2. ANALYSIS OF THE RESULTS

In order to correctly simulate fatigue tests on typical structural details,
the model was previously calibrated [11] on the basis of available
experimental results. In [11], at first the effect of the single parameters
governing the model is investigated, with reference to the simple case of a
plate with a through crack. It is concluded that the variability of the
parameters of the propagation law (functions of the material), during crack
growth, does not substantially influence the fatigue life of the structural
detail. On the contrary, the superposition to the propagation law of a high
frequency noise Z(a), defined by a stationary stochastic process with a
log-normal statistics has an influence on the fatigue life that is comparable
with that of the initial defect size.
In this paper, the simulation of some experimental tests on full scale beams
is presented. Furthermore, the influence of the loading history is
investigated, with reference to the case of a plate with a through crack.

2.1 Constant Ampiitude Loading

The test results reported in [15-17], concerning coverplated beams and web
attachments are taken into consideration.
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Various numerical simulations were carried out at the same stress range level,
considering different initial crack depths chosen from a sample having a
normal distribution, 0. 1 mm mean value and 40% standard deviation. The crack
shape correction factor was computed, as a function of the crack size (a),
with reference to the relationships between crack depth (a) and crack width
(c) proposed, for both coverplates and web attachments by Fisher [19].
The parameters of the crack propagation law were calibrated on the test data
presented in [18] for a plate with a central through crack, while the material
parameters were obtained from [16,17].
Fig. 3 shows a comparison between numerical and experimental results in the
case of coverplates on beam flanges.
It can be noticed that the numerical results interpret fairly well the trend
of the experimental data, at all the stress range levels considered.
Fig. 4 shows the comparison between experimental test data and numerical
simulation results in the case of web attachments. Also in this case it can
be noticed that the numerical simulation interprets fairly well the trend of
the experimental data.
Examining fig. 4 it can be noticed that the scattering in the numerical
results is greater for the lower stress ranges than for the higher ones. This
is also in agreement with the experimental evidence.
It is important to notice that, from both figs. 3 and 4, independently on the
stress range level, it is evident a greater scattering in the experimental

a
a.
2
ÜJ

Od Œ)"+ +5^: cab

WEB ATTACHMENTS :

comparison between numerical and experimental results
O : numerical
+ : experimental

+
cl q +

4-

oo'q.-^
" H

O0O-+ +
I ^ I -J- '

10 10s 107 10
NUMBER OF CYCLES

Fig. 4

data than in the numerical ones. This is probably due to two main reasons:
- the actual initial defect size is greater than that assumed in the

numerical simulation. This fact might be easily corrected by generating a
new sample of initial defects, with a larger mean value and standard
deviation;

- the presence of residual stresses due to the welding process influences
relevantly the fatigue life of actual welded components, as widely
demonstrated and discussed in the literature [19,20]. Of course, the
statistics of the residual stress distributions are characterized by large
standard deviations from the mean value, depending on such factors as, for
example, the plates' thickness and the welding process. In the numerical
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model, at the present state, the presence of residual stresses in the
joints is complitely disregarded, thus reducing the possible causes of
randomness, and the scattering of the results.

From examining both figures 3 and 4, however, it can be concluded that the
numerical model is capable of predicting the fatigue life of web attachments
and coverplated beams under constant amplitude loading in fairly good
agreement with the experimental results.

2.2 Variable Amplitude Loading

2.2.1 Influence of the Loading History

In order to verify the model's capacity to interpret the loading spectrum's
influence on fatigue life, a plate similar to the one shown in fig. 5 is first
examined.

A set of random loading histories, with
a Rayleigh type distribution of the
variable amplitude loading cycles are
generated, with stress ranges S ranging
from 5 MPa to 13.5 MPa.
The loading histories differ from one
another either in the value of the
stress ratio R between the minimum and
maximum stress, or in the exceedence
rate y, i.e. the probability that the
maximum cycle amplitude (S exceeds a

max

specific limit value (S Stress
1 im

ratios R=0.5 and 0.7, and exceedance
rates y=0.1%, 1% and 5% were considered.
Furthermore, for fixed R and y values,
three loading histories are randomly
generated, each one different from the
other only for the sequence of the
stress ranges. Each loading history
consists of a block of 5,000 cycles,
repeatedly imposed on the simulated
specimen until collapse situation is
reached; in any case the simulation was

interrupted Elfter a maximum of 50,000 repetitions (equivalent to 250x10
cycles).
The results obtained Eire presented in fig. 6, where the simulated fatigue
lives (N) su*e plotted against the root mean cube (equivalent) stress range,

S (2 a S 3)1/3 (3)
eq Iii

By examining fig. 6 it can be noticed how the model ceui interpret the effect
of the stress ratio R, on the fatigue life. In fact, for each exceedance rate
level, the numerical model predicted shorter endurances for those specimens
subjected to stress histories associated with the higher R ratios (R=0.7).
The effect of the exceedance rate on fatigue life is also evident, in fact,
for a fixed R ratio value, decreasing y results in longer endurances.
By examining fig. 6 it ceui also be noticed that fatigue life is strongly
influenced not only by the stress ratio R and the exceedance rate y, but also
by the loading sequence. In fact, for (R=0.5 and y=0.1%, certain cases did not
reach critical conditions after 250x10 cycles, Eind Eire plotted in fig. 6 as
run-outs.
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EFFECTS OF LOADING SEQUENCE
R=0.5

Ol

D
Q_

2

O
ZO-<"-cc

W
in
Ld
OH
h*
m

a 7
o 7

7

Q

=0.05 - R=0.7
=0.01 -
=0.001 -

iF"*

x 7 =0.05
+ 7 =0.01
* 7 =0.001

10 7 10 s

NUMBER OF CYCLES

~l 1 1—TT"

10

Fig. 6

It can be concluded that the numerical results are in good agreement with the
physical reality, though it is not possible to make comparisons with the
experimental results reported in [9], because these were obtained by varying
in each case the stress range, both in order to compensate the effects due to
the increase in crack size and to get as close as possible to the threshold
value.

2.2.2 Simulation of Web Attachments

Finally, an attempt is made to simulate some of the experimental tests on web

attachments under variable amplitude loading by Fisher, Mertz and Zhong,
reported in [18].
The various numerical simulations were carried out considering different
initial crack depths chosen from a sample having a normal distribution, 0.1 mm

mean value and 40% standard deviation.
Loading histories are generated, similar to those adopted in the experimental
tests [18], and consisting of a block of 5,000 cycles, repeatedly imposed on
the joint. This loading history has a probability y=0.1% that the maximum

stress range exceeds the value S 31 MPa, assumed by the AASHTO
lim

Specifications [21] as the constant amplitude fatigue limit for this
structural detail.
The comparison between the experimental data and the numerical simulation
results is presented in fig. 7, where the number of cycles (N) is plotted
against the root mean cube (Miner's) equivalent stress range (S

eq
A reasonable agreement between numerical and experimental results can be
noticed by examining fig. 7, confirming the remarkable versatility and
acceptable reliability of the numerical model [11].
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3. CONCLUSIONS

Although the model presented in [11], in its present state, can be furtherly
improved by implementing the possibility of considering for example the
presence of residual stresses and/or other geometries and structutal details,
it nevertheless seems to be a valid starting point for a reliable numerical
simulation of fatigue crack growth in structural steel details (both welded
and unwelded).
The good agreement between numerical and experimental results has been shown
in this paper, by comparing experimental test data with numerical results.
Once the reliability of the model has been checked on the basis of available
experimental test data, attention can be focused on its possible future
applications.
Two main field can be immediately identified, one regarding its use for
increasing the available data base in the long life region (N>50xl0 cycles),
the other aimed to the prediction of the fatigue life of a given component
subjected to a known loading history.
In the first case, the model can be calibrated on a few test data either
available or obtainable submitting the structural detail to constant amplitude
loading, even at relatively high stress range levels. Once the model is
calibrated, estimates of the fatigue life can be obtained by projection into
the long endurance range. From this estimates trends can be identified rather
quickly, avoiding the lengthy and expensive experimental long life fatigue
tests. These will be in fact necessary only in a limited number, in order to
double-check the numerical estimates obtained.
Adoption of the model for estimating the remaining fatigue life of a given
component might be more difficult because it requires, in addition to the test
data on which the model must be calibrated, also precise informations about
the loading history experienced by the component during the service life, and
an estimate of the future loading conditions. This last one is however a
problem which is common to whatever procedure for estimating the remaining
fatigue life of a structural detail, and does not represent an handicap of the
presented numerical model.
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