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Model for Structural Concrete Members without Transverse Reinforcement

Modélisation d'un élément en béton dépourvu d'armatures transversales

Modell für Konstruktionsbauteile ohne Stegbewehrung

Karl-Heinz Reineck received
his degrees at the University
of Stuttgart. His research
covers theoretical work and
several experiment projects
on the shear behaviour of
structural members as well
as large-scale tests on
reinforced concrete-shells for
offshore platforms. He is a
member of the CEB-Com-
mission «Member Design».

SUMMARY
The presented mechanical model for structural concrete members without transverse reinforcement

explains the structural behaviour from cracking until failure. The loads are transferred by an
inclined biaxial tension-compression field between the cracks and this can be visualized by a

simple truss. For calculating the failure load the discrete cracks must be examined and the load is
mainly transferred in the tension zone of the member by friction of the crack-faces and by the
dowel force of the longitudinal reinforcement. An explicit equation for the ultimate shear force is
derived following clear mechanical principles. The theory explains the size effect on «shears-
failures as well as the influence of axial compression or prestress and of axial tension or restraints,
and it also yields satisfactory results for lightweight concrete members.

RÉSUMÉ
Ce modèle présente le comportement d'une telle structure de la fissuration à la rupture. L'effort
tranchant se transmet entre les fissures par une traction et une compression que l'on modélise
par un treillis. Le calcul de la résistance doit tenir compte des fissures elles-mêmes et des effets
fondamentaux de l'effort tranchant par rapport à la friction des surfaces des fissures ainsi que
l'effet de goujon des barres d'armature. L'équation explicitant la résistance ultime au cisaillement
est dérivée suivant des principes de mécanique clairs. La théorie explique l'influence de la taille de
l'élément en béton sur la rupture par cisaillement. L'influence négative on positive sur la charge
ultime des forces de compression ou de traction axiales, ainsi que de la précontrainte peut donc
être décrite. L'utilisation de relations constitutives appropriées montre que le modèle examiné
donne des résultats satisfaisants dans le cas d'éléments légers en béton.

ZUSAMMENFASSUNG
Das vorgestellte mechanische Modell für Konstruktionsbetonbauteile ohne Stegbewehrung
erfasst das Tragverhalten von der Rissbildung bis zum Bruch. Die Querkraft wird durch ein
zweiachsiges Zug-Druck-Spannungsfeld zwischen den Rissen übertragen und kann
vereinfachend durch ein Fachwerk veranschaulicht werden. Zur Berechnung der Traglast müssen die
diskreten Risse und die wesentlichen Querkrafttragwirkungen betrachtet werden: die
Rissreibung und die Dübelwirkung der Längsbewehrung. Es wird eine explizite Beziehung für die
Bruchquerkraft nach klaren mechanischen Prinzipien abgeleitet. Die Theorie erklärt den Mass-
stabeinfluss bei «Schub»-brüchen, den Einfluss von Längsdruckkräften, der Vorspannung und von
Längszugkräften oder Zwangsbehinderungen und sie liefert auch befriedigende Ergebnisse für
Leichtbetonbauteile.

Karl-Heinz REINECK
Dr. Eng.

University of Stuttgart
Stuttgart, Germany
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1. INTRODUCTION

In present codes members without transverse reinforcement like slabs are still designed with respect to resist
shear forces with purely empirically derived formulae. Since such formulae are limited to the past
experimental evidence (which often is not clearly described) they do not cover all "shear problems" like that
of fully cracked members in silos or foundations with large depths and very low reinforcement ratios.
Therefore a clear theory based on a model for the structural behaviour is needed so that practising engineers
can solve the future tasks. Such a model for members without transverse reinforcement is also a prerequisite
for a consistent design concept for structural concrete since these members form the link between members
with transverse reinforcement and unreinforced concrete members. Since the latter obviously require the
concrete tensile strength, a consistency in modelling strutural concrete can only be reached if its use is clearly
acknowledged.

The only load transfer of a point load on a member without using the concrete tensile strength (apart from the
anchorage) are direct stmts from the load to the supports tied together by the non-staggered tension chord.
This model complies with the lower bound theorem of the theory of plasticity. It yields the full bending
capacity at midspan, but this is contradicted by many tests, as e.g. Kani /l/, Leonhardt/ Walther /2/ and
Bresler/Scordelis /3/. The reason is obvious from the crack pattern: the assumed compression stmt is very flat
and crosses the widely opening failure crack. The model is wrongly applied and the theory of plasticity is not
valid for this case, as was again recently confirmed by Muttoni /4/. The direct transfer of the total load by
inclined stmts is only possible if the load is so near to the supports, that the stmts are situated over the cracks.
This also means, that the shear force cannot only be transferred in the compression zone as pretended e.g. by
Kotsovos /5/, but that there is a shear transfer in the cracked tension zone of members without transverse
reinforcement.

2. MODEL

2.1 Assumptions
The failure of members without transverse reinforcement is characterized by a single crack propagating into
the compression zone and therefore the pattern of the discrete cracks is modelled as shown in Fig. 1 for the
well-known test beam with a point load. The B-region with shear force then consists of the solid concrete
"teeth" between the cracks as established by the works of Kani /l/, Fenwick /6/ and Taylor /7/. In each tooth
the decrease AT of the force in the tension chord is equilibrated by an equivalent force in the compression
chord and the following shear carrying actions:

- dowel force Vj of longitudinal reinforcement.
- friction along the cracks with the vertical component Vf, the term friction is used instead of

"aggregate interlock" since it applies to all concrete types.

Both actions are combined with a shear force component in the compression zone, but this does not indicate
an inclined compression chord. All assumptions are further explained in 191, where the model is derived and
justified and the results are compared with tests.

2.2 Equilibrium
The load is transferred by all the shear carrying actions (Fig. la):

V =wvd (1)

From the equilibrium of moments of a tooth (Fig. lb) as well as of the isolated compression zone alone, the
following equation may be derived for the shear force component in the compression chord (notation see
Rg.1):

2 cV — — V
e 3 z (2)

From that follows that only a small proportion of the total shear force is transferred in the compression chord.
Consequently the load is mainly carried in the cracked tension zone. With Eq.(2) the term Vc can be replaced
in Eq.(l) and with z d - c / 3 the vertical equilibrium is given by

z
d-c

The moment equilibrium of the free-body diagram in Fig. la yields an equation for the force in the
longitudinal steel depending on the moment and the shear carrying actions. With Eq.(3) the force Vf may be
replaced and the following equation for the strain in the longitudinal steel be derived

V-^r(vVd) (3)

fs
1

V (x + Ax) + N zC-Vd^-
taEsAgZ

Similarity the force and the strain in the compression chord may be determined.

with : Ax ——- {1 + ——)
; ta tanßr ^ta \ 3 z /
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I tan ßcrT cr |

a) end support region
Fig.l : Member with tooth-elements and its forces

c! -region with load application

2.3 Stress Fields in the Tension Zone
The distribution of the friction stresses along the crack depends on the crack shape as well as on the
proportion between the shear carrying actions, whereby both parameters are interrelated with each other.
Instead of iteratively determining an "exact" distribution for a defined crack shape, a simple assumption is
made for a statically admissable stress field in the tension zone.

The distribution of the friction stresses if is made up by a constant part Tfj (Fig.2a) and a parabolic
distribution Tq (Fig.2b). The latter considers that the dowel action reduces the slip in the lower part of the
crack and therefore its value is related to the dowel force. The equilibrium of the shear stresses along the
neutral axis (Fig.2b) yields the condition:

withxf2 " 2 '

n,d vn,dzVd/bw(d-c) (5)

With the giventf-distribution the shear force Vf in Eq.(3) may be expressed by the representative shear stress

Tf at the mid-height of the crack:
V b .z-x. (6)d-c d

The shear force may now be determined for any load stage after cracking if constitutive laws are formulated
for the resistances If and V(j as done in /9/.

n,Vxfi

i-| ~w cr
constant friction

dT JVd
2'vn,d "^w^cr
b) friction connected with Vd

Fig.2: Distribution of friction and shear stresses in tension zone of tooth /9/

However, the model is not complete if not also the stress field in the tooth between the cracks is known so
that "the structural action may be visualized" (Breen /8/). Since the stresses involved are small the linear
elastic theory may be applied. The constant friction stresses Xfj result in an inclined biaxial compression
tension field (Fig.3a). The stress field for the dowel action with the combined friction stresses Xf2 is not
elementary and therefore a strul-and-tie model is derived (Fig.3b). The concentrated tension tie for the dowel
force spreads out and is equilibrated by the biaxial compression-tension field in the concrete resulting from
the friction stresses.

2.4 Truss Model
The stress field between the cracks is mainly characterized by the inclined biaxial tension-compression field,
which was first proposed in /10/. It is therefore obvious, that the simple truss shown in Fig.4 represents well
the main feature of the structural action of members without transverse reinforcement. With that the concept
of strut-and-tie models can also be extended to members or parts of members which are unreinforced. It
must, however, be pointed out that the failure cannot be assumed by simply limiting the capacity of the
tensile stmts to the axial tensile strength of the concrete, but that the discrete crack and the shear carrying
mechanisms must be looked at.
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a) constant friction

Fig .3: Stress fields between cracks

b) simple and refined model
for friction connected with VH

[ V MCW

Fig.4: Truss model for members without transverse reinforcement

3. CONSTITUTIVE RELATIONS

For the steel and the concrete in compression bi-linear stress-strain relations can be assumed. The axial
tensile strength of the concrete of

fct 0, 246 • fc2/3 (7)

is an average value determined from the relative few tests where the tensile strength was actually determined
with control specimens. With that the ultimate dowel force of the longitudinal reinforcement can be
determined according to the proposal by Baumann /11/ or Vintzeleou and Tassios /12/.

The transfer of forces m cracks depends not only on the tensile strength of the concrete, but also on the
roughness as well as on the crack widthAn and the slipAs increase as clearly described by Walraven /13/ It
was assumed that the limiting friction stress is that transferrable without normal stress on die crack surface.

with
With this value a critical slip of the crack faces is reached:

Asu 0,336 An +0,01 (mm)

.('"ft) Anu - 0,9 mm (8a)

(8b)

4. ULTIMATE CAPACITY
After the limiting friction stress Tfu and the critical slip Asu
acc. to Eq.(8) are reached, the tooth rotates and separates from
the compression zone. The crack width at the mid-height of the
crack can be derived from the horizontal crack opening Au due
to the elongation of the longitudinal steel and the slip (Fig. 5)
giving the failure criterion:

An 0,71 • es- scr (9)

With that the friction stress Tfu acc. to Eq.(8a) is known and
may be inserted in Eq.(6) for the total shear force. If then the
Eq.(4) is used to replace the steel strain the following explicit
equation for the ultimate load may be derived in the critical
section with xu=(a-l,5d):

fct -0,16-^- X ^

d-c

1 a^W;0,5-Aui

H, /*»»-
^ ' Aw[_)/

* A.. f

Dw d 0,4 L
V..

tr
N + V

du (10)
Fig .5: Kinematic consideration for
crack width

1 + 0,16
fct (!-')]
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Thereby the parameter Xis a dimension-free value for the crack width:

X
Egy-d
W • An,

f. d

An,,
with

fy
w=Pf-'c

(11)
'U s'P ""uIt comprises the well-known influence of the longitudinal reinforcement ratio as well as that of the depth of

the member. With that a simple dimensioning diagram for the dimension-free ultimate shear force can be
presented (Fig.6).
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Fig.6: Dimensioning diagram for the ultimate shear force or load

5. DISCUSSION

5.1 Size Effect
The influence of the absolute depth of the member on the ultimate shear force is now obvious: the crack
width increases proportionally with the crack height or the depth of the member (Fig.5), and consequently
acc. to Eq.(8) the friction stress as the dominant shear carrying capacity is reduced. A farther smaller size
effect is also due to the dowel action /9/.

The proposed model is conservative if the crack width is very small as for thin members. Then the total
length of the crack may be within the fracture zone near the crack-tip and small tensile stresses can be
transferred up to a maximum crack width of about 0,15mm (Hillerborg and König /8/). This is shown in
Fig.7 where the distributions of these tensile stresses along the crack are plotted for different test beams from
Walraven/14/: the crack width increases with increasing depths and the extent of the fracture zone decreases.
Since the model already relies on these tensile stresses within the curved part of the crack near its top (see
Fig.3 and 19/), only the shaded area in Fig.7 remains for an additional contribution to the capacity of the
member. For all members with larger depths the vertical component of the resultant Tct is small and
contributes only 5 to 7 % to the ultimate dimension-free shear force; only in case of the beam Al it increases
to 20 % since the crack widths remain very small. However, such members with small depths normally fail in
"bending" (like this beam Al), unless they are extremely heavily reinforced.

A further size effect is on the cracking moment and thereby on the steel strain due to the tension stiffening
effect of the concrete between cracks. However, this is only worth considering for members with extremely
high valuesX like e.g. foundation slabs with 2m depth and very low reinforcing ratios /9/.

Fig.7: Distribution of tensile stresses in the fracture zone for some test beams with increasing depth
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5.2 Axial Forces and Prestress

Axial forces were considered in the equilibrium equation for determining the force in the tension chord
leading to Eq.(6), and Fig.8 gives an examples of its influence on the ultimate shear force. Axial compressive
forces increase and tensile forces decrease the capacity as qualitatively already known. This is the more
pronounced the higher the depth of the member is, since then the crack width is larger and more sensitive
towards changes in the steel strain.

The proposed model and theory can also consistently be extended to fully cracked members due to high axial
tension (Fig.8) or even restraints /9/. In such a case the shear force can only be transferred by friction along
the crack and by the dowel forces of both reinforcement layers. Thereby the amount of the top-reinforcement,
as expressed by the parameter!) in Fig.8, is of course decisive for the crack width and consequently the
possible ftictional resistance.

The structural model for a prestressed member is the same as given in Fig.4, apart that the inclinations of the
compression struts may be slightly flatter due to the flatter crack inclinations. The influence of prestress on
the ultimate load is best explained by looking at the stiffness of the tension chord (which is a prestressed tie),
since its strain governs the width of the failure crack. The tension chord of a p.c.-member with the same
mechanical reinforcing ratio is different in comparison to a r.c.-member:

- the strain will normally be smaller, but can also be larger if almost the yield strength is reached;
- the dowel force is smaller, because less steel area is needed and smaller diameters are used.

This is reflected in the comparison ofultimate capacities in Fig.9. The p.c.-member exhibits larger failure
loads for large depths than the corresponding r.c.-member, but for small depths there is almost no difference.

5.3 Lightweight Concrete
The proposed model is also valid for lightweight concrete (LC) and only the constitutive relations must be
adapted. The concrete tensile strength is lower than for normal concrete and a reduction to 66 % can be
assumed 191. The friction capacity acc. to Eq.(8a) is also reduced due to the lower tensile strength, but
furthermore higher values for the critical slip occur than given in Eq.(8b):

Asu 0,38 • An 0,01 [mm] (12)

With these minor modifications the proposed theory gives quite satisfactory results in comparison with an
empirical formulae by Walraven /14/ as shown in Fig. 10.
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