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SUMMARY
In designing concrete structures we rely on concrete tensile strength, although this is not clearly
stated in the design rules. Examples of this are given. The tensile fracture process is described,
the importance of toughness is demonstrated and the definition of toughness is discussed.
Examples of analytical results are given. These show that there is a size dependency, in that the
formal strength of a structure decreases as the size increases. Further analyses may lead to
better design rules, resulting in a more constant safety factor.

RÉSUMÉ

Dans le cadre du dimensionnement des structures en béton, on tient compte de sa résistance à la
traction bien que ceci ne soit pas clairement établi dans les réglementations le concernant. A titre
d'illustration, des exemples sont présentés. Le processus de rupture en traction est décrit; on
démontre l'importance de la ténacité du béton dont on discute la définition. Des résultats
analytiques sont présentés: ils montrent que la taille de la structure est importante, car sa
résistance formelle diminue lorsque ses dimensions augmentent. Des analyses futures peuvent
mener à de meilleures réglementations aboutissant à un facteur de sécurité plus uniforme.

ZUSAMMENFASSUNG
Bei der Bemessung von Stahlbetontragwerken verlassen wir uns auf die Betonzugfestigkeit,
obwohl dies aus den Bemessungsregeln nicht deutlich hervorgeht. Hierfür werden Beispiele
gegeben. Es wird das Tragverhalten beim Zugbruch beschrieben, die Bedeutung der Zähigkeit
demonstriert und ihre Definition diskutiert. Die Berechnungen einiger Beispiele zeigen, dass es
einen Massstabseinfluss gibt, indem die Tragfähigkeit eines Tragwerks mit zunehmender Grösse
abnimmt. Weitere Analysen können zu verbesserten Bemessungsregeln führen, die ein
ausgeglicheneres Sicherheitsniveau ergeben.
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1. CASES WHERE WE RELY ON CONCRETE TENSILE STRENGTH

When we teach the design of concrete structures, we often state that one basic
assumption is that concrete does not carry tensile stresses, tut that all
tensile stresses have to be absorbed by reinforcement. As a matter of fact,
this only applies to the design of tensile reinforcement.

The following are examples of cases where we rely on concrete tensile strength:

1.1 Bond and anchorage of reinforcing bars

Anchorage of deformed bars is to a large extent due to compressive forces
between the lugs and the surrounding concrete. These forces act in a skew
direction with respect to the bar and thus cause splitting tensile stresses in
the concrete; see Fig. 1. We have to rely an the tensile strength of concrete
for the anchorage of deformed reinforcing bars, and maybe also for plain bars.

1.2 Shear and punching without shear reinforcement

Shear stresses cause tensile stresses. When these stresses exceed the tensile
strength, skew cracks appear. We rely on the tensile strength for preventing
the formation of these skew cracks, or for preventing their growth from causing
shear failure. In the latter case, the toughness associated with tensile
fracture is important. The importance of toughness will be discussed later.

1.3 Splitting caused by dowel action

In connection with the formation of shear cracks, a rotation of the two parts
of the beam or slab in relation to each other takes place around the
compression zone above the crack? Fig. 2. This results in a vertical relative
movement at the level of the tensile reinforcement. This movement is
counteracted by dowel forces between reinforcement and concrete, which give
rise to large local splitting stresses, tending to spall off the concrete
cover. This type of failure may be of particular importance for punching
failure. In this case the foulness is very important, as it may help in
distributing the high local stresses over a larger area.

i

Fia.l Splitting forces fron reinfor- Fia.2 Dowel action causing risk of
cement and possible tensile cracks spalling of concrete cover.
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Fia. 3 Stress concentration
and possible formation of a
crack where a bolt is anchored
in concrete

Fig.4 Examples of the use of unreinfarced
concrete

1.4 Anchorage of bolts

When a bolt is anchored in concrete, e.g. as in Fig. 3, a tensile force in the
bolt causes tensile stresses in the surrounding concrete. It is not possible to
anchor a bolt in concrete unless we rely on tensile strength.

1.5 Unreinforced concrete pipes, footings etc

Where unreinforced concrete is used in structures exposed to bending, it is
quite obvious that we rely on tensile strength. Examples of such structures are
concrete pipes of a moderate diameter, footings, prefabricated pavement slabs
and concrete tiles; Fig. 4.

2. BRITELENESS AND TOUGHNESS

Severe tensile stress concentrations may occur at, for example, the tip of
shear cracks, near the crack surface in dowel action (Fig. 2), and near the
bolt head at the anchorage of bolts (Fig. 3).

There are also stress concentrations in concrete due to internal cracking,
which is always present. These cracks may e.g. be due to chemical shrinkage
during the cement hydration. These cracks are small, but they nevertheless give
rise to high theoretical stress concentrations at the crack tips.
Whenever the stress at a point exceeds the tensile strength, there is a risk
that a crack may form, which has a tendency to propagate, as cracks in their
turn give rise to stress concentrations. If the crack propagation is not
prevented, it will lead to failure of the structure. As high stress
concentrations are often present, it is of primary importance that mechanisms
which prevent crack propagation exist.

There are two main mechanisms for the prevention of crack propagation. One is
the possibility that the crack may propagate into a region where the tensile
stress concentration at the tip disappears. The other is that the toughness of
the materiell is great enough to absorb the released energy.
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A tending crack in a reinforced team is a typical point where an unstable crack
may form and propagate as soon as the tensile strength is exceeded, but where
it will be arrested and stay stable after the crack tip has reached the
compression zone. This corresponds to the normal assumption for the design of a
bent beam. In this case we may disregard the toughness of concrete in tension,
even though it may have some influence on the beam stiffness and on the
ultimate moment.

In many other cases, the formation of a crack and its propagation are only
prevented by the toughness of concrete. If concrete were a perfectly brittle
material, the stress concentrations would often lead to sudden brittle failures
already at low external loads. Such concrete could hardly be used as a
structural material. Tbughness is therefore a very essential material property.
For many structures it may be of the same importance as the strength.

In order to be able to take the toughness into account, it must be possible to
quantify this property. This can be done by means of a suitable material model
describing the tensile fracture behaviour.

3. TENSILE FRACTURE BEHAVIOUR

The tensile fracture behaviour can be described by means of a hypothetical
tensile test on a plain bar of a constant cross section; Fig. 5. The test is
made in deformation control, so that the total length of the specimen is slowly
increased.

At first the stress increases as the deformation increases. At that stage the
strains are the same all along the bar, provided that the material is
homogeneous. Microcracks develop and grow, tut in a stable way.

When the stress reaches the tensile strength, it cannot be increased any
further. Instead, fracture phenomena start to develop at seme section along the
bar. A fracture zone starts to develop.

What happens at the fracture zone is that microcracks grow faster than at other
points in the bar, and the microcracks also coalesce. These cracks would be
unstable under constant stress conditions, but they may grow in a stable way in
deformation control. As the cracks grew, the stress that can be transferred
through this section decreases. The stress in the bar decreases as the
deformation increases. The stress decrease outside the fracture zone
corresponds to an unloading, with a corresponding strain decrease according to
an unloading curve.

The fracture zone starts developing when the peak of the stress-deformation
curve is passed. The part of the curve before the peak is reached is often
called the pre-peak region or the ascending branch, whereas the part after the
peak has been passed is called the post-peak region or the descending branch.

The pre-peak region can be described by a stress-strain curve, as the strain is
equal all along the bar. This is not possible in the post-peak region, as we
new have increasing deformations within the fracture zone, but decreasing
deformations outside this zone. As there are two different types of behaviour,
we need two different relations to describe the stress-deformation properties.
This statement has general validity. Thus it is not possible to find a unique
stress-strain curve which is also valid for the descending branch, either for
tension or for compression.

The total deformation iL an a gauge length L in the post-peak part can be
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Fia.5 A tensile test and the
description of the total elongation
by means of two relations

Fia.6 The shape of the cr-w-curve in a
dimensionless form according to
Petersson [6]

described by means of the following formula, referring to the two curves in
Fig. 5

For the descending branch of the total curve the value of e should be taken
frcro the unloading branch, starting from the peak in the a-e-diagram. The value
w is the additional deformation within the fracture zone, it should be observed
that w is a displacement, not a strain.

Equation (1) may be used as a general material description for stress-
deformation properties in tension, and not only for the bar in Fig. 5. In the
general case, the value of e should be taken as the relevant value, which may
be on the ascending branch or on an unloading curve starting from any point on
the ascending branch. The value of w is zero if the peak has not been passed;
otherwise it is taken from the cr-w-diagram, in some cases from an unloading
branch in this diagram.

Concrete in a structure is exposed to a more complicated stress and strain
situation than the bar in Fig. 5. There may be stresses and strains in
directions perpendicular to the main tensile stress direction. If these are
large compared to the strength at the moment when the peak is reached, they may
influence the peak value and the shapes of the curves. Thus Eq. (1) can only be
assumed to be a good approximation of the stress-deformation properties in
tension if the stresses - tensile or compressive - in lateral directions are
much lcwer than the correponding strengths.

One important property in this connection is the way in which the non-elastic
deformations take place in the material. The non-elastic deformations in
concrete are due to the opening of micro-cracks before the peak and of larger
cracks after the peak. This type of deformation does not cause any major
lateral stresses or strains. This is an important reason for assuming that Eq.
(1) can be used as a general description for concrete. For metals, large
non-elastic deformations are due to yielding, which causes high lateral
deformations and stresses. Thus Eq. (l) with the corresponding diagrams in Fig.
5 may not be assumed to give a valid general description of the stress-
deformation properties in tension for metals.

AL eL + w (1)
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The toughness is due to the nan-linear deformations. For concrete in tension,
the non-linearity of the pre-peak curve is rather insignificant and does not
contribute substantially to the toughness. The non-linear deformations and the
toughness are mainly due to the post-peak part of the curve, which, in its
turn, mainly depends on the a-w-curve. As a reasonable simplification, the
toughness of concrete in tension may be assumed to depend only on the
properties of the cr-w-curve.

One important property of the ci-w-curve is the area below the curve. This area
is dengfted by Gp and it is defined as

Gf= S adw (2)
o

Fran this formula it can be seen that Gp represents the amount of energy
absorbed in one unit area of the fracture zone during the complété fracture
process. Gp is thus the fracture energy per unit area. It is, as a rule, simply
called fracture energy.

The properties of the cr-w-curve may be divided into three parts:

the shape, expressed in a dimensionless form

According to Petersson [6], Fig. 6 shews the shapes of the a-w-curves for three
different concrete mixes expressed in a dimensionless form. Petersson drew the
conclusion that this shape is approximately the same for different concrete
mixes. Later many a-w-curves have been measured by different laboratories, and
the results do not seem to contradict Petersson's conclusion. Thus as a
reasonable approximation it will here be assumed that the shape is constant.
This simplifies the analyses very much, as - in comparing different concrete
qualities - the properties of the a-w-curve are defined by only two values, f.
and Gp. The tensile strength f. is a conventional property, and it may be
assumed to be known. The only non-conventional value that has to be determined
is Gp.

Of course it has to be remembered that the assumption that the shape of the
a-w-curve is constant is an approximation, which may be too rough for some
types of concrete. It cannot, for example, be used for fibre-reinforced
concrete. It is also possible that in sate cases the slope of the first part of
the curve is more important than the value of Gp. In the discussion below it
is, however, assumed that the shape is constant.

The toughness of the material may be characterized by a ratio between
non-elastic and elastic deformations. Gn./f+- fflY be taken as a value for the
non-elastic deformation; see Fig. 6. As a value for the elastic deformation,
the strain at the tensile strength, t/E, where E is the modulus of elasticity,
may be taken. The ratio between Gp/ft and £+/E is a length which is called the
characteristic length 1^
1ch BGF//ft

For ordinary concrete the value of 1^ is of the order 0.1-1.0 m, with an
average value around 0.4 m.

The best way of measuring Gp has been much discussed, since it is difficult to
perform a stable tensile test in principle according to Fig. 5, this is not a
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suitable standard test. A much simpler test is a stable bending test on a
notched beam; Fig. 7. Ulis type of test has therefore been proposed as a RILEM
Recommendation [7]. It is assumed that all the energy released during the test
is absorbed as fracture energy in the zone above the notch. Hie problems
associated with the measurement of Gp will not be further discussed here.

Hie fracture energy G„ is a material property which has no direct connection
with other properties, such as the compressive strength. It is quite possible
that a change in concrete composition may lead to an increased strength but a
decreased fracture energy. So far, we have too limited experience to know how
to design a concrete mix in order to get a high fracture energy. We have some
indications, e.g. that an increased maximum aggregate size may increase Gp, and
that lightweight aggregates decrease Gp.

The characteristic length 1^ is a material property which can be said to
define the toughness of the material. What is often more interesting is to have
a value which characterizes the toughness of a structure. It can be shewn that
such a value is the ratio between 1^ and the size of the structure, defined
e.g. by the depth of a bean. If the chosen size of the structure is denoted by
d, the toughness is characterized by l-^/d. As a rule, the inverse value d/1^,
often called "brittleness number" [1] Is used. It must be noted that the value
of the brittleness number for a structure depends on the definition of d, which
can be chosen arbitrarily, e.g. as beam depth, beam width, span, concrete
cover, etc.

4. EXAMPLES OF RESULTS OF THEORETICAL ANALYSES

The description of tensile fracture given above can be used for analysing the
behaviour of a structure which fails due to tensile stresses. Before failure, a
fracture zone develops where the final failure takes place, within the fracture
zone, the a-w-curve is valid for the relation between the transferred stress
and the additional deformation. The a-e-curve is valid for all the material.



596 RELIANCE UPON CONCRETE TENSILE STRENGTH

The fracture zone may be modelled as a zone which starts with zero width and
takes all the displacement w, which means that its width is eaual to w. It can
then be looked upon as a "fictitious crack" with a width w, which transfers
stresses a according to the a-w-curve. The model has therefore become known as
the "fictitious crack model", although any reasonable small width of the
fracure zone may be assumed in the numerical analyses without any noticeable
influence on the results.

The analysis has to be numerically performed, as a rule by means of the finite
element method. Fig. 8 demonstrates the principle of the analysis. When the
tensile stress at the bottera of the beam reaches the tensile strength f., a
fracture zone starts forming. When the beam deflection is increased, this
fracture zone grows. At the same time, the stresses decrease close to the
bottom of the beam, whereas they increase higher up in the beam. The stress at
the tip of the fracture zone is constantly equal to f.. As the fracture zone
grews, the moment capacity, i.e. the load, at first increases due to a
favourable redistribution of tensile stresses. At a later stage, it starts to
decrease due to the decrease in tensile stresses at the bottera, associated with
the increasing displacement w within the fracture zone. The moment capacity has
a maximum, defining the flexural strength of the beam (modulus of rupture). In
this way, the ratio between the flexural strength and the tensile strength can
be determined; see below.

A number of structures have been numerically analysed by means of this method.
Most of these analyses have been reported in [l]. Some significant examples
will be discussed below.

All the analyses are based on the simplifying assumption that the o-e-relation
is a straight line. The shape of the o-w-curve is simplified to either a
straight line or a bi-linear relation; see Fig. 9. These simplifications do not
have any appreciable influence on the general conclusions drawn from the
analyses.

4.1 Bending of a plain nnreinforced beam

Fig. 9 shows the theoretical ratio between the flexural strength f_ and the
tensile strength f. for a beam with a rectangular section. Two different
assumptions are used for the shape of the er-w-curve. It can be seen that the
assumed shape of this curve does not significantly influence the result. The
scale in mm corresponds to an assumed value 1^=250 mm.

It should be observed that the ratio ff/ft is uniquely defined by the ratio
d/lçj. if the shape of the a-w-curve is known. This type of uniqueness can be
shown to have a general validity for any ratio f/ft, where f is the formal
strength value for a structure.

It should also be noted that logarithmic scales are used in Fig. 9. This is
convenient for many reasons. One such reason is that it facilitates the
judgement of the sensitivity of the results to variations of different
properties, as will be shown below.

In Fig. 9, a dashed curve shows how an assumed distribution of shrinkage
strains influences the flexural strength. The distribution has been assumed to
be parabolic in the vertical direction. The maximum value is of the order which
can be expected in normal indoor conditions. Although the assumptions are
rather approximate, the general conclusion can be drawn that beams with small
depths are rather insensitive to the influence of shrinkage, whereas deep beams
are very sensitive.
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Fig.9 '.theoretical ratio between
flexural strength and tensile
strength. The dashed curve includes
influence of shrinkage

Fig 10 Theoretical ratio between net
flexural strength and tensile strength
for a notched beam

4.2 Bending of a notched beam

Fig. 10 shows how the net bending strength for the net area above a notch
varies with the depth of the net section and with the relative notch depth a/d.
A curve is also shown for a=0, i.e. a beam without a notch, the same as in Fig.
9. It can be seen that the relative notch depth has no significant influence as
long as the notch is not very small. What is very interesting is that there is
no major difference between the net bending strength of a notched beam and the
strength of an unnotched beam for small beams, up to (d-aVl^ about 0.5, which
on an average corresponds to (d-a) about 0.2 m. Such small beams are said not
to be "notch sensitive". The deeper the beams, the higher the notch
sensitivity. It must be noted that the notch sensitivity depends both on the
size of the structure and on a material property, 1 It is thus not a pure
material property, which is sometimes claimed.

The dashed lines in Fig. 10 correspond to pure linear elastic fracture
mechanics (LEFM), which can be seen not to be applicable to small beams, but to
indicate the limiting case for large notched beams.

4.3 Unreinforced concrete pipes

Fig. 11 shows the results of an analysis of failure of unreinforced concrete
pipes. TWo different types of failure have been analysed. One type is a bending
failure, with the pipe acting as a beam. The other type is called a crushing
failure, with the forces acting along two opposite generatrices and the
structure acting as a ring. In both cases, the formal flexural strength value
is the maximum tensile stress at maximum load, calculated according to the
theory of elasticity.

It can be seen from Fig. 11 that the formal flexural strength in crushing
failure is higher than that in bending failure and that the size dependency is
greater in crushing failure. One reason for these differences is that the
active depth in the crushing failure is the wall thickness t, whereas in the
bending failure it is the outer diameter. Another reason is that the structure
is statically determinate in the bending failure, whereas in the crushing
failure it is statically indeterminate, with a possible redistribution of
moments before final failure. The ability to redistribute moments increases
with a decreasing wall thickness.



598 RELIANCE UPON CONCRETE TENSILE STRENGTH

Fig.11 Theoretical ratio between a
formal flexural strength and the
tensile strength for two different
types of failure of an
unreinforced concrete pipe

Fig. 12 Theoretical ratio between a
formal shear strength and the tensile
strength of a beam with a tensile
reinforcement ratio

4.4 Shear failure

Gustafsson [2] performed an analysis of the shear failure of a beam with
tension reinforcement, but without shear reinforcement. A number of assumptions
and approximations had to be introduced in order to make the very laborious
numerical analysis possible. No details will be given here, but the results
alone, which are believed to give a reasonably accurate idea of the influence
of different parameters. As the finite element programs develop, someone will
hopefully perform a more advanced analysis. So far this is to the author's
knowledge the only systematic analysis of shear failure which has been
performed.

Fig. 12 summarizes the results. The points show calculated values: f is the
formal shear strength, ç is the percentage of reinforcement. The variables
studied are the beam depth (d/1 .J, the reinforcement ratio and the span to
depth ratio (L/d).

One thing which vas not taken into account was the dowel action and the
resulting possible splitting failure along the reinforcement. Nor were the
shear stresses in the fracture zone ("aggregate interlock") taken into account
in a realistic way.

5. INFLUENCING FACTORS

The formal strength f of a structure, expressed as e.g. a flexural strength or
as a shear strength, is a function of the ratio d/l_, where d is a typical
size of the structure. This function can be express«! in the general form (see
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Figs. 9-12)

f/ft «PCd/l^) (4)

In the diagrams, logarithmic scales are used. If we wish to study the
sensitivity of f to small changes in other variables at a certain point in such
a diagram, we may replace the curve by its tangent at this point. The equation
of this tangent may be written in the following way:

ln(f/ft) A - Blntd/l^) (5)
2

Introducing » the equation can be transformed into:

Inf A - Bind + BlnE + BlnGp + (l-2B)lnft (6)

A differentiation of this equation gives:

df/f -Bdd/d + BdE/E + BdGp/Gp + (l-2B)dft/ft (7)

This equation shows how the relative change in f is dependent on the relative
change in each of the other variables. Thus an increase of G_ by 10% increases
f by 10B%, and an increase of f, by 10% increases f by 10(1-2B)%, where B is
the negative slope of the tangent to the curve at the point in question.

The sensitivity of f with respect to changes in E or Gp can be said to be equal
to B, and the sensitivity with respect to changes in f^ to (1-2B).

If different logarithmic scales are used on the axis, this has to be taken into
account in the determination of B if Eq. (5) is to be fulfilled. In the
diagrams above, the scale on the vertical axis is 4 times larger than that on
the horizontal axis, vhich means that the slopes measured in the diagrams have
to be divided by 4.

As to the flexural strength ff according to Fig. 9, we find that, for ordinary
beam sizes, B is approximately 0.15. The sensitivity with respect to changes in
GL, is thus 0.15, and the sensivitity with respect to changes in f. 0.7. With
all other factors unchanged, an increase in the tensile strength By 10% will
only increase the flexural strength by 7%.

From the dashed curve in Fig. 9 it is evident that the value of the slope B is
much higher when the beam is exposed to shrinkage. It may then easily reach
values above 0.3, particularly for large beams. In that case the sensitivity of
f ~ with respect to changes in Gp becomes very important, at the same time as
the sensitivity with respect to changes in f. is reduced. In order to increase
the flexural strength of large beams exposed to shrinkage, it my be important
to try to increase G„ rather than f..a t
According to Fig. 10, the value of B is higher for a notched beam than for an
unnotched beam. It is typically of the order 0.25, which means that the
sensitivity of f^. with respect to changes in G„ is about 0.25 and with
respect to changes in f. about 0.5. With all other factors unchanged, an
increase in the tensile strength by 10% will only increase the net bending
strength by about 5%.

According to Fig. 11, the value of B for unreinforced concrete pipes is about
0.1 for bending failure and about 0.3 for crushing failure. This means that for
crushing failure the sensitivity of ff with respect to changes in Gp is about
0.3, and with respect to changes in ft about 0.4. In order to increase the
crushing strength, it my thus be more important to increase G„, if this can ber
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easily achieved, than to increase the tensile strength. For bending failure on
the other hand, ft is more important than Gp.

For shear failure according to Fig. 12 the average slope of all the lines
corresponds to a value of B of about 0.25. The sensitivity of the shear
strength with respect to changes in Gp is about 0.25, and with respect to
changes in ffc about 0.5. The fracture energy is evidently an important factor
for the shear strength of beams and slabs.

0 25With B=0.25, the shear strength is inversely proportional to d ' where d is
the beam depth.

6. COMPARISONS WITH TEST RESULTS

6.1 Bendina of plain unreinfarced beams

Already in the very first published paper [3] on what later became known as the
fictitious crack model, a comparison was made between the results of the
theoretical analysis and of tests on the influence of the beam depth on the
flexural strength. For beams without shrinkage, comparisons could be made with
test results summarized by Meyer [5], This comparison showed a good agreement,
vhich encouraged a further development of the model. A comparison was also made
with a small series of beams of different sizes with and without exposure to
drying. In this case as well, a good agreement was found between theory and
tests.

6.2 Unreinforced concrete pines

Gustafssan [2] made a comparison of a few series of tests where equal pipes had
been tested both for bending failure and for crushing failure. He was then
able to show that the different formal flexural strengths calculated according
to conventional formulae corresponded to the same tensile strength when the
diagram in Fig. 11 was applied. As a matter of fact, the reason for his
analysis was that the producers had difficulties in explaining why the formal
bending strength calculated from a crushing test was more than 50% higher than
that calculated frcm a bending test.

6.3 Shear failure
The analysis performed by Gustafssan [2] is the first purely theoretical
analysis of shear failure. All design formulae have hitherto been based on
extensive tests, often interpreted by means of seme physical model, e.g. a
strut and tie model, where empirical constants have been adjusted in order to
achieve agreement with tests. A basic theoretical understanding of shear
failure has been lacking. The analysis performed by Gustafsson is an important
breakthrough, as it is the first time that same real theoretical understanding
of shear fracture has been achieved. However, much more work remains to be done
before shear fracture can be analysed and understood in detail.
One important factor which has been explained by means of theoretical analysisis the influence of beam depth. This influence has long been known from tests,
and it is taken into account in concrete codes, e.g.according to CEB. No one
has been able to explain it earlier by means of a theoretical analysis. Frcm
the test results the conclusion has been drawn that the shear strength is
approximately inversely proportional to d [4]. This is in agreement with
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the theoretical analysis.

As a basis for concrete codes, a great number of test results have been
summarized regarding the influences of different factors: in the first place
beam depth, reinforcment ratio and span to depth ratio, The theoretical
relative influences of these factors can be estimated approximately by means of
Fig. 12. In all cases, a reasonable agreement between the analytic and the
empirical results has been found; see [1] or [2].

6.4 Fracture mechanics test specimens

A great number of fracture mechanics tests, i.e. tests on differently shaped
notched or precracked specimens, have been theoretically analysed. In
particular, Gustafsson [2] has reported many such analyses. As a rule, they
show good agreement between tests and analyses.

6.5 Summary

The comparisons which have been made between theoretical analyses and tests all
shew that the fictitious crack model according to Fig. 5 gives a realistic
description of tensile failure, and that it can be expected to give much more
reliable predictions of failure loads than the conventional methods. A
systematic study by means of this model of cases where we rely on tensile
strength will lead to a safer basis for concrete design. The resulting
consequences from the points of view of safety and economy motivate a strong
support for this type of research.

7. SOME PRACTICAL CONCLUSIONS

Some practical conclusions can be drawn from the systematic analyses. A number
of these will be commented upon.

Starting with Fig. 9, we can see that the flexural strength decreases with an
increasing beam depth. The increase is particularly important where the
structure is exposed to drying shrinkage. One consequence is that the flexural
stress which causes cracking is lewer for large beams than for small beams.
This is also the case for reinforced beams, as the reinforcement has only a
small influence on the cracking load. The influence of size ought to be taken
into account when the cracking moment is used in connection with the
calculation of the stiffness of a beam.

Another consequence is that the flexural strength should only be relied upon
for structures with either a very small depth or with negligible drying
shrinkage within the tensile zone. Examples of very thin structures are
pavement slabs of about 50 mm thickness and concrète tiles. Footings are an
example of a case with a negligible drying shrinkage. Fig. 9 thus explains why
we may rely on concrete flexural strength in these cases.

Fig. 11 is already used by manufacturers for the design of unreinfarced pipes.
It is a good example of the practical applicability of the model for tensile
fracture. As the wall thickness of these pipes is limited, stresses due to
drying shrinkage can be estimated to have a limited influence, although some
increasing influence with an increasing size may be expected.

The analysis of shear failure in Fig. 12 supports the empirical findings upon
>4iich the concrete codes are based, e.g. regarding the influence of beam depth.
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The analysis may support some changes in concrete codes, resulting in a more
even safety factor and a better economy.

As the analytic results according to Fig. 12 are supported by test results
regarding the influence of the beam depth, it may be assumed that the following
general relation is valid:

Vft ~ (d/W-0-25 (8)

introducing 1^ EG^2 and rearranging gives:

fv ~ (SVt2/d)°-25 (9)

As an approximation, it is often assumed that the tensile strength f. is
proportional to the square root of the compressive strength f If we accept
this assumption, we find: c

fv " (BSpf^d)0-25 (10)

From this relation the conclusion can be drawn that the fracture energy G_ is
of about the same importance as the compressive strength f for the shear
strength of a reinforced beam. When shear tests on beams are performed, the
concrete quality should be given, not only as a concrete strength f but also
as a fracture energy G^.

Frcm Eq (10) it may be expected that the shear strength of lightweight concrete
beams is lower than that of normal concrete beams with the same tensile
strength, as E and G„ are lower for lightweight concrete than for normal
concrete.

Creep under long-term loading causes a reduction in the formal E-value by a
factor l/(l+$), where $ is the creep factor. Thus e.g. withy,$=2, the shear
strength may be expected to be reduced by a factor of (1/3) " =0.76, provided
that Gp and ffc are not time-dependent.

8. POSSIBLE FURTHER APPLICATIONS

In principle, the model for tensile fracture can be applied in analysing all
the cases where we need to rely on the tensile strength of concrete. We are
still far from a sufficient understanding of all types of tensile-induced
structural failures. Same of them are very complicated to analyse. This is the
case with, for example, shear and punching failure, including the dowel action
in combination with spalling forces from the bond stresses between reinforcing
steel and concrete. A major research effort is needed within this area in order
to achieve better guidelines for design rules. Such a research effort may be
expected to lead to a more even safety factor and large savings.

TOie^ anchorage of bolts is a case which can be theoretically analysed, althou^iit is rather complicated, because not only tension, but also shear stresses act
in the fracture zone, and several fracture zones may have to be taken into
account. Test results [1] show that the fracture energy in this case is an
important concrete property, whereas the tensile strength has a limited
influence. In terms of sensitivity, it seems that in this case the value of B
is close to 0.5. One consequence of this is also that the formal stress
associated with pull out of a bolt is very size-dependent.

Anchoring reinforcing bars always gives splitting tensile stresses, which may
cause tensile-induced failure in a structure. A number of different situations
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may be distinguished, depending on the type of anchorage, e.g. by bond or by
end anchors, deformed or plain bars, prestressed or non-prestressed
reinforcement, dowel action due to shear cracks etc. These different situations
may all be theoretically analysed.

In order to obtain valid results for practical design purposes, the influence
of shrinkage should also be analysed, as shrinkage may sometimes have an
important unfavourable influence on the strength of a structure; see e.g.
Fig.9.

9. CONCLUSIONS

The model for tensile fracture according to Fig. 5 (the "fictitious crack
model") gives realistic predictions compared to test results. By means of this
model it is possible to analyse tension-induced failures and to estimate to
what extent the tensile strength of concrete may be relied upon.

Frcm the analyses performed so far, the following general conclusions regarding
tensile-induced structural failures may be drawn:

1. The formal strength (a formal stress value atgüiaximum load) is size-
dependent. The strength is proportional to d where d is a typical size of
a structure and B normally varies between 0.15 and 0.5.

2. The formal strength depends on the tensile toughness of concrete. A material
property closely connected with toughness is the fracture energy G„. This
material property should be determined and taken into account in the
evaluation of test results and in design, particularly for less common types
of concrete, such as high strength concrete ang concrete with weak
aggregates. The strength is proportional to Gp with B as above.

3. The formal strength is proportional to E8, where E is the elastic modulus
and B has values as above. The ratio between long-term and short-term
strength can be estimated from the formal reduction of E due to creep.

4. The formal strength is proportional to where ft is the tensile
strength and B has values as above. In cases of high B values, the tensile
strength may be a less important material property than Gp and E for a
tension-induced failure.

5. Shrinkage may decrease the formal strength appreciably, particularly where
the failure already has a brittle character.

6. Toughness (ductility) in tension is a property of the utmost importance for
the reliance upon concrete tensile strength.
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