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SUMMARY
This paper presents a constraint-based consistency maintenance system for a spatial
model simulating a building environment perceived by an Indoor Autonomous Mobile
Robot. The constraints define a reference frame for the environment model, representing
the fundamental properties concerning the characteristics of spatial entities, topo-geome-
trical or semantic relations between them. The environment model will be declared consistent

if and only if all the constraints are satisfied.

RÉSUMÉ
Un système de maintien de la cohérence est présenté pour un modèle de l'environnement

spatial simulé où naviguent des robots mobiles autonomes. Ce système est basé
sur des contraintes qui forment une référence de cohérence. Ce sont des propriétés
concernant les relations géométriques, topologiques et sémantiques existantes entre les
entités spatiales. Le modèle de l'environnement est dit cohérent si, et seulement si toutes
ces contraintes sont satisfaites.

ZUSAMMENFASSUNG
Der Beitrag stellt ein auf Nebenbedingungen beruhendes System vor, das die Konsistenz
in die Simulierung eines Raummodelles wahrt, wie es von einem autonomen mobilen
Roboter für Einsätze im geschlossenen Räumen wahrgenommen wird. Die
Nebenbedingungen definieren einen Bezugsrahmen, der die unabdingbaren Eigenschaften
räumlicher Grössen und ihren topologischen und semantischen Beziehungen repräsentiert.

Das Raummodell wird nur dann als konsistent bezeichnet, wenn alle
Nebenbedingungen eingehalten sind.
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1. INTRODUCTION
The problem of consistency maintenance in Artificial Intelligence is not a new one. In the domain of

knowledge-based systems, the consistency maintenance is a fundamental issue [1] ; in the domain of
CSP (Constraints satisfaction problem) [2], the process of solving consists in searching a solution

with which ail the constraints are consistent ; etc. The notion of consistency depends in fact on the

domain in consideration.

The consistency maintenance in our context concerns a model of a simulated spatial environment for

IAMRs.

An IAMR can perform intelligent motion planned [7]. The planning of robot's trajectory and the

pattern recognition during the motion depend directly on the representation model of its spatial

environment. The model must provide necessary information about the real world at different levels :

geometric, topological, semantic, etc.

A spatial environment can not always be completely and precisely described, and the change in the

environment perceived by an IAMR may be falsified (by the noise of its vision sensors for example).

For this raison, the consistency maintenance of the environment model is necessary.

In order to control the environment model's consistency, we develop a consistency maintenance

system PROVE which possesses a referential truth model built on three types of constraints :

constraints-to-be-propagated (Cp), constraints-to-be-verified (Cv), and constraints-to-be-verified-

and-propagated (Cvp). Each constraint is a inviolable numerical or symbolical relation existing
between spatial entities such as "each space must have an opening which make it accessible (directly

or non) from the exterior".

Two cases are checked. Firstly the initial model will be verified before supplied to the robot : we

verify the structure of each spatial object, the relation between different objets, etc.

Secondly, any change in the environment will be controlled by PROVE system : it will be propagated

throughout the model by using the constraints to be propagated. If the change and its induced result

satisfy all the consü'aints to be verified, it is considered as consistent and the environment model may
be updated. Otherwise, the change will be refused and an analysis procedure, based on a mechanism

inspired from ATMS (Assumption-based Truth Maintenance Systems) [4], will be engaged to detect

the origins of the anomaly.

2. ENVIRONMENT MODELLING
The IAMR's environment considered is a built space represented on two dimensions and half (as

illustrated in the figure 1), which can be decomposed into several levels : <Environment> ->

<Spaces, Walls, Openings> -> <Facets> -> <Ridges> -> <Points>. If we consider facets and

openings as elementary entities, the structure hierarchy of the environment showed in figure 1 can be

represented by the figure 2. Thus several levels of information must be taken into account : numerical

at low level to represent the geometry of spatial entities ; symbolical at high level to represent the

topology of spatial entities.
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^Lnvhonmen^

Figure 1. An illustrative building environment Figure 2. Structure hierarchy

Each spatial entity (facet, door, space or wall) possess some properties like "coordinate", "length"
and some topo-geometrical relations with other entities tike "adjacent" between two rooms, etc.

We have adopted the object-oriented representation, owing to their encapsulation and inheritance

faculties [6, 10], to represent the spatial entities.

Each entity is described by its intrinsic properties, like the width, length of a space, the height of a

door ; and by the topo-geometrical relations with other entities, like composition relation between a

composite entity and its components, adjacent relation between two spaces, etc.

Each spatial entity is represented by an object with own identifier and attributes. Three categories of
attributes have been distinguished :

- terminal attributes being peculiar to an object (size, area of a room,...) ;

- constituent attributes pointing to the component objects of a composite object (facets and

doors of a room, ;

- topological attributes representing the link between objects ("space-linked" of a door,

"furniture-contained" of a room,
We define a special attribute "Graph" associated with each composite object in order to link it with its

structure graph.

For example the state of Room R2 in the figure 1 can be described as below :

R2 (<Width 3.0>, <Length 4.0>, <Facets (fl, f2, f3, f4)>, <Doors (D2)>, <Graph Gr2>)

Spatial entities of the environment are described by the following object classes : Facet, Door,

Separation, Space. Separation has two sub-classes : Partition and Wall ; Space has also two
subclasses : Room and Corridor.

3. TOWARD A CONSISTENT ENVIRONMENT MODEL
An other type of relations existing between the spatial entities, allow us to define some restrictions on

the state or structure of spatial entities, such as for example "the area of a room is equal to the product

of its width and its length", "each space must be accessible from the exterior", "the length of the room

R2 must be lower than 3 metres", etc. We consider these relations as constraints which may concern,

on the one hand, the intrinsic properties of spatial entities, and some arbitrary functional requirements

on the other hand.
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These constraints constitute a truth model allowing us to control the state consistency or the structure

consistency.

3.1 Truth Model Description
Constraints of consistency
In our context, the constraints of consistency concern all the geometrical relations, topological

relations and the semantics of the environment's entities, as the examples in the following :

- the constraint of object's position : an object can not be present on the left and on the right of

another at the same time, etc. ;

- the constraint of object's structure : a door is always incorporated in a wall ; each space must have a

door such that with which this space can be directly or indirectly accessible from the exterior ; etc. ;

- the algebraic relation : the area of a space is the multiplication of its width and its length ; etc. ;

- the deduction : if a door exists between two spaces, then a passage exists between the two spaces,

etc. ;

- the exigency : the machines room must have a door such that its width ranks above 2.0 metres ; etc.

Classification and representation of the constraints
The constraints in the truth model differ from those of CSP [11, 3, 2, 9], in that they concern the

variables having infinite value domains (the constraint's variables in the CSP have generally the

discrete and finite value domains). The constraints can be classified in three types according to the

manner in which they are employed : constraints-to-be-propagated to propagate an objects change ;

constraints-to-be-verified-and-propagated to refine previous propagation and constraints-to-be-

verified to verify objects consistency.

To describe the different constraints, we use a constraint representation formalism, based on the

sorted first order predicate logic [12], The predicates of form "Attribute(entity, value)" are used to

present the triplets <entity, attribute, value>.

Constraints-to-he-propagated (Tip)

The Cp constraints are some directed relations between numerical and symbolic data. They allow to

add new values to entity's attributes, to remove an object and even lead to the creation of entirely new

objects.

A Cp is represented as follows:

<Quantprem
I

Tprem> {<Quantprem | Tprem>}

"^Cprem-* => (<Quantconc I Tconc> 1 <^-conc> [ M R]

where:

<Quantprem> represents the quantifier V or 3) of a variable "prem" in a premise ;

<Tprem> represents the type of "prem" ;

<Cprem> represents the body of constraint premises ;

<Cconc> represents the constraint's conclusion ;

<R> represents a formula that solves the constraint on the variables in the premises and the
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conclusion.

Examples :

Cpl: (Vx I Space(x))(Vy | Space(y)) (Vz | Door(z))

Bound(z, x,y) => (3p | Passage(P)) (Space-between(P, x,y) a Access(P, z))

Cp2 : (Vx | Space(x)) Length(x, L) a Width(x, w) => Area(x, a) I | a=l*w

The constraint Cpl describes that a passage exists between two spaces if there is an open access

between them. The constraint Cp2 says that we can get the space area from it's length and width.

Equivalent constraints
An algebraic relation between n variables can be represented by n calculating formulas, we will define

n equivalent constraints Cp to represent all the formulas. However, only one of them can be triggered

in a reasoning cycle, to avoid a dead loop. To do this, we introduce a particular predicate : Deduce(0,

A, ol, al,..., oi, ai) which says that the value of attribute "A" of object "O" is the calculating result

of the value of the attribute al of object ol, and the value of attribute ai of object oi. Then the

relation represented by Cp2 can be defined by three equivalent constraints and one of which can be

represented as below :

Cp2' : (Vx I Space(x)) Length(x, 1) a Width(x, w) a -iDeduce(x, Length, x, Area, x, Width)

a -Deduce(x, Width, x, Area, x, Length) => Area(x, a) a Deduce(x, Area, x, Length, x, Width) | | a=l*w

Constraints-to-be-verified(Cv)

A CvieCv is one or several directionless relations between objects. It gives a Boolean value and is

represented as follows:

<Quantprem I Tprem> {<Quantprem
I

Tprem>l <Cprem>
I I <P>

where: <P> represents a set of predicates that use the variables from the premises as their arguments,

then they will be satisfied by these variables. It may be one or several formulas (linked by "And") of

comparison between the variable and its reference (as in Cvl) or one or several geo-topological
relations to be verified (as in Cv2 and Cv3).

Examples:

- the area of a room is equal to the product of its width and its length :

Cvl: (Vx I Room(x)) Length(x, 1) a Width(x, w)a Area(x, a) I I a=l*w

- a rectangular room consists of four closed facets and of a door at least :

Cv2: Vx Room(x) I | Facets(x, F) a Doors(x, D) a Cardinality(F, 4) a

Length-higher(D, 1) a Closed(F)

- each space must be accessible from exterior

Cv3 : (Vx I Space(x)) 11 Accessible(x)

The first consists in controlling the attribute "area" of a room, the second consists in controlling the

global structure of a room, and the last consist in controlling a topological relation between each

space and the exterior which is a special space.

In the Cvl, when one of the three variables is a calculating result of the two others, by the constraint
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Cp, this constraint is automatically satisfied. To avoid the redundancy, we introduce also the

predicate Deduce(0, A, ol, al,oi, ai), the Cvl is transcribed as :

Cvl': (Vx I Room(x)) Length(x, 1) a Width(x, w) a Area(x, a) a -iDeduce(x, Length, x, Area, x, Width)

a -iDeduce(x, Width, x, Area, x. Length) a -Deduce(x, Are, x, Width, x, Length) | | a=l*w

Constiaints-to-be-veriiied-and-propagated (Cvp)

A Cvpie Cvp is a combination of the two preceding types of constraints. It is a constraint to be

verified (Cvpvi), associated with other constraints to be locally propagated (Cvppi). The constraints

to be propagated (Cvppi) are triggered when the verified constraints (Cvpvi) are unsatisfied.

Examples:

- Cvpl:

Cvpvi: (BR3 I Room(R3)) Area(R3, a) I I a="Fixed"

Cvppi: (3R3 I Room(R3)) Area(R3, a) a Width(R3, w) =>Length(R3,1) I I l=a/w

(3R31 Room(R3)) Area(R3, a) a Length(R3,1) =>Width(R3, w) | | w=a/l

This example indicates that if the surface of Room R3 must remain fixed, its length must be modified

if its width is modified, and its width must be modified if its length is modified.

The satisfaction of a Cvp begins with the evaluation of Cvpv ; if the Cvpv is unsatisfied a Cvpp will
be chosen. This will be repeated until the Cvpv is satisfied.

3.2 Consistency Maintenance of the Environment Model
Two types of consistency control may be considered : static consistency control and dynamic

consistency control.

The static consistency control concerns the checking of a stable environment model with respect to the

constraints-to-be-verified Cv. We must control : if each object is a such object designated by the nom

of its class (its proprieties and its structure) ; if the geo-topological relations between different objects

are right, etc.

The dynamic consistency control takes place when any entity is changed. A change may be a real

change or the noise of IAMR's vision sensors. It may be consistent itself, but its induced results may
be not consistent. So, to control the consistency of a change, we verify in the first if the initial

modification is consistent, and then we propagate the modification by using the constraints-to-be-

propagated and verify if the induced results are consistent.

Figure 3. Objects consistency control schema

If the change and the results of its propagation satisfy all the constraints of T-model, we consider that

this change is consistent and the environment model may be updated, otherwise we don't accept this

change and it triggers its analysis module to detect the anomaly's causes (figure 3).
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4. CONSISTENCY MAINTENANCE SYSTEM : PROVE
The consistency maintenance system PROVE which realises the above ideas is implemented on a

SUN workstation and developed with the object language AIRELLE (a super-layer on the Le-lisp
15.2 of thelNRIA) [8],

4.1 Constraint Representation
Different constraints are represented by three object classes : "Constraint" for Cp, "Constraint-V" for

Cv, and "Constraint-VP" for Cvp.

The first and the second classes have three principal attributes : "Premise" representing a constraint's

premise (the left part of the connector "=>" of Cp or " | | " of Cv), "Conclusion" representing a

constraint's action (the right part of the connector), "Condition" which represent an optional trigger
condition.

The third class is a combination of the two first classes, and it has two attributes : "Constraintv"

which points to a constraint Cv, "ConstraintP" which points to a list of constraints Cp.

A constraint object may be presented in the form of a list composed of three parts, each of which

begins by a reserved key word : "If for the premise, "Such-as" for the trigger condition, and "Then"

for the conclusion.

Constraint <((If premisel premise2 (Such-as condition) (Then actionl action2 ...))>

Premise
A premise is represented by a triplet : cObject attribute value> as :

((Class x) Attribute (type y))
Where "Class" is the sort of x which limits the value domain of x, "Attribute" is an attribute of x,

"type" is the attribute value type, and y is a variable representing the value of the attribute.

When the object or the attribute value is known, the premise becomes as following :

(O Attribute (type y)) or ((Class x) Attribute V)

Condition
A condition is a LISP-like logical expression such as : (equal x y).

Action
A constraint's actions have different representations as below :

(=> A Attribute V) for modifying of an attribute's value

(O Remove A) for removing "A" instance of "O" class

((O Create A) (=> A Attribute V)
{(=> A Attribute V)} for creating a "A" instance of "O" class

(>= X V) for comparing a "X" variable with its "V" reference

Where : "=>" is the message sending function ; "A" is a known object ; "Attribute" is a real object

attribute (but is not a variable) ; "O" is an object class ; "V" is the value of an object attribute, which

can be a constant or formula ; "Remove" and "Create" are two reserved words. The first formula

assigns "V" value to "Attribute" attribute of "O" object.

Examples :
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The Cpl and Cvl' can be rewritten as :

Cpl : (if ((Door D) Space-linked (ens S)))

(Then ((Passage 'Create P) (=> P 'Space-between S) (=> P 'Access D)))

Cvl : (If ((Space s) Length (float 1))

((Space s) Width (float w))

((Space s) Area (float a))

(such-as (and (and (not (Obtain s Length s Width s Area)) (not (Obtain s Width s Length s Area))

(not (Obtain s Area s Width s Length))

(Then s (* 1 w)))

Cv3 : (if ((Model M) Space (ens S)))

(Then ((mapc S) (Verify-Accessible var-inter)

Where the "Obtain (O A ol al oi ai)" function is a procedure verifying if the value of A attribute of

O object is the calculating result of the value of al attribute of ol object, and the value of ai

attribute of oi object, "ens" is a data type of AIRELLE, "(mapc S)" showing that the following action

will be executed in an ensemble of objects (as a "broadcast") (we do not use the method "applique"

which allows to do also a "broadcast", in order to easily recuperate the action result).

The equivalent constraints are marked by an attribute "C-equivalent". For example the "C-equivalent"

value of Cp2' is "Cp3, Cp4", the one of Cp3 is "Cp2', Cp4", and the one of Cp4 is "Cp2', Cp3".

The constraints and the corresponding objects are linked by the sort of each constraint which presents

in the premise of a constraint.

4.2 PROVE's Running
The PROVE system contains four principal modules as illustrated in figure 4. When an object

modification is received, in the first PROVE propagates, using the constraints Cp, this modification

throughout the model to induce all its effects, then it refines this propagation by using the constraints

Cvp, and finally the consistency of the modification and its induced results will be verified with

respect to Cv. Therefore the propagation process of a modification is non-linear.

PROVE iModified object

Propagation

JUT
Verification and

propagation

c iVerification ~y

'T-modef

qT>

- (cvjT)

Inconsistent I

y Consistent

Analysis ^ Update the model

Figure 4. Structure of the consistency maintenance system
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The Propagation module triggers Cp constraints in the order determined by the priority assigned to

each constraint, using the "forward-chaining" control structure with the "width-first" search strategy.

The modified objects or the new created objects are stored in a special objects class called DMODIF.

This mechanism prevents from operating directly on the model : if the original change is considered

unacceptable, the model will remain unaffected.

The Verification and propagation module proceeds in two stages. It begins by verifying the

Cvpv of each Cvp constraints; if they are satisfied, the module pass to the next one.

If a Cvpie Cvp (its Cvpvi) is not satisfied the module immediately propagates a corresponding Cvppi

constraint. This propagation may modify some data that retriggers the "Propagation" module and

starts so a new operating loop. The looping continues until either the Cvp constraints are satisfied or

some stop conditions are verified (for example when there are Cvp constraints that cannot be satisfied

by the model during its processing state).

The Verification module consist in verify the Cv constraints. If all the constraints are satisfied the

change signalled by the original message is considered acceptable and the model will be updated.

If a Cvie Cv constraint is unsatisfied, the change will be not accepted and an anomaly will be

declared.

The Analysis module makes use of a mechanism inspired from ATMS [4], to identify the set of

primary causes (objects initially modified) of each anomaly. The "Analysis" module treats as

hypotheses the modifications contained in the message that triggers PROVE. It receives couples of

the form (O, J) from the "Propagation" module, where O is a modified object and J the justifications
for the modification. Since the object modifications in the original message are treated as hypotheses,

the objects justify themselves. For each modified object the module computes a label L representing

the hypotheses that have brought about the modification, by constructing a derivation tree using the

concerned justifications. A hypothesis is self-labelled by definition and the modified objects are noted

as combinations of (O, J, L).

5. CONCLUSION
We have presented a consistency maintenance system PROVE for a spatial object model in the context

of our research project : IAMR environment simulation.

We qualify this system as a constraint-based system. Three types of constraints have been classified

for the propagation (Cp, Cvp) of an objects change as well as for the objects verification (Cv).

However, the constraints in our context are different from the ones in CSP. On the one hand, the

domain of variable value of our constraints is rather infinite than finite and discrete. On the other

hand, the Cp constraints don't exist explicitly in CSP. Generally the constraints treated in CSP may
be classified as Cv and Cvp constraints (for example, in the geometric constraint engine [5], only the

Cvp constraints have been treated).

The integration of hypothetical reasoning, to analyse the origins of unsatisfied constraint provides the

possibility of a collaboration with IAMR's module vision to identify an object perceived by its

sensors.
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