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Summary

In the last two decades the Finite Strip Method (FSM) has been successfully introduced in the
studies of linear behavior, vibrations and buckling as well as nonlinear behavior of various types
of prismatic folded plates and curved shells. The reason for the introduction of this method lies
in the fact that resolving of several classes of practical problems it is much faster than the more
comprehensive and adaptable Method of Finite Elements (FEM). This is generally valid for
structures with regular geometrical shape and simple boundary conditions, whose discretization
into many finite elements is often very expensive. In such cases the FSM can be extremely
competitive in terms of cost and accuracy, both during calculations and in practical application.
Discretization of the cross-section into a mesh of finite strips enables the adoption of a finite
number of degrees of freedom in the section.

1. The Finite Strip Variational Formulation

The well-known basic procedure of the method is the discretization of plate structures into
longitudinal strip elements. The general form of the finite strip displacement function is
approximated by the product of polynomes and series which is an interpolation between the
classical Ritz and the FEM,

where Ym(y) are functions from the Ritz and Nj^x) are interpolation functions from the FEM.
According to the Green-Lagrange's strain tensor, we present the strain components in an
arbitrary point, on the distance z from the middle plane of the plate, as functions of the
displacement components of the point of the middle plane of the plate (u0, v0, w=w0), as follows:

f ZYm(y)XNk(x)-qkn, (1)
m=l
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The previous expressions can be obtained as

products of the following matrices and

vectors:
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The total potential energy is defined as the
sum of the potential energy of external
forces and the strain energy. The
formulation of strip characteristics will be

presented using the principle of minimum
total potential energy.

1.1 Geometrically Nonlinear Viscoelastic
Problems

In the non-homogeneous finite strip
composed of the layers of concrete and
reinforcement, the conditions of balance

represent a system of geometrically
nonlinear equations.

[K(t) + K(t)j• q(t) D0(t) [K(t0) + K(t0)] q(t0) + Q,

where K is the classical or basic stiffness

matrix, K the geometrical stiffness matrix.
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1.2 Geometrically
Problems

Nonlinear Elastic

As the instant strains are elastic Eq. (5) can
be written in the form:



M D. MILASINOVIC 865

[K(t0) + K(t0)]q(tJ Q0. (6)

This is a system of non-linear simultaneous
equations at time t=to.

1.3 Linear Elastic Problems

By exclusion of the geometrical stiffness
matrix from the above equation we obtain a

linear system of differential equation.

K('o)-q('o) Qo-

1.4 Linear Viscoelastic Problems

The behavior of the material, which changes
with time, can be approximation by the
following equations of balance

K(O-q(O Do(O-Q0+Q (8)

which is a system of linear simultaneous
equations, which enclose time dependent
effects.
The basic stiffness matrix blocks, together
with the geometrical stiffness matrix blocks
are used in this interactive analysis:
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Since the system of equations is nonlinear,
the equations of balance in any step of the
iterative procedure resolving will not be
satisfied. Due to this fact, we shall have the
vector of non-balanced forces, i.e., residual
loading. It is favorable to present this vector
separately for the linear and nonlinear part.

R R + R - Q, (10)

Q is the load vector and q the vector of
nodal line displacement parameters for the
finite strip.

Q
Q „

Q„
>q

q.
(11)

2 Newton-Raphson's iterative
procedure of solution

The variational statement about stationary of
the total potential energy in nonlinear
problems results in a vector of non-balanced
forces,

R [OqT] [K + K].q-Q 0, (12)

Taylor's expansion of (12) gives:

R, R(q0 + 8„) R(q0) + K"o60 + (13)
R „ + K „ • 8 „ +

where K,=R( is the second partial
derivative of O calculated at q0 (tangent
stiffness matrix).

If (13) is zero and if only the linear terms in
qo are considered the standard Newton-
Raphson iteration is obtained:

IK;; +
2 uu 50=-K0-'-R0. (14)
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where K, =Rq at qn.

The criterion for convergence, based on the
residual force values, is:

allowed stress in steel is 128x10 kN/m
and the8 elasticity modulus of steel is
Et=2xl0 kN/m
Characteristics of concrete as a viscoelastic
material are:

Z(xr)!
-100 < £• (16)

where N is the total number of nodal lines of
the decomposed structure, and rt. determines
the number of iteration. This criterion means
that convergence occurs when the norm of
residual forces becomes lesser than e, which
is assigned.

3 Examples

3.1 Example 1

This example presents a comparative
analysis of calculations of a prestressed
concrete element according to the theory of
prestressed concrete within a line analysis,
and to the FSM. The results differ
considerably, due to two main reasons. First,
by the FSM, as opposed to the classical
calculation based on the theory of line
girders, we can obtain the stress-strain state
of the thin-walled bar with open and
deformable cross-section. Second, in the
calculation of the stress-strain state in an
arbitrary time t, the Poynting-Thompson's
model of viscoelastic body is used.
Figure 2 presents the cross-section of
prestressed concrete element, with the
length of 10.20 m.

Fig. 2 Cross-section ofprestressed concrete
element

The element is made of C60, and it is
prestressed adhesively with fojir cables
7<j)5mm, with total area of 5.5 cm and total
initial prestresing force of 667.2 kN. The

Ec E2g 4.138-107 kN/m2,

<P(t„,t0) 2.8,

X(t„,t0) 0.75,

aL- --18500 kN/m2,

Cringed 2200 kN/m2.

Apart from the own weight, the element is
subject to live loading which is transmitted
to the longitudinal beams. This loading is
considered to be movable, and it does not
induce the effects of concrete creep. The
loading on two beams is 3.9 kN/m. In
combination with the own weight, if it is
also considered as line loading, the loading
on both beams is 6.0 kN/m. Figure 3.

presents the mesh of finite strips with the
corresponding boundary conditions.

Fig. 3 Mesh offinite strips and symmetry
conditions

The results of calculation are presented in
Figure 4 (a), (b) and (c). In Figure 4(a) the
diagram drawn in the full line represents ay
caused by own weight and prestressing in
the time to, while the dotted line is for the
time Lo. The stresses are calculated in the
middle of the span length. Figure 4(b)
presents the diagram of ay caused by the live
loading, and Figure 4(c) of that caused by
the total loading and prestressing in the time
too.

It can be seen that the stresses in the
concrete exceed the allowed values. The line
analysis, which can not yield good results
for such a cross-section, gives stress values
which are within the allowed limits.
According to this calculation, in the upper
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-4767.4
(-9458.4) -18171 0

Fig. 4 Diagrams ofstress <ry in the middle ofgirder span length, (a) effect ofown weight and
prestressing in to and tea (b) effect oflive loading, (c) effect ofown weight, prestressing and live
loading in too

fibre ayp -18310 k|v[/m and in the lower
fibre Oy' 616 kN/m
In addition, it should be noted that according
to the FSM, the loss of prestressing force
caused by elastic strains of concrete (3.23%)
and elastic strains and creep of concrete
(6.99%) is much lesser than the total
prestressing force loss anticipated in the
calculation according to the line analysis
(20%).

3.2 Example 2

Prefabricated prestressed concrete girders
are complex elements, 75 x 210 cm,
lightened by three openings <|>50 cm. The
elements are from 13.40 to 25.40 m long,
see Figure 5 and they serve as bridge
girders. They are made of the following
materials:
• steel for prestressing 1800/16Q0, with

nominal cross-section of 0.93 cm
• concrete C40.
The cutting of tendons can be carried out
only when the concrete reaches the strength
of 30 MN/m^. The reason for this is the

unfavorable stress state of the girder in the
moment of prestressing. Here we shall

BEÉ»BÉEni^HI 15rnm 5073

Fig. 5 View and cross-section ofbridge
girder

analyze a girder, which is 19.50m long,
prestressed x^ith 48 tendons with total area
of 44.64 cm and total initial prestressing
force of 5625 kN.
The mesh of finite strips in the cross-section
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of the girder is presented in Figure 6.

Polyhedral shell finite strips with eight
degrees of freedom were used. Eleven terms
of the series were used in the calculation of
own weight and prestressing.

Fig. 6 Mesh offinite strips in the cross-
section ofgirder

Figure 7 presents the most unfavorable
distribution of the stress ay in the node lines
1 and 3. Tension stress is unfavorable for
node line 1, and high stress of pressure for
node line 3

displacement amplitudes. Complex
mathematical expressions were programmed
within the frame of the standard Newton-
Raphson's iterative procedure. The
application of the FSM promises more
reliable results than the application of the
FEM, since the errors of discretization in the
former method are much lesser. Bearing in
mind that the FSM is a semi-analytical and
semi-numerical method, in the theory of
polyhedral shells, we find it very favorable
in solving of this problem.
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Fig. 7 Distribution ofstress ay (kN/m?); (a) in node line 1, (b) in node line 3

5 Conclusions

A nonlinear FSM has been presented for use
in the design of reinforced concrete plate
structures. The procedure has advantages
over the conventional FEM, since the
application of numerical integration is
avoided, and the stiffness matrices, loading
vectors and residual forces are expressed
explicitly as a function of the nodal
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