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Summary

This paper describes results of wind tunnel experiments with a bridge section model where
movable flaps are integrated in the bridge girder so each flap is the streamlined part of the edge
of the girder. This active control flap system is patented by COWIconsult [1] and may be used to
increase the flutter wind velocity for future ultra-long span suspension bridges. The purpose of
the wind tunnel experiments is to investigate the principle to use this active flap control system.
The bridge section model used in the experiments is therefore not a model of a specific bridge
but it is realistic compared with a real bridge. Five flap configurations are investigated during the
wind tunnel experiments and depending on the actual flap configuration it is possible to decrease

or increase the flutter wind velocity for the model.

1 Introduction

During the last decades the span length of suspension bridges has grown rapidly. During 1998
two very long suspension bridges are planned to be opened for traffic, namely the Akashi Kaikyo
Bridge in Japan with span length 1,991 m and the Great Belt Bridge in Denmark with span
length 1,624 m. Of future ultra-long span suspension bridges that may be constructed can be
mentioned the Messina Crossing with the span length 3,300 m and the crossing of the Gibraltar
Straits, see Brown [4].

To increase the span length the suspension bridge can be optimised with regard to materials,
deck shape and cables as described by Brown [4), Gimsing [7], Astiz [3], Ostenfeld [10] and
Ostenfeld & Larsen [11]. Another possibility may be to introduce the intelligent bridge, where
active control systems are used to limit the vibrations. A step in this direction is to introduce
passive control systems, e.g. viscoelastic damping elements, tuned mass dampers and eccentric
masses, as described by Ostenfeld & Larsen [11]. In advanced aircrafts actively controlled
surfaces are moved relatively to the main surfaces (wings, flaps or ailerons) on which they exert
control [11]. The control surfaces are moved by hydraulics based on measurements from sensors
attached to the main surfaces. The same principle could be applied to bridges as patented by
COWIconsult [1].
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2. Wind Loads

For ultra-long span suspension bridges the main aeroelastic effect of concern is flutter, see Astiz
[3] and Larsen & Walther [9]. In flutter the motion-induced wind load is dominating the wind
load. Flutter occurs at a critical wind velocity at which the energy input from the motion-
induced wind load is equal to the energy dissipated by structural damping, see Dyrbye & Hansen
[5]. The critical wind velocity is called the flutter wind velocity.

The motion-induced wind loads on a streamlined bridge deck with integrated flaps can be
described by aerodynamic derivatives. For new bridge designs these coefficients must be
estimated by wind tunnel tests or by numerical flow simulations. For flexible bridges the cross-
sectional shape of the bridge deck is the most dominating factor on the wind loads, see Scanlan
[12). Therefore, bridge section models are used to estimate the aerodynamic derivatives. During
preliminary bridge design the aerodynamic derivatives may be approximated by the values for a

flat plate. Theodorsen [13] has derived the force and moment on a flat plate with a trailing flap.
This context can be extended to include the leading flap by assuming that the rotation of the
leading flap has no effect on the circulation. The results of the wind tunnel experiments are

compared with the theoretical results for a flat plate with both leading and trailing flaps.

3. Test Set Up

Experiments have shown that the critical wind velocity for a streamlined girder is much higher
than for a rectangular girder, see Ostenfeld & Larsen [11], The bridge section model is therefore
made streamlined with the flaps as the streamlined part. The cross-sectional shape of the model
equipped with flaps is shpwn in figure 1. The width of the model exclusive flaps is B, the height
of the model is 0.15 B and each of the flaps has the length 0.25 B.

0.25B B 0.25B
1

Figure 1: Cross-sectional shape ofbridge

The selected scaling factors and the parameters for the model are shown in table 1 and 2,

respectively,

Scaling factor Symbol Value
Length K 1/40

Wind velocity K 1/4

Mass density of surroundings 1

Table 1: Selected scaling factors.



P. THOFT, H.I. HANSEN 201

Parameter Symbol Value

Width of model inclusive flaps B 0.937 m
Mass per unit length m 17.94 kg/m
Mass moment of inertia per unit length I 0.589 kg m2/m

Circular frequency for bending 5.2 rad/s

Circular frequency for torsion 10.1 rad/s

Structural damping in bending £ 0.012

Structural damping in torsion C, 0.008

Table 2.- Parameters for bridge section model.

The model is connected to a horizontal extension rod in each side which is going through the
wind tunnel wall. The suspension system is the same in both sides. The extension rod is
connected to an arm with dummy masses that can be moved on the arm so the model can
represent the correct mass and mass inertia. Each side of the arm is suspended in a helical
spring. The springs can be moved on the arm so the stiffness corresponding to the torsional
motion of the model can be adjusted. Finally the extension rod is connected to a windward drag
wire and a leeward drag wire. A simplified illustration of one side of the suspension system is
shown in figure 2.

Figure 2: Simplified suspension system.

The active flap control system consists of:
• Load cells to measure the position of the model.
• Calculation of flap positions based on the position of the model and the flap configu¬

ration.
• Servo system with servo amplifiers, servo motors and reduction gears to regulate the

flaps via cables between the gears and the flaps. This system consists of two separate
parts as the flaps can be regulated independently.
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4 Wind Tunnel Experiments

The positive definitions of the vertical position z, the torsional angle a, the angle of the leading
flap aI and the trailing flap a, are shown in figure 3. U is the mean wind velocity.

Figure 3: Definition ofpositive directions.

The torsional motion can be described by

a{t) Aa{t)cos{(ù'at) (1)

where t is the time, Aa (t) is the amplitude of the envelope curve for the torsional motion and

ma is the circular eigenfrequency for the damped torsional motion. The actual flap position for

e.g. the trailing flap can be described by

a(t) alAa{t)cos((ù'at-(p,) (2)

here a, is the amplification factor and <p, is the phase angle for the trailing flap. In the same

way the actual flap position for the leading flap can be described by the amplification factor a,

and the phase angle cp,.

a(t) a,Aa(t)cos(a>ét -<P,) (3)

The amplification factors and phase angles for the flap configurations are shown in table 3.

Flap configuration Amplification Phase angles

a, ai <P, [rod] (p, [rad
0 0 0 - -

1 1.9 -2.0 4.5 4.5
2 3.4 -3.6 4.6 4.6
3 2.0 -2.0 1.5 1.5

4 3.4 -3.6 1.5 1.5

Table 3: Amplification factors and phase angles for each flap configuration.

A damping experiment follows the procedure:
1. Justification of wind velocity.
2. The model is given a 'standardised' initial displacement by pulling a rope that is

connected to the horizontal arms of the model.
3. Start of the program that measures the position of the model every 12 m.
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4. The flaps are started slowly at the first upcrossing of the torsional motion with the desired

flap configuration. The actual positions of the flaps are measured and new values are

specified every 12 m.
5. The results are stored and used to estimate the damping of the model from the free

vibration following the initial displacement.

The damping ratio for the torsional motion as a function of the wind velocity is estimated based

on the wind tunnel experiments. The damping ratio can also be estimated by the Air Material
Command method, see e.g. Fung [6]. The damping ratio g(U) defined in the AMC method as

twice the necessary structural damping is replaced by -0.5 g(U) + 0.008 to be compared with the

experimental damping ratios.

The damping ratios estimated based on the experimental data are compared to the theoretical
damping ratios by using the AMC method and the aerodynamic derivatives for a flat plate for
flap configurations 0-4, see figure 4.

Figure 4: Theoretical (solid lines) and experimental damping ratio for torsional motion
with windforflap configuration 0-4. The number in the end ofa solid line denotes the

actual flap configuration.

As seen in figure 4 the experimental damping ratio is smaller for flap configurations 0 and 1 than
the theoretical damping ratio but the shape of the curve is almost the same. For flap configuration
2 the experimental damping ratio exceeds the theoretical one. For flap configurations 1 and 2 the
theoretical curves show that no binary flutter will occur. Unfortunately, it was not possible
during the wind tunnel experiments to perform experiments with wind velocities above the

relatively low divergence wind velocity (8.5 m/s) without the risk to damage the model.
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5. Conclusions

The wind tunnel experiments show that it is possible by using very simple closed-loop control
algorithms for the active flap control system to increase or decrease the flutter wind velocity for
the bridge section model. The control algorithms are not optimised with regard to the
amplification factors and phase angles, it is therefore expected that the effect of the flaps can be
even better.
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