Zeitschrift: Bulletin de la Société des Sciences Naturelles de Neuchâtel

Herausgeber: Société des Sciences Naturelles de Neuchâtel

Band: 11 (1876-1879)

Artikel: Sur la théorie du timbre et particulièrement des voyelles

Autor: Schneebeli

DOI: https://doi.org/10.5169/seals-88124

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

recherche des solutions singulières dans tous les cas où l'équation différentielle est du second degré par rapport à la dérivée.

M. le Prof. Schneebeli fait la communication suivante:

SUR LA THÉORIE DU TIMBRE

ET PARTICULIÈREMENT DES VOYELLES.

Dans une communication précédente, j'ai mis sous les yeux de la Société une série de courbes, représentant les différentes voyelles. J'ai remarqué alors que la netteté des courbes et la perfection de leur dessin offrent en outre l'avantage de montrer plus exactement la qualité des harmoniques qui produisent le timbre, etc.

En effet, connaissant la courbe d'une sonorité, il est possible de trouver les sons simples qui la composent.

On peut toujours représenter une fonction par :

$$y = f(x) = A_0 + \sum_{i=1}^{i} (A_i \sin \frac{2\pi}{n} i x) + \sum_{i=1}^{i=n-1} \cos \frac{2\pi}{n} i x)$$

ou

$$y = f(x) = A_0 + \sum_{i=1}^{i=n-1} (A_i \sin \frac{2\pi}{n} i x + \alpha_i)$$

où
$$a_i = \sqrt{A_i^2 + B_i^2}$$

$$tang a_i = \frac{B_i}{A_i}$$

En termes physiques: Une sonorité (Klang) est à envisager comme la superposition d'une série de sons simples dont les nombres de vibrations sont des multiples du son fondamental (Grundton, Obertöne ou Partialtöne). (Ohm, Helmholtz.)

Les coefficients a_1 , a_2 , a_3 , ... représentent les amplitudes des harmoniques; α_1 , α_2 , α_3 , ... leurs différences de phases.

Pour déterminer ces quantités caractéristiques d'une sonorité, nous aurons recours aux courbes qu'elles produisent. On divise la longueur de la période en n parties égales et l'on mesure l'ordonnée de chaque division respective.

On obtient de cette manière n valeurs de f(x) pour des x équidistants.

La méthode des moindres carrés nous apprend ensuite à calculer les coefficients

$$A_0, A_1, A_2, A_3, \ldots$$

 B_4, B_2, B_3, \ldots

par les formules :

$$n A_0 = \sum_{i=0}^{i=n-1} y_i$$

$$\frac{n}{2} A_1 = \sum_{i=0}^{i=n-1} (y_i \cdot \sin \frac{2\pi}{n} x) \qquad \frac{n}{2} B_1 = \sum_{i=0}^{i=n-1} (y_i \cdot \cos \frac{2\pi}{n} x)$$

$$\frac{n}{2} A_{n-i} = \sum_{i=0}^{i=n-1} (y_i \cdot \sin \frac{2\pi}{n} \cdot (n-1) x.) \quad \frac{n}{2} B_{n-i} = \sum_{i=0}^{i=n-1} (y_i \cdot \cos \frac{2\pi}{n} \cdot (n-1) x.)$$

Les formules (III) nous donnent enfin les

$$a_4, a_2, a_3, \ldots$$

et les $\alpha_4, \alpha_2, \alpha_3, \ldots$

Pour connaître encore l'intensité des harmoniques qui se trouvent dans la sonorité, il faut se rappeler qu'elles sont proportionnelles aux carrés de leurs amplitudes respectives.

Dans notre cas particulier, nous avons choisi deux modes pour la discussion des courbes; peut-être faudrait-il les étendre davantage?

1º Lorsque la courbe ne présente pas de complications trop accentuées, on s'est borné à diviser la période en douze parties égales. On calcule alors les coefficients caractéristiques d'après les formules IV: Valeurs de A_0 A_1 , A_2 ,

$$B_1, B_2, B_3, \ldots$$

en fonction de y_0, y_1, y_2, \dots

$$12 \ \Lambda_0 = \sum_{i=0}^{i=n-1} y_i$$

6
$$A_1 = (y_1 + y_5 - y_7 - y_{11})$$
. $\sin 30^\circ + (y_2 + y_4 - y_8 - y_{10})$
 $\sin 60^\circ + y_3 - y_9$.

$$6 B_1 = (y_1 - y_5 - y_7 + y_{11}) \cdot \cos 30^\circ + (y_2 - y_4 - y_8 + y_{10}) \cdot \cos 60^\circ + y_0 - y_6.$$

$$6 A_2 = (y_1 + y_2 - y_4 - y_5 + y_7 + y_8 - y_{10} - y_{11}). \sin 60^{\circ}.$$

$$6 B_2 = (y_1 - y_2 - y_4 + y_5 + y_7 - y_8 - y_{10} + y_{11}). \cos 60^\circ + y_0 - y_3 + y_6 - y_9.$$

$$6 A_3 = y_1 - y_3 + y_5 - y_7 + y_9 - y_{11}.$$

$$6 B_3 = y_0 - y_2 + y_4 - y_6 + y_8 - y_{10}.$$

6
$$\Lambda_1 = (y_1 - y_2 + y_4 - y_5 + y_7 - y_8 + y_{10} - y_{11})$$
. sin 60°.

$$6 B_4 = -(y_1 + y_4 + y_7 + y_{10} + y_2 + y_5 + y_8 + y_{11}) \cos 60^0 + y_0 + y_3 + y_6 + y_9.$$

2º Lorsque la courbe montre une complication plus grande, on divise la période en vingt-quatre parties égales et l'on calcule dans ce cas les coefficients caractéristiques d'après les formules V:

Valeurs de A_0 , A_1 , A_2 , A_3 , $A_{2,3}$ en fonction de y_0 , y_1 , y_2 , y_3 , , $y_{2,3}$.

$$24 A_0 = y_0 + y_1 + y_2 + y_3 + \dots y_{23}$$

- $12 A_{1} = (y_{1} + y_{11} y_{13} y_{23}). \sin 15^{\circ} + (y_{2} + y_{10} y_{14} y_{22}).$ $\sin 30^{\circ} + (y_{3} + y_{9} y_{15} y_{21}). \sin 45^{\circ} + (y_{4} + y_{8} y_{16} y_{20}). \sin 60^{\circ} + (y_{5} + y_{7} y_{17} y_{19}). \sin 75^{\circ} + y_{6} y_{18}.$
- $12 B_{1} = (y_{1} y_{11} y_{18} + y_{23}) \cdot \cos 15^{\circ} + (y_{2} y_{10} y_{14} + y_{22}) \cdot \cos 30^{\circ} + (y_{3} y_{9} y_{15} + y_{21}) \cdot \cos 45^{\circ} + (y_{4} y_{8} y_{16} + y_{20}) \cdot \cos 60^{\circ} + (y_{5} y_{7} y_{17} + y_{19}) \cdot \cos 75^{\circ} + y_{0} y_{18}.$
- 12 $A_2 = (y_1 + y_5 y_7 y_{11} + y_{13} + y_{17} y_{49} y_{23})$. $\sin 30^{\circ} + (y_2 + y_4 y_8 y_{10} + y_{14} + y_{16} y_{20} y_{22})$. $\sin 60^{\circ} + y_8 y_9 + y_{15} y_{21}$.
- 12 B₂ = $(y_1 y_5 y_7 + y_{11} + y_{13} y_{17} y_{19} + y_{23})$. cos 30° + $(y_2 y_4 y_8 + y_{10} + y_{14} y_{16} y_{20} + y_{22})$. cos 60° + $y_0 y_6 + y_{12} y_{18}$.
- 12 $A_3 = (y_1 + y_3 y_5 y_7 + y_9 y_{13} y_{15} + y_{17} + y_{19} y_{21} y_{23})$. $\sin 45^\circ + y_2 y_6 + y_{10} y_{14} + y_{18} y_{22}$
- 12 B₃ = $(y_4 y_3 y_5 + y_7 + y_9 y_{11} y_{13} + y_{15} + y_{17} y_{19} y_{21} + y_{23})$. cos 45° + $y_0 y_4 + y_8 y_{12} + y_{16} y_{20}$.
- $\begin{aligned} 12 \ \mathbf{A_4} &= (y_1 + y_2 y_4 y_5 + y_7 + y_8 y_{10} y_{11} + y_{45} + y_{44} y_{46} y_{47} + y_{19} + y_{20} y_{22} y_{23}) \sin 60^\circ \ . \end{aligned}$

$$\begin{aligned} 12 \ \mathrm{B_4} &= y_{_{3}} - y_{_{5}} + y_{_{6}} - y_{_{9}} + y_{_{12}} - y_{_{15}} + y_{_{18}} - y_{_{24}} + (y_{_{1}} - y_{_{2}} \\ &- y_{_{4}} + y_{_{5}} + y_{_{7}} - y_{_{8}} - y_{_{40}} + y_{_{44}} + y_{_{45}} - y_{_{44}} - y_{_{46}} \\ &+ y_{_{47}} + y_{_{49}} - y_{_{20}} - y_{_{22}} + y_{_{25}}) \cos 60^{\circ}. \end{aligned}$$

$$\begin{aligned} 12 \ \mathbf{A}_5 &= (y_5 + y_7 - y_{47} - y_{49}) \sin \, 45^\circ \, + \, (y_{40} + y_2 - y_{22} - y_{44}) \\ & \sin 30^\circ \, + \, (y_{45} + y_{24} - y_5 - y_9). \ \sin \, 45^\circ \, + (y_{20} \, + y_4 - y_8 - y_4) \, + \, \sin 60^\circ \, (y_4 + y_{44} - y_{45} - y_{25}) \sin 75^\circ \\ & + y_6 - y_{48}. \end{aligned}$$

$$\begin{split} 12 \, \mathrm{B}_5 &= y_0 - y_{12} + (y_5 - y_7 - y_{17} + y_{19}) \, \cos \, 15^\circ \, + \, (y_{10} - y_2 \\ &- y_{22} + y_{14}) \cos \, 30^\circ \, + \, (y_{45} - y_{21} - y_5 + y_9) \cos \, 45^\circ \\ &+ (y_{20} - y_{46} - y_8 + y_4) \, \cos \, 60^\circ \, + \, (y_4 - y_{44} - y_{45} \\ &+ y_{25}) \, \cos \, 75^\circ. \end{split}$$

$$12 A_6 = y_4 - y_5 + y_5 - y_7 + y_9 - y_{44} + y_{43} - y_{45} + y_{47} - y_{49} + y_{24} - y_{25}.$$

12 B₆ =
$$y_0 - y_2 + y_4 - y_6 + y_8 - y_{10} + y_{12} - y_{14} + y_{16} - y_{18} + y_{20} - y_{22}$$
.

Comme les courbes produites par mon phonautographe ont toujours des dimensions assez petites, il a fallu avoir recours à un appareil très exact pour les mesurer. J'ai employé pour cela deux vis micrométriques, l'une perpendiculaire à l'autre, comme le support d'un tour. (Fig. 2.)

Le pas de vis étant d'un millimètre, on peut encore lire sur le cercle divisé les millièmes de millimètre.

Pour arriver à mesurer très-exactement, mon appareil enregistreur, représenté dans une première communication, a été pourvu d'une pointe fixe pour indiquer l'axe des abscisses. (Fig. 1,)

L'inscription des courbes se fait sur des lames de verre, couvertes d'une légère couche de noir de fumée et fixées sur un chariot qui passe rapidement au-dessous des pointes. J'ai choisi le verre pour deux raisons :

Premièrement, parce que le frottement de la pointe sur le verre est beaucoup moins considérable que, par exemple, sur le papier noirci du cylindre phonautographique et, secondement, parce que la détermination des dimensions présenteraient sur le papier une garantie peu rassurante à cause des déformations auxquelles il est soumis, soit par des tensions différentes, soit par l'humidité, etc.

Lorsqu'il ne s'agit que de la reproduction des courbes dans un cours, le cylindre phonautographique peut parfaitement être employé.

Les abscisses ont été mesurées en partant pour chacune de l'origine, la longueur de la période étant déterminée préalablement et la distance de chaque ordonnée de l'origine étant calculée d'avance.

Pour la détermination de la longueur de la période, on part d'une partie saillante et caractéristique de la courbe et on mesure jusqu'à la prochaine répétition de la même forme. Cet arrangement m'a paru nécessaire, parce que le chariot passe au-dessous de la pointe, tiré par la main et en conséquence avec une vitesse inégale. Pendant l'intervalle très court d'une période (1/320, 1/384, 1/512, 1/640) de seconde), on peut considérer la vitesse comme étant constante, ce qui ne serait pas le cas si l'on voulait mesurer plusieurs périodes et en prendre la moyenne. Du reste, il résulte de l'exemple cité ci-dessous, que l'on arrive quand même à une exactitude suffisante.

Chaque ordonnée est mesurée deux fois, et quatre fois lorsque c'est nécessaire.

On peut facilement se persuader que, par la disposition de la pointe qui écrit, celle-ci décrit des arcs de cercle au lieu de tangentes au cercle.

De la figure (3) résulte que nous mesurons plutôt ab que cd. Pour voir quelle erreur en provient, je choisis la courbe qui a une des amplitudes les plus grandes Out_4 .

Double amplitude maximale: 1^{mm},537. Distance de la pointe du centre: 25^{mm},2.

L'erreur maximale qui résulte du mouvement circulaire se monte à ± 0^{mm},00035, donc une quantité plus petite que les erreurs probables de la méthode.

II.

Dans ce paragraphe, je donne une série complète d'observations pour une courbe et les résultats sur quelques autres courbes, afin de montrer la possibilité d'arriver par cette voie à la discussion de la composition d'une sonorité quelconque et particulièrement de celle de la voix.

On peut, me semble-t-il, par cette méthode, trancher définitivement plusieurs questions dans ce domaine, qui, dans ces derniers temps, ont donné lieu à des discussions assez vives (').

Ci-dessous se trouve une série d'observations sur la courbe de Out_{\star} .

⁽⁴⁾ Einige Bemerkungen zur Helmholtz'schen Vocallehre, von Emil von Quanten. Pogg. Anal. Band 154, p. 272.

Untersuchungen über die Natur des Vocalklanges, von Félix Auerbach. Pogg. Anal. Ergünz, Band VIII, 177.

O ut 4.

Longueur de la période mesurée : 4,801^{mm}.
4,784.
4,803.
4,790.
4,790.

Moyenne = 4,7942.

Distance de 2 ordonnées consécutives : 0,19976^{mm}.

$X_0 = 0,000000.$	$Y_0 = 2,501.$	$X_{12} = 2,39712.$	$Y_{12} = 2,556$
$X_4 = 0.19976.$	$Y_4 = 2,678.$	$X_{45} = 2,59688.$	$Y_{45} = 2,874.$
$X_2 = 0,39952.$	$Y_2 = 3,086.$	$X_{44} = 2,79664.$	$Y_{14} = 3,500.$
$X_5 = 0.59928.$	$Y_5 = 3.375.$	X_{45} =2,99640.	$Y_{15} = 3,801$.
$X_4 = 0,79904.$	$Y_{4} = 3,499.$	$X_{46} = 3,19616.$	$Y_{16} = 3,899.$
$X_3 = 0,99880.$	$Y_5 = 3,615.$	$X_{47} = 3,39592.$	$Y_{47} = 4,018.$
$X_6 = 1,19856.$	$Y_6 = 3,672.$	$X_{18} = 3,59568.$	$Y_{18} = 4,065.$
$X_7 = 1,39832.$	$Y_7 = 3,553.$	$X_{49} = 3,79544.$	$Y_{49} = 3,967.$
$X_{\rm s} = 1,59808.$	$Y_8 = 3,294.$	$X_{20} = 3,99520.$	$Y_{20} = 3,730.$
$X_9 = 1,79784.$	$Y_9 = 2,997.$	$X_{24} = 4,19496.$	$Y_{24} = 3,401$.
$X_{10} = 1,99760.$	$Y_{10} = 2,675.$	$X_{22} = 4,39472.$	$Y_{22} = 3,000.$
$X_{11} = 2,19736.$	$Y_{44} = 2,509.$	$X_{25} = 4,59448.$	$Y_{25} = 2,650.$

Le résultat du calcul des harmoniques d'après les formules précédentes, est indiqué sous n° 3 du tableau général.

Pour savoir avec quelle exactitude la formule représente la courbe, on a calculé d'après l'équation 3, vingt-quatre de ses points. Dans le tableau suivant, sont renfermées les ordonnées observées et calculées.

O ut 4.

Observé.	${\it Calcul\'e}.$	Différences.
$Y_0 = 2,501.$	$Y_0 = 2,507.$	— 0,006.
$Y_1 = 2,678.$	$Y_{i} = 2,704.$	— 0,026.
$Y_2 = 3,086.$	$Y_2 = 3,090.$	- 0,004.
$Y_5 = 3,375.$	$Y_3 = 3,373.$	+ 0,002.
$Y_{\bullet} = 3,499.$	$Y_4 = 3,498.$	+ 0,001.
$Y_5 = 3,615.$	$Y_5 = 3,594.$	+ 0,021.
$Y_6 = 3,672.$	$Y_6 = 3,654.$	+ 0,018.
$Y_7 = 3,553.$	$Y_7 = 3,548.$	+ 0,005.
$Y_8 = 3,294.$	$Y_8 = 3,281.$	+ 0,013.
$Y_9 = 2,997.$	$Y_9 = 2,983.$	+ 0,014.
$Y_{40} = 2,675.$	$Y_{40} = 2{,}711.$	— 0,036.
$Y_{44} = 2,509.$	$Y_{44} = 2,509.$	0,000.
$Y_{42} = 2,556.$	$Y_{42} = 2,549.$	+ 0,007.
$Y_{43} = 2,874.$	$Y_{43} = 2,940.$	0,066.
$Y_{44} = 3,500.$	$Y_{44} = 3,467.$	+ 0,033.
$Y_{45} = 3,801.$	$Y_{45} = 3,804.$	0,003.
$Y_{16} = 3,899.$	$Y_{46} = 3,916.$	0,017.
$Y_{47} = 4,018.$	$Y_{47} = 3,984.$	+ 0,034.
$Y_{48} = 4,065.$	$Y_{48} = 4,044.$	+ 0,021.
$Y_{49} = 3,963.$	$Y_{19} = 3,964.$	0,001.

$Y_{20} = 3,730.$	$Y_{20} = 3{,}717.$	+ 0,013.
$Y_{24} = 3,401.$	$Y_{24} = 3{,}389.$	+ 0,011.
$Y_{22} = 3,000.$	$Y_{22} = 3,022.$	— 0,022 .
$Y_{23} = 2,650.$	$Y_{25} = 2,663.$	 0,013.

La coïncidence est suffisante, sauf pour y_{13} , différence que je ne puis m'expliquer que par une inégalité du verre (les observations répétées des ordonnées ne s'éloignent jamais de 0^{mm} ,010 de la moyenne).

Pour s'assurer que le calcul donne encore une approximation suffisante, en ne choisissant que douze observations, lorsque la courbe n'est pas trop compliquée, on a calculé la même courbe en ne se servant que des ordonnées paires.

Le résultat est enregistré dans l'équation 4.

Les différences entre les résultats tirés des formules IV et V ne sont pas tellement considérables pour ne pas permettre d'employer la formule IV à des courbes plus simples telles que le ou, etc. . . .

Aussitôt que la courbe montre un caractère simple, on peut donc se permettre de la discuter à l'aide de la formule IV.

Le tableau suivant renferme douze courbes représentant les voyelles les plus importantes.

$a_1^* = 1,000$ $a_2^* = 6,847$ $a_3^* = 0,057$ $a_4^* = 0,217$	$a_1^2 = 1,000$ $a_2^2 = 5,0332$ $a_5^2 = 0,0067$ $a_4^2 = 0,0225$	$a_{4}^{2} = 1,000$ $a_{2}^{2} = 7,440$ $a_{5}^{2} = 0,0149$ $a_{4}^{2} = 0,1709$
$\varphi_1 = 99^{\circ} 54'$ $\varphi_2 = 10^{\circ} 10'$ $\varphi_3 = 125^{\circ} 45'$	$ \varphi_4 = 5^{\circ} 11' $ $ \varphi_2 = 345^{\circ} 50' $ $ \varphi_3 = 207^{\circ} 38' $	$\varphi_4 = 116^{\circ} 21'$ $\varphi_2 = 142^{\circ} 51'$ $\varphi_3 = 28^{\circ} 3'$
34') 28') 44')	56°) 7°) 46°) 34°)	33') 54') 24') 37')
$Y = 3,2896 + 0,24855 \sin(x. 30 + 184^{\circ})$ $+ 0,65001 \sin(x. 60 + 284^{\circ})$ $+ 0,05963 \sin(x. 90 + 194^{\circ})$ $+ 0,11978 \sin(x. 120 + 310^{\circ})$	$Y = 3.9262 + 0.1661 \sin (x. 30 + 267^\circ)$ me. $+ 0.3725 \sin (x. 60 + 273^\circ)$ $+ 0.0137 \sin (x. 90 + 253^\circ)$ $+ 0.0247 \sin (x. 120 + 115^\circ)$	$+ 0,1385 \sin(x. 30 + 176^{\circ} + 0,3790 \sin(x. 60 + 292^{\circ} + 0,0169 \sin(x. 90 + 319^{\circ} + 0,0573 \sin(x. 120 + 204^{\circ}$
$ut_{4}.$ $Y = 3,2896$	ut_{u} . $Y = 3,9262$ Guillaume. (5)	$mi_{\mathbf{t}}$ $Y = 2,369$ (6)

 $a_{\mu}^2 = 0,0001$

$a_{_{\bf 1}}{}^{\bf 2}=1,000$	$a_2^2 = 0,0010$	$a_3^2 = 0,0098$	$a_{\rm h}^2 = 0.0001$
11, 2000	74 = 203 ₀ + 1.	$\varphi_2 = 247^{\circ} 50'$	$\varphi_5 = 151^0 1'$
sin(x. 30 + 291°16')	$sin(x. 60 + 241^{\circ} 3')$	$sin(x. 90 + 179^{\circ} 6')$	$\sin(x.120 + 82^{\circ}17')$
sin(x.	sin(x)	sin(x.	sin(x)
98 + 0,8612	+ 0,0271	+ 0,0853	+ 0,0076
Y = 2,6608			
ut_4			
00			

OU
$$ut_{\mathbf{h}}$$
 $Y = 4,0997 + 1,0463 \sin(x \cdot 30 + 64^{\circ} 25')$ $\varphi_{1} = 38^{\circ} 52'$ $a_{1}^{2} = 1,000$

Guillaume. $+ 0,2740 \sin(x \cdot 60 + 103^{\circ} 17')$ $\varphi_{2} = 91^{\circ} 53'$ $a_{2}^{2} = 0,0665$
 $+ 0,0730 \sin(x \cdot 90 + 156^{\circ} 18')$ $\varphi_{3} = 78^{\circ} 21'$ $a_{4}^{2} = 0,0004$
 $+ 0,0206 \sin(x \cdot 120 + 142^{\circ} 46')$ $\varphi_{5} = 78^{\circ} 21'$ $a_{4}^{2} = 0,0004$

$a_1^2 = 1,0000$ $a_2^2 = 0,7121$	$a_5^2 = 0,1392$ $a_4^2 = 0,0512$	$a_{\mathbf{s}}^{\mathbf{z}} = 0,0051$ $a_{6}^{\mathbf{z}} = 0,0015$	$a_{1}^{2} = 1,0000$	$a_2^2 = 1,6223$ $a_5^2 = 0,0188$	$a_{\bullet}^{2} = 0.1948$	$a_6^2 = 0,0139$
334	L II	$\varphi_{4} = -78^{\circ} + 3^{\circ}$ $\varphi_{5} = 218^{\circ} = 6^{\circ}$	- 950° 997	$\varphi_2 = 27^{\circ} 39'$	$\varphi_5 = 305^{\circ} 33'$ $\varphi_4 = 38^{\circ} 39'$	$\varphi_5 = 265^{\circ} 42'$
$Y = 2,8840 + 0,3275 \sin(x. 15 + 195^{\circ} 10')$ + 0,2763 $\sin(x. 30 + 181^{\circ} 34')$	$+0,1220 \sin(x. 45 + 204^{\circ} 48')$ $+0,0743 \sin(x. 60 + 175^{\circ} 34')$	$75 + 273^{\circ} 55'$ $90 + 63^{\circ} 16'$	$Y = 1,8944 + 0,2708 \sin(x. 15 + 300^{\circ} 40')$	$+0,3448 \sin(x. 30 + 291^{\circ} 19')$ $+0,0371 \sin(x. 45 + 328^{\circ} 19')$	$+0,1195 \sin(x. 60 + 246^{\circ} 13')$ $+0.0065 \sin^{2}(x. 75 + 339^{\circ} 19')$	
$\sin(x)$ $\sin(x)$	$\sin(x)$ $\sin(x)$	sin(x. $sin(x.$	sin(x.	$\sin(x.$ $\sin(x.$	$\sin(x)$	$\sin(x)$
+ 0,3275 + 0,2763	+ 0,1220 + 0,0743	+0,0235 sin (x. $+0,0130$ sin (x.	+ 0,2708	+ 0,3448 + 0,0371	$+ 0,1195 \sin (x. + 0,0065 \sin (x. + 0.0065)$	$+ 0,0318 \sin (x.$
Y = 2,8840	6		Y = 1,8944		(10)	
A $ut_{\mathbf{t}}$			ut			
T:						

$a_1^2 = 1,0000$ $a_2^2 = 0,7170$ $a_5^2 = 0,0053$ $a_5^2 = 0,0024$	$a_1^2 = 1,000$ $a_2^2 = 1,2760$ $a_5^2 = 0,00033$ $a_4^2 = 0,000769$ $a_5 = 0,000499$ $a_6^2 = 0,000825$	
	$ \varphi_1 = 53^{\circ} 38' $ $ \varphi_2 = 20^{\circ} 26' $ $ \varphi_3 = 305^{\circ} 22' $ $ \varphi_4 = 18^{\circ} 7' $ $ \varphi_5 = 65^{\circ} 47' $	
$+0,5977 \sin (x. 30 + 44^{\circ} 15')$ $+0,5063 \sin (x. 60 + 92^{\circ} 30')$ $+0,0437 \sin (x. 90 + 61^{\circ} 59')$ $+0,0281 \sin (x. 120 + 134^{\circ} 46')$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\sin (x.)$ $\sin (x.)$ $\sin (x.)$ $\sin (x.)$	sin (x. $sin (x.$ $sin (x.$ $sin (x.$ $sin (x.$	
+ 0,5977 + 0,5063 + 0,0437 + 0,0281	+ 0,1288 + 0,1455 + 0,0074 + 0,0113 + 0,0091	
Y = 2,009	=1,2645	
$AI(\vec{e})$ wt _u Y (11)	$\hat{E}^{ut_{\Phi}Y}$ (12)	



