Zeitschrift: Bulletin de la Société Neuchâteloise des Sciences Naturelles

Herausgeber: Société Neuchâteloise des Sciences Naturelles

Band: 43 (1917-1918)

Artikel: La profondeur des lacs et leur origine glaciaire

Autor: Monard, A.

DOI: https://doi.org/10.5169/seals-88606

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

La profondeur des lacs et leur origine glaciaire

PAR A. MONARD

LIC. ÈS SC. UNIVERSITÉ DE NEUCHATEL

Le problème de l'origine des lacs a suscité chez les géologues et les glacialogistes de nombreuses recherches et des discussions passionnées. Les uns — Heim, de Lapparent, Romer, Schardt au premier rang — attribuent la formation des cuvettes lacustres à un affaissement, général ou partiel, du massif, tandis que les autres — Ramsay, Tyndall, Davis, Penck, Brückner, de Martonne — admettent que le principal agent générateur des lacs a été le glacier, possédant alors la puissance d'éroder, d'affouiller son substrat au-dessous du niveau de base d'érosion fluviatile. De nombreux arguments, qui n'ont pas besoin d'être rappelés ici, militent en faveur de cette dernière théorie, et c'est à son appui que nous désirons présenter ici les résultats d'une étude comparée entreprise sur les lacs d'origine glaciaire.

Les tabelles suivantes ne contiennent que les lacs échelonnés sur le cours d'un même lobe glaciaire, et rangés par ordre d'altitude. Les lacs isolés, comme les lacs insubriens, restent donc en dehors de cause.

1. Lacs suisses.

Glacier	Lac	Prof. max. m.	Alt. niv. m.	Alt. fond. m.
Rhône	Léman Neuchâtel Bienne	309,7 153 75,1	371,9 432,4 432,1	62 279 357
Aar	Brienz Thoune	261,9 217	$\begin{array}{c} 566,9 \\ 560 \end{array}$	$\begin{array}{c} 305 \\ 343 \end{array}$

Glacier	Lac	Prof. max. m.	Alt. niv. m.	Alt. fond. m.
Reuss	Quatre-Cantons Zoug	214 198	436,9 416,7	223 219
	Sempach Baldegg	87 66	506 466	419 400
	Hallwyl	47	451	404
Aa	Lungern ¹ Sarnen	68 52	657 473	589
	Alphach	32 39	436,9	$\begin{array}{c} 421 \\ 398 \end{array}$
Linth	Wallenstadt Zurich	151 143	423 409	272 266
Dh:	2 0 4 2 0 1 0 0			
Rhin	Constance sup. » inf.	$\begin{array}{c} 252 \\ 46 \end{array}$	395 395	$\begin{array}{c} 143 \\ 349 \end{array}$
Inn	Sils	71	1800	1729
	Silvaplana, Camp St. Moritz	ofer 77 44	1794 1771	1717 1727

2. Lacs de l'Autriche et du Tyrol.

	Lac	Prof. max. m.	Prof. moy. m.	Alt. niv. m.	Alt. fond. m.	Long.
1.	St. Wolfgang Mondsee	114 68	47,10 36	539 479	425 471	10,5 10,5
	Irrsee Wallersee	32 23	15,30	$\begin{array}{c} 553 \\ 504 \end{array}$	521 481	$^{4,7}_{10,5}$
2.	Walchen Starnberg Ammer	196 114 78		803 586 534	607 472 456	
8.	Hallstätter Traun	125 * 191	_	494 422	369 231	
4.	Reschen Mitter Haider	22,5 17 $16,5$	18	1478 1474 1450	$1456 \\ 1457 \\ 1434$	
ō.	Achensee Tegernsee	133 71		929 726	796 655	
6.	Weissensee Millstättersee Ossiachersee Wörthersee	$97 \\ 140 \\ 46,5 \\ 84$	86,45 19,9 43,2	918 580 494 439	821 440 448 355	

¹ Avant la correction qui a abaissé de 30 m. son niveau.

3. Lacs d'Ecosse.

On doit au «Scottish Lake Survey» dirigé par S. John Murray, Fred. et Laurence Pullar, la connaissance précise des nombreux lacs glaciaires de ce pays. Nous donnons ici les principaux lacs ou «Lochs» remplissant les conditions énoncées plus haut. Les profondeurs et altitudes sont en pieds, les longueurs en milles.

Bassin	Lac	Alt. Long. Profondeur		n down	Longueur Profondeur:		
Dassin	Lac	AIL	Long.	max.	moy.	max.	moy.
Roe	Crocach An Tuire	$\begin{array}{c} 350 \\ 200 \end{array}$	1,40 0,81	71 39	16 10	104 109	44 0 42 8
Kirkaig	Veyatie Fionn	$\begin{array}{c} 364 \\ 356 \end{array}$	4,05 2,40	126 90	41 20	170 129	521 622
Garvic	Lurgain Bad a Ghaill Owskeich	173 165 71	3,87 2,13 1,56	156 ° 180 153	60 61 46	131 62 53	336 182 173
	. Voil Lubnaig . Katrine Achray Vennachar	414 405 364 276 270	3,5 4 8 1,25 4	98. 146 495 97. 111	40 42 199 36 42	189 145 85 68 190	451 493 211 218 498
Tay	Ericht Rannoch Tummel	$ \begin{array}{r} 1153 \\ 668 \\ 454 \end{array} $	14,5 9,7 2,75	512 440 128	189,2 167 48	150 116 113	405 306 302
Morar	Morar, 1re fosse "" 2me "" "" 3me "" "" 4me ""	30,5	11,68	1017 928 708 712	284	61 » »	217
Shiel	Shiel, 1 ^{re} fosse """ 2 ^{me} "" """ 3 ^{me} "" """ 4 ^{me} "" """ 5 ^{me} ""	11,5 " "	17,40	419 420 385 224 112	81,65 "	219	1125
	Fannich Luichart à Chroisg Luichart	821 249 508 249	6,92 5,05 3,47 5,05	282 164 168 164	108 66,8 73,8 66,8	130 163 109 163	336 399 248 399

Bassin arrect Lac entaunus	Alt,	Long.	Profemax.	ondeur moy.	Long.	Prof. moy.
Beauly 1. Affric	747	3,20	221	93,6	76	181
Beinn à Mead'ho	in —	2,64	167	63,3	83	213
2. Lungard	761	1,44	129°	63.6	59	119
Mullardoch	—	4,16	197	77,5	111	283
3. Monar	664	4,10	260	98	83	220
Bunacharan	366	1,26	113	50	59	133
4. Calavie An Tachdaidh An Gead	1128 —	1,12 0,62 1,21	84 62 30	38 18 11	70 53 213	156 183 566
Ness 1. Quoich Garry	556	6,95	281	104,6	131	351
	257	4,9	213	78	121	232

4. Lacs scandinaves.

Nous regrettons de ne pouvoir donner une plus longue ste de lacs glaciaires scandinaves. Mais les données limnoogiques sont disséminées dans un grand nombre de publiations et il est fort difficile souvent de se les procurer.

1. Le Torne-Träsk, situé sur le cours supérieur du Tornlf se compose de 3 bassins successifs dont la longueur totale est de 68 km.

Abiskobäcken	prof. max.	164	m.
Kaisenjarkabäcken	The base of the	135	»
Nakervarebäcken	»	121	

2. Le Stora Lule, long de 140 km., comprend 9 bassins.

1.	Alemusjaure	67	m.	in the	6.	Stuorlulejaure	19	m. Hos
2.	Suorvajaure	92)	lotue	7.	allers Dan James	28	myai yar
3.	Kärtjejaure	81	D	ficerii.	8.)	23	Distriction
4.		73	»	n dili	9.)	16	»
5.	Langasjaure	27					viá by ja Jázz	

3. Sur la Luspe Strom, affluent de la Stora Lule :

a Laca mellu	Altitude m.	Longueur km.	Profondeur m.
Saggat	303	26	83
Skalka	295	25	30
Randi	283	11,5	27
Purkijaure	t in the Land an	1 m -	14,5

4. Plus au sud se trouve le complexe lacustre de Hornafvan.

Lac	Altitude m.	Longueur km.	Profondeur m.
Hornafvan	425	63	221
Uddjaure	419	25	15?
Storafvan	418	39	21

Cette énumération de près de 100 lacs, quelque incomplète qu'elle soit pour les lacs suédois, suffit cependant à démenter le proposition aujuents.

démontrer la proposition suivante :

Toutes les fois que, sur le cours d'une même langue glaciaire, se trouvent deux ou plusieurs lacs glaciaires échelonnés, la profondeur de ces lacs diminue à mesure que l'on s'éloigne du centre d'irradiation des glaciers.

Les quelques exceptions, signalées par un astérisque, s'expliquent facilement par des circonstances locales d'allu-

vionnement postglaciaire.

Bien plus, la même loi semble s'appliquer dans un même lac aux fosses successives: les lacs du Torne-Träsk et de Stora-Lule illustrent suffisamment la chose; le Léman se compose de 6 fosses successives: Evian 310 m., Nyon 76 m., Tougues 70 m., Coppet 66 m., Chevran 70 m., Bellevue 50 m. Les lacs, originairement unis, actuellement séparés par les alluvions d'un affluent latéral rentrent naturellement dans ce cas.

Une pareille diminution de la profondeur si régulièrement en rapport avec l'éloignement du centre de glaciation, ne peut être le fait du hasard, et doit être attribuée à un déterminisme quelconque. Pour le saisir nettement, il est nécessaire de redire en quelques mots le mode d'action des glaciers.

Tout prouve que l'avancée et la retraite des glaciers se sont faites toujours graduellement, par légères progressions ou légers reculs successifs. Toutefois la théorie du surcreusement des lacs considère d'abord le glacier à l'état stationnaire 1, puis passe à l'étude du glacier vivant, soit qu'il se déplace en avant, bouleversant ses moraines frontales, soit qu'il recule, abandonnant alors de nouvelles moraines, traces et témoins de sa déchéance. L'étude des moraines ainsi bouleversées et des stratifications qui en résultent a été faite d'une façon magistrale par Léon Dupasquier. Mais cette étude de la retraite doit aussi s'appliquer au déplacement de la cuvette de surcreusement, et là, nous nous trouvons en présence d'un

¹ HESS. Die Gletscher.

facteur puissant : le temps d'action du glacier. Il est clair que plus longtemps le glacier séjourne en un point, plus il érode. En outre, de Martonne (1911) a fait remarquer que le maximum de frottement du glacier, donc d'érosion, a lieu aux ruptures de pente. Il en résulte qu'une cuvette une fois commencée à la faveur d'une première et légère rupture de pente ou d'un étranglement quelconque, tendra toujours à s'approfondir par les retours subséquents du glacier, et cela d'autant plus que le temps d'affouillement est plus long. L'action du glacier sera donc d'autant plus grande que le point envisagé est plus voisin du centre d'irradiation. Cela peut s'observer non seulement dans les lacs, mais aussi dans les formes des vallées ; les plus rapprochées des glaciers actuels présentent certainement des caractères glaciaires plus accentués que celles du Jura par exemple, plus éloignées, qui ont aussi subi l'érosion glaciaire, mais incomparablement moins ongtemps. De Martonne a remarqué aussi que la profondeur des lacs subalpins est due « moins à leur qualité de bassins terminaux qu'à leur position en un point où la topographie préglaciaire commandait le creusement ». On peut ajouter à ce facteur de la conformation préglaciaire de la surface qui a déterminé l'emplacement actuel de nos lacs — le facteur temps d'action qui en a déterminé la profondeur.

Ainsi le glacier du Rhône a travaillé beaucoup plus longtemps, et avec une pression plus considérable, dans le lac Léman que dans celui de Neuchâtel puisqu'il y a eu pour chaque oscillation double du glacier, deux époques pendant lesquelles le second de ces lacs était libre de glaces tandis que le premier était encore glacié. L'action affouillante s'exerce donc pendant des temps différents, suivant l'éloignement du centre de glaciation, et comme cette action augmente avec le temps, les lacs les plus rapprochés du centre en question seront les plus profonds, au moins à l'origine. C'est ce

que tendent à démontrer les chiffres ci-dessus.

Une constatation encore : les glacialogistes envisageant un glacier à l'état stationnaire, placent le maximum de vitesse vers les deux tiers de la langue glaciaire, comptés depuis l'origine. Le maximum de surcreusement glaciaire a des hances de se produire en cet endroit. La pente amont est donc plus douce que la contrepente aval, et le maximum de profondeur d'un lac doit se trouver vers les deux tiers de sa ongueur. Or, ce maximum, malgré l'alluvionnement postgla-iaire, est ordinairement situé à l'extrémité amont du lac. Que faut-il en conclure sinon qu'il n'est pas permis d'envi-

sager le surcreusement de nos lacs par un glacier stationnaire, mais qu'il faut considérer ce dernier avançant petit à petit, se retirant de même, usant donc beaucoup plus aux endroits où

son séjour s'est prolongé.

DE MARTONNE a proposé, comme nous le verrons plus bas, une équation de frottement du glacier. L'érosion e dépend naturellement de ce frottement f, d'un certain coefficient a dépendant de la nature des roches érodées et du temps T pendant lequel le glacier a agi. On est donc conduit à la formule suivante : e = afT, qui, avec des unités adéquates (c'est bien là que réside la difficulté!) permettrait d'établir la valeur de l'érosion et du surcreusement glaciaire.

Ce principe, dont on ne peut nier la justesse théorique, suppose nécessairement que les autres conditions, dureté des roches, attitude des couches, pente générale, soient identiques ou du moins comparables dans les deux bassins lacustres successifs en question. Il s'en faut de beaucoup que ces conditions soient réalisées ; cherchons donc à étudier ces facteurs séparément et à se rendre compte de leur influence sur la profondeur des lacs. Ces facteurs sont : la conformation de la surface préglaciaire, l'inégale dureté des roches érodées, la succession de quatre glaciations distinctes, l'inégale épaisseur

des glaciers, les actions postglaciaires.

1. La conformation de la surface préglaciaire, peu connue, dont la reconstitution présente de singulières difficultés est de tous ces facteurs le plus important à considérer. Penck, d'accord avec W.-M. Davis, conçoit le massif alpin comme poussé jusqu'à une maturité préglaciaire assez avancée. C'est à des vues pareilles que se rallie Lautensach au moins pour le bassin du Tessin qu'il a étudié. E. DE MARTONNE, au contraire, s'appuyant sur l'idée que l'érosion glaciaire a besoin d'être amorcée par des ruptures de pentes, croit à une topographie préglaciaire rajeunie par un soulèvement datant de la fin du tertiaire et du commencement du quaternaire. Quoi qu'il en soit, le glacier a dû se mouler, s'adapter à cette surface et son érosion a été influencée et guidée en grande partie par cette topographie. Si celle-ci, déterminée par l'érosion fluviatile tertiaire se rapprochait, suivant Penck, de la surface parabolique classique à laquelle tend toute contrée, elle présentait nécessairement des pentes plus fortes au centre du massif que sur les bords. Or la formule de DE MARTONNE F = $q v h P A \cos \alpha$ (F = frottement, v = vitesse) P = pression, A = adhérence, $\alpha = angle de pente) montre :$ 1º que l'érosion glaciaire est limitée aux paliers, tandis que

la torrentielle l'est aux gradins; 2° que le frottement du glacier, donc son pouvoir érosif, varie avec le cosinus de l'angle de pente, toutes autres conditions étant égales. En appliquant cet important résultat au surcreusement des lacs, en supposant d'autre part les autres conditions identiques et notamment le temps d'action, on trouve que le glacier aurait dû éroder davantage à sa périphérie qu'en son centre, puisque la pente y est plus douce. C'est précisément le contraire qui a lieu : d'autres facteurs plus puissants ont donc dû se superposer à l'angle d'inclinaison de façon à en voiler complètement les effets. Ce ne peuvent être qu'un moindre temps d'action et une moindre pression de la glace.

Si on suppose au contraire une topographie rajeunie, un profil complexe avec ruptures de pente, paliers et gradins successifs, les pentes seront, dans leur ensemble, plus considérables encore dans le centre du massif que sur ses bords,

et le même raisonnement peut s'y appliquer.

2. La dureté différente des roches, l'inclinaison diverse des couches peuvent largement influencer l'érosion glaciaire. Ce lacteur, en liaison intime avec la structure géologique des bassins, demande donc une discussion pour chaque cas particulier. Cependant certains lacs, Neuchâtel et Bienne, Baldegg et Halwyl, sont creusés, les premiers, dans le crétacique et la mollasse, les deuxièmes, dans la mollasse et présentent donc des conditions très comparables. Or le premier de chacun de ces groupes est plus profond que l'autre. De même dans le Léman, la fosse d'Evian, creusée, en partie du moins, dans la masse des nappes préalpines est plus profonde que les fosses suivantes fouillées dans la mollasse. De même pour les lacs de Walenstadt et de Zurich. Un autre facteur, plus puissant, a donc surmonté l'effet de l'inégale dureté des roches, et ce facteur ne peut être que le temps de glaciation.

3. Les actions postglaciaires d'alluvionnement dont le rôle a dû être considérable, ne sont pas parvenues au moins dans les grands lacs, à voiler le phénomène en question. Lorsque deux lacs sont situés successivement sur le même cours d'eau — Baldegg et Halwyl, Brienz et Thoune — la rivière dépose nécessairement dans le bassin supérieur où elle entre en premier lieu la totalité de ses alluvions. Elle ressort limpide du premier lac et ne dépose dans le bassin inférieur qu'une infime quantité de matériaux. Les affluents latéraux, de moindre importance ordinairement, ont un bassin d'alimentation moins étendu, et leur action est dépassée par celle de l'affluent principal. D'autre part, le lac démolit ses rives; à la

longue des falaises, une beine apparaissent pendant que le fin limon se dépose sur tout le plat-fond. Cette action d'érosion est toutefois comparable dans deux lacs de conditions semblables. Il résulte de tout ceci que le facteur postglaciaire principal est l'alluvionnement fluviatile; que son action tend à combler plus rapidement la cuvette supérieure que l'inférieure et que par conséquent, actuellement, les premières devraient être moins profondes que les deuxièmes. Or la nature nous montre précisément le cas opposé: les différences de profondeurs ont donc été, immédiatement après les glaciers, plus considérables qu'à présent, puisqu'elles sont arrivées à se maintenir encore.

Toutefois les lacs de faibles dimensions, parcourus par un cours d'eau important, tels que ceux de la Haute-Engadine, ont subi puissamment l'influence de l'alluvionnement. La loi de diminution des profondeurs brutes ne s'y applique donc pas.

4. Les temps glaciaires se sont étendus sur une très longue période pendant laquelle les glaciers ont subi quatre oscillations doubles principales avec un grand nombre d'oscillations secondaires. Il en résulte que le facteur « temps de glaciation » a dû être plus considérable dans le centre du massif alpin que sur les bords ; son influence a été multipliée par le nombre total des oscillations. Ce fait ne sert donc qu'à rendre plus vraisemblable encore le principe étudié.

5. A cette action du temps s'ajoute encore l'action d'une pression de glace plus forte au centre qu'à la périphérie. Ces deux facteurs contribuent puissamment à créer les remarquables différences de profondeurs qu'on observe dans les

lacs échelonnés.

RÉSUMÉ

1º La profondeur de plusieurs lacs glaciaires échelonnés sur le cours d'un même glacier, diminue en même temps que croît la distance qui les sépare du centre d'irradiation.

2º L'altitude du point le plus profond du lac croît dans la même proportion, si les altitudes de niveau ne sont pas très

considérables.

3º La dureté des couches, la surface d'érosion préglaciaire, les alluvionnements postglaciaires, fluviatile et littoral tendraient plutôt à un résultat contraire.

4º Ce phénomène est dû aux deux causes suivantes :

a) à la pression plus grande au centre du massif que sur les bords, à cause d'une accumulation plus grande de glaces.

b) à ce que le glacier a agi pendant un temps plus long dans les cuvettes voisines de son centre. Le fait de quatre glaciations successives avec de nombreuses oscillations secondaires a multiplié cette influence du temps dans l'érosion glaciaire et rend l'hypothèse encore plus probable 1.

BIBLIOGRAPHIE

- 1. Atlas Andrée et Atlas Stieler.
- 2. Dictionnaire géographique suisse.
- 3. Cartes Siegfried.
- 4. Otto Sjögren. Geografiska Studier. Sveriges geologiska Undersökning. C. 219, 1905.
- 5. J. Frödin. Geografiska Studier. Sveriges geologiska Undersökning. C. 257, 1914.
- 6. Hess. Die Gletscher. 1904.
- 7. Penck et Brückner. Die Alpen im Eiszeitalter. 1909.
- 8. DE MACTORME. L'érosion glaciaire et la formation des vallées alpines. Annales de Géographie, 1910, 1911.
- 9. Lautensach. Die Uebertiefung des Tessingebietes. Geogr. Abhandl., Bd. X, 1912, I. Heft.
- 10. N. Krebs. Länderkunde der Oesterreichischen Alpen. Stuttgart, 1913.
- 11. Collet. Le mode de formation et le régime des lacs suisses. Le Globe. Mémoires, t. LX, p. 27.
- 12. Collet. Le service des lacs d'Ecosse. Rev. der Hydrobiologie und Hydrographie, vol. I, p. 193.
- 13. Ahlenius. Beiträge zur Kenntnis der Seenkettenregion in Schwedisch-Lappland. Bull. géol. Just. Upsala, 1900, p. 28.
- 14. J. Müller. Die Seen am Reschen-Scheideck. Geogr. Abhandl., VII, I.
- 15. E. RICHTER. Seestudien. Geogr. Abhandl., Bd. VI, Heft 2.
- 16. E. Brückner. Die Vergletscherung des Salzachgebietes. Geogr. Abhandl., Bd. I, Heft 1.
- 17. J. Müller. Die Seen des Salzkammergutes. Geogr. Abhandl., Bd. VI, Heft 1.
- 18. Murray and Pullar. Bathymetrical Survey. Part I à XIII. The geogr. Journal, 1900 à 1908. London and Scottish geographical Magazine, 1900 à 1904.

¹ Nous nous acquittons ici d'un agréable devoir en remerciant vivement M. le professeur Argand, qui nous a ouvert les trésors de sa riche bibliothèque et qui nous a fourni de précieux conseils pour la rédaction de ce travail.