Zeitschrift:	Technische Mitteilungen / Schweizerische Post-, Telefon- und Telegrafenbetriebe = Bulletin technique / Entreprise des postes, téléphones et télégraphes suisses = Bollettino tecnico / Azienda delle poste, dei telefoni e dei telegrafi svizzeri
Band:	48 (1970)
Heft:	6
Artikel:	Mittelwellen-Steilstrahlung unter besonderer Berücksichtigung der Frequenz 1562 kHz = Le rayonnement vertical en ondes moyennes et particulièrement sur la fréquence de 1562 kHz
Autor:	Ebert, Walter
DOI:	https://doi.org/10.5169/seals-876059

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 13.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Mittelwellen-Steilstrahlung unter besonderer Berücksichtigung der Frequenz 1562 kHz

Le rayonnement vertical en ondes moyennes et particulièrement sur la fréquence de 1562 kHz

Walter EBERT, Bern

621.371.332.11.029.53:621.396.97

Zusammenfassung. Nach grundsätzlichen Überlegungen zur ionosphärischen Übertragung wird untersucht, wie sich die Strahlungsverteilungen der gegen Erde erregten vertikalen Sendeantenne und der aus horizontalen Dipolen aufgebauten Steilstrahlantenne auf den am Empfangsort auftretenden Feldstärkemedianwert auswirken. Es werden die diesbezüglichen Rechenverfahren abgeleitet.

Am konkreten Beispiel der Planposition 1562 kHz wird gezeigt, dass mit dem Steilstrahlbetrieb der Bedienungsradius gegenüber dem konventionellen Betrieb mit vertikaler Sendeantenne dank grösserer total abgestrahlter Leistung erheblich erweitert werden kann, ohne die Störfeldstärke in den Bedienungsbereichen der Sendernetze der Gleichkanalpartner zu erhöhen. Résumé. Sur la base de considérations de principe au sujet de la propagation ionosphérique, l'étude ci-après traite de l'influence des radiations émises par une antenne excitée verticalement par rapport à la terre et une antenne à rayonnement vertical composée de dipôles placés horizontalement, sur les valeurs médianes de l'intensité de champ, à l'endroit de la réception. Il en est déduit une méthode de calcul appropriée.

Il est établi, d'après l'exemple concret du canal de 1562 kHz prévu par le plan de Copenhague, que l'exploitation à rayonnement vertical, grâce à l'utilisation d'une puissance totale rayonnée supérieure, permet d'augmenter l'étendue de la zone desservie comparativement à l'exploitation conventionnelle opérant avec une antenne excitée verticalement, sans qu'il en résulte une augmentation de l'intensité de champ perturbatrice dans les zones desservies par les réseaux d'émission utilisant le même canal.

Antenna ad irradiazione verticale per onde medie con particolare riguardo alla frequenza 1562 kHz

Riassunto. Dopo considerazioni di principio sulla trasmissione ionosferica si analizza il comportamento dell'intensità di campo media alla ricezione in funzione della distribuzione delle irradiazioni emesse da antenne verticali eccitate rispetto a terra e da antenne ad irradiazione verticale costituite da dipoli orizzontali. Si deducono i relativi procedimenti di calcolo.

Mediante l'esempio concreto sulla frequenza attribuita 1562 kHz si dimostra che, grazie alla potenza irradiata totale più elevata, il sistema ad irradiazione verticale permette la copertura di una zona notevolmente più vasta di quanto è possibile con il sistema tradizionale ad antenna verticale e questo senza aumentare l'intensità del campo perturbatore nelle regioni servite da trasmittenti operanti sullo stesso canale.

1. Problemstellung

Die heutige Situation im europäischen Mittelwellenbereich ist durch die drastische Überbelegung des verfügbaren Spektrums gekennzeichnet. Wegen der gegenseitigen Störungen sind in vielen Fällen die tatsächlichen Bedienungsbereiche auf einen Bruchteil ihrer im Plan von Kopenhagen vorgesehenen Ausdehnung zusammengeschrumpft. Während bei planmässigen «Exklusivfrequenzen» die Einbusse im Prinzip durch entsprechende Leistungserhöhung wenigstens teilweise wieder wettgemacht werden kann, ist das bei geteilten Kanälen mit Rücksicht auf die planbedingten Gleichkanalpartner nicht ohne weiteres möglich.

Von der Planungsseite her betrachtet, trifft man auf das gleiche Problem, wobei es hier im Blick auf den gewaltigen Frequenzbedarf darum geht, je verfügbaren Kanal möglichst viele Sender störungsfrei miteinander arbeiten zu lassen und den nächtlichen Versorgungsgrad der Gleichkanal-Sendernetze so hoch wie möglich zu treiben.

In beiden Fällen stellt sich die Frage, auf welche Art die nächtlichen Bedienungsradien von Gleichkanalsendern ohne Verminderung der Störabstände bei den Gleichkanalpartnern erweitert werden können.

Grundsätzlich könnte bei der konventionellen Betriebsart die Sendeleistung erhöht und die übliche vertikale Sendeantenne in ihrer Länge und ihrem Strombelag so dimensioniert werden, dass die Feldstärke der Bodenwelle maximal wird. Dieser Weg ist wegen den schutzberechtigten Gleichkanalpartnern nicht gangbar. Jede Erhöhung der in horizontaler Richtung und unter flachen Winkeln abgestrahlten

1. Les données du problème

La situation européenne dans le domaine des ondes moyennes est caractérisée par un encombrement anarchique de la partie du spectre qui leur est attribuée. Dans bien des cas, l'étendue des zones effectivement desservies ne représente plus qu'une partie de celle qui avait été prévue par le Plan de Copenhague, en raison de perturbations réciproques. Si les entorses faites au principe des «fréquences exclusives» prévues dans le Plan peuvent en partie être combattues par des augmentations de la puissance, par contre, dans les canaux partagés, par égard pour les partenaires auxquels le plan a attribué les mêmes fréquences, il n'est pas possible de recourir au même remède.

Du point de vue de la planification, on se trouve en face du même problème, c'est-à-dire qu'en considération du très grand besoin de fréquences, il faut que, dans chaque canal à disposition, le plus grand nombre possible de stations d'émission puissent travailler sans se gêner mutuellement et que, dans le régime nocturne de l'exploitation, la couverture radiophonique assurée par les réseaux d'émetteurs opérant dans le même canal soit la plus grande possible.

Dans les deux cas, il faut se demander de quelle manière le rayon de la couverture radiophonique nocturne d'émetteurs situés dans le même canal pourrait être étendu sans éviter une augmentation du niveau des perturbations.

En principe, il serait possible sous une forme d'exploitation conventionnelle d'augmenter la puissance et de donner aux antennes d'émission verticales habituelles une Leistung erhöht gleichzeitig auch die in den Bedienungsbereichen der Gleichkanalsender wirksame Störfeldstärke.

Eine zweite Möglichkeit, den Bedienungsradius zu erweitern und damit den Versorgungsgrad nachts zu verbessern, besteht darin, die erforderliche minimale Nutzfeldstärke im Bedienungsbereich nicht mit der Bodenwelle, sondern ausschliesslich mit den an der Ionosphäre reflektierten Raumwellen zu erzeugen. Dies kann dadurch geschehen, dass der Hauptanteil der Strahlungsenergie nicht konventionell in horizontaler Richtung und unter flachen Winkeln abgestrahlt wird, sondern unter steilen Abstrahlwinkeln, senkrecht nach oben in Richtung Ionosphäre. Da dabei der Strahlungsanteil unter flachen Abstrahlwinkeln gering ist, kann die Sendeleistung beträchtlich erhöht werden, ohne die Gleichkanalpartner zusätzlich zu stören.

Diese Betriebsart stellt sowohl ausbreitungsmässige als auch antennentechnische Probleme, die nachfolgend näher untersucht werden sollen. Obwohl die durchgeführten Überlegungen allgemeiner Art sind, soll als repräsentatives Beispiel die planbedingte Konstellation der Frequenz 1562 kHz herangezogen werden.

2. Grundsätzliche Überlegungen zur ionosphärischen Übertragung

Zur Betrachtung der ionosphärischen Übertragung seien vorerst einige besondere Gegebenheiten in Erinnerung gerufen.

Die sogenannte kritische Frequenz f_{\circ} ist die Frequenz einer senkrecht in die Ionosphärenschicht einfallenden Welle (Einfallswinkel $\Phi = 0^{\circ}$), für die gerade Totalreflexion eintritt.

Ist bei senkrechtem Einfall in die Ionosphärenschicht ($\Phi = 0^{\circ}$) die Betriebsfrequenz f_B kleiner als f_o , so wird die Welle von der Schicht reflektiert; ist dagegen f_B grösser als f_o , so durchdringt sie die entsprechende Schicht.

Massgebend für die Grösse von $f_{\rm o}$ ist die Elektronendichte der betreffenden Schicht.

Die lediglich am Tage bestehende D-Schicht ist sehr schwach ionisiert, so dass nur Langwellen reflektiert werden. Für Mittel- und Kurzwellen macht sie sich durch eine mehr oder weniger starke, im wesentlichen vom Sonnenstand abhängige Absorption bemerkbar.

Die normale E-Schicht folgt ziemlich genau dem Sonnenstand, das heisst dem Winkel zwischen Sonne und Zenit. Sie ist nur tagsüber ausgeprägt und hat ihr Dichtemaximum mittags in etwa 115 km Höhe. Tagsüber zwischen Sonnenauf- und -untergang variiert f_{oE} zwischen etwa 2 bis 4 MHz. In der Nacht erreicht f_{oE} einen Minimalwert von etwa 0,5 MHz im Sonnenfleckenmaximum und etwa 0,25 MHz im Sonnenfleckenminimum. longueur et une excitation calculée de telle manière que l'intensité de champ de l'onde de sol atteigne son maximum. Il est impossible d'adopter cette solution à cause de la protection légale réciproque qui doit être assurée aux usagers qui partagent le même canal. Toute augmentation de la puissance rayonnée à l'horizontale et à un angle de faible ouverture a pour conséquence une augmentation de l'intensité du champ perturbateur dans les zones desservies par les émetteurs utilisant le même canal.

Il existe une deuxième possibilité d'élargir la zone desservie et d'améliorer la couverture radiophonique nocturne, elle consiste à produire l'intensité de champ utile minimale nécessaire à la zone desservie non au moyen de l'onde de sol mais exclusivement en recourant à l'onde d'espace réfléchie par l'ionosphère. Pour ce faire, il faut que la majeure partie de l'énergie rayonnée, au lieu d'être dirigée horizontalement et avec un angle de faible ouverture, soit dirigée selon un angle de rayonnement vertical se rapprochant de la perpendiculaire, en direction de l'ionosphère. Comme, dans ce cas, l'énergie rayonnée sous un angle de faible ouverture est minime, il est possible d'augmenter considérablement la puissance sans provoquer de perturbations supplémentaires aux partenaires qui utilisent le même canal.

Ce mode d'exploitation est lié à certains problèmes tant du point de vue de la propagation que de celui de la technique des antennes; ce sont ces problèmes qui font l'objet d'une étude approfondie dans cet article. Les considérations exposées ci-après sont de caractère général et les conditions d'exploitation de la fréquence de 1562 kHz, dans le cadre du plan de Copenhague, sont définies ici à titre d'exemple typique.

2. Considérations fondamentales concernant la propagation ionosphérique

Quand on considère la propagation ionosphérique, il importe avant tout de rappeler quelques-unes de ses particularités.

La fréquence dite critique f_{\circ} est celle d'une onde atteignant verticalement la couche ionosphérique (angle d'incidence $\Phi = 0^{\circ}$) avec une réflexion totale.

Dans ce rayonnement atteignant à la verticale la couche ionosphérique ($\Phi = 0^{\circ}$), si la fréquence utilisée f_B est plus petite que f_o, l'onde sera réfléchie par la couche; par contre, si f_B est plus grande que f_o, elle la traversera.

La valeur de f_{\circ} dépend de la densité des électrons de la couche en question.

La couche D qui n'existe que de jour est très faiblement ionisée et ne réfléchit que les ondes longues. Pour les ondes moyennes et courtes, son action se manifeste par Die F-Schicht ist je nach Tages- und Jahreszeit, Sonnenfleckenzahl, geographischer Breite und Länge sehr verschieden. Sie ist sowohl tagsüber als auch nachts vorhanden, wobei die stärkste Ionisierung wenig nach Mittag, die schwächste kurz vor Sonnenaufgang auftritt. Tagsüber variiert f_{oF} etwa zwischen 5 und 15 MHz, nachts etwa zwischen 2 und 8 MHz.

Die Mittelwellenübertragung via lonosphäre ist allgemein dadurch gekennzeichnet, dass tagsüber zwischen Sonnenauf- und -untergang die abgestrahlten Raumwellen wegen der hohen Dämpfung beim zweimaligen Durchqueren der D-Schicht praktisch kaum in Erscheinung treten. Nachts hingegen werden wegen der Abwesenheit der D-Schicht die abgestrahlten Raumwellen für ionosphärische Übertragung voll wirksam.

 f_{oE} beträgt bei Sonnenuntergang in mittleren geographischen Breiten während des ganzen Sonnenfleckenzyklus etwa 1,5 MHz, sinkt dann aber nach Sonnenuntergang wegen der Rekombination verhältnismässig rasch ab. Die aus [1] entnommene *Figur 1* zeigt den Verlauf von f_{oE} in Funktion der Zeit nach Sonnenuntergang für mittlere lonosphärenbedingungen. Die mittlere scheinbare Reflexionshöhe beträgt etwa 110 km.

Bei der F-Schicht genügt für Mittelwellen die in etwa 250 km Höhe vorhandene Elektronendichte zur Totalreflexion, während das Dichtemaximum in etwas grösserer Höhe anzutreffen ist. Da die Betriebsfrequenzen sämtlicher Mittelwellenkanäle dauernd kleiner als f_{oF} sind, werden die

Verlauf der kritischen Frequenz für senkrechten Einfall in die E-Schicht bei mittleren Ionosphärenbedingungen in mittleren geographischen Breiten. Die Kurve gilt von Sonnenuntergang bis etwa

drei Stunden vor Sonnenaufgang Evolution de la fréquence critique pour une incidence à la verticale sur la couche E dans des conditions ionosphériques moyennes, à une latitude moyenne. La courbe est valable depuis le coucher du

soleil jusqu'à environ trois heures avant le lever du soleil

une absorption plus ou moins forte, influencée principalement par la position du soleil.

La couche normale E subit assez exactement l'influence de la position du soleil, c'est-à-dire celle de l'inclinaison du soleil par rapport au zénith. Elle n'est marquée que de jour et elle atteint son maximum de densité à midi à environ 115 km d'altitude. De jour, entre le lever et le coucher du soleil, f_{oE} atteint une valeur minimale d'environ 0,5 MHz durant les périodes d'activité maximale des taches solaires et d'environ 0,25 MHz durant celles d'activité minimale des taches solaires.

La couche F diffère beaucoup selon les heures du jour, les saisons, l'activité solaire, la latitude et la longitude. Elle apparaît aussi bien de jour que de nuit, sa ionisation la plus forte se produit un peu après midi et sa ionisation la plus faible un peu après le lever du soleil. De jour, f_{oF} se situe environ entre 5 et 15 MHz et de nuit environ entre 2 et 8 MHz.

La propagation des ondes moyennes par réflexion ionosphérique est caractérisée, en général, par le fait que de jour, entre le lever et le coucher du soleil, l'onde d'espace rayonnée est pratiquement annihilée en raison du haut degré d'absorption qui résulte d'une double traversée de la couche D. De nuit, au contraire, du fait de l'absence de la couche D, les ondes d'espace rayonnées sont d'une entière efficacité grâce au parti que l'on peut tirer de la réflexion ionosphérique.

Aux latitudes moyennes, au coucher du soleil, pendant tout le cycle des taches solaires, f_{oE} se situe à environ 1,5 MHz mais après le coucher du soleil en raison d'une recombinaison, cette valeur baisse rapidement. La *figure 1*, tirée de [1], montre le comportement de f_{oE} en fonction du temps, après le coucher du soleil, pour des conditions ionosphériques moyennes. La hauteur moyenne du point de réflexion semble se situer à environ 110 km.

La densité des électrons que l'on rencontre à l'altitude d'environ 250 km dans la couche F est suffisante pour assurer une réflexion totale des ondes moyennes, cependant que le maximum de cette densité est situé à une altitude quelque peu supérieure. Comme les fréquences d'exploitation de tous les canaux d'ondes moyennes sont continuellement inférieures à f_{oF} , les ondes moyennes, même si elles attaquent verticalement la couche F, sont toujours réfléchies, en tant qu'elles parviennent à traverser la couche E.

Comme, durant la nuit, f_{oE} tombe de 1,5 MHz au-dessous de 0,5 MHz, toutes les fréquences des ondes moyennes – au moins une partie du temps –, lorsqu'elles attaquent la couche E verticalement ou perpendiculairement, la traversent et, pour elles, une réflexion par la couche F est possible.

Strahlengeometrie der ionosphärischen Übertragungswege für eine gegebene Grosskreisdistanz D

Géométrie du rayonnement des voies de transmission ionosphériques pour une distance de grand cercle donnée D

Mittelwellen auch bei senkrechtem Einfall in die F-Schicht immer reflektiert, sofern sie die E-Schicht überhaupt zu durchdringen vermögen.

Weil f_{oE} im Verlaufe der Nacht von 1,5 MHz auf unter 0,5 MHz absinkt, ist für alle Mittelwellenfrequenzen – zumindest zeitweise – bei senkrechtem oder wenigstens steilem Einfall in die E-Schicht die Durchdringung derselben und damit F-Reflexion möglich.

Für die nachfolgenden Berechnungen sollen folgende vereinfachende Annahmen vorausgesetzt werden:

- Die Reflexion an der Ionosphäre erfolge wie jene an einem Spiegel, wobei die scheinbare Reflexionshöhe für die E-Schicht 110 km und für die F-Schicht 250 km betrage.
- Der Reflexionswinkel sei gleich dem Einfallswinkel Φ in die betreffende lonosphärenschicht.
- Der äquivalente Reflexionskoeffizient f
 ür die Ionosph
 ärenreflexion sei unabh
 ängig von der Frequenz und dem Einfallswinkel
 Ø.
- Abgesehen von den Reflexionsverlusten sei die Raumwellen-Feldstärke umgekehrt proportional dem effektiv zurückgelegten Weg D' von der Sendeantenne zur Ionophäre und zurück zum Empfangsort auf der Erde.

Für eine gegebene Grosskreis-Übertragungsdistanz D sollen die vier, wenigstens aus der Strahlengeometrie heraus möglichen Übertragungswege der *Figur 2* näher untersucht werden. Der Winkel im Erdmittelpunkt zwischen den durch den Sendeort S und den Empfangsort E gehenden Erdradien ist Θ . Der mittlere Erdradius a ist 6367 km. Der Winkel Θ und die Übertragungsdistanz D hängen wie folgt zusammen:

$$\Theta^{\circ} = \mathsf{D} \cdot \frac{360^{\circ}}{2 \cdot \mathsf{a} \cdot \pi} \tag{1}$$

Dans les calculs qui suivent, admettons les quelques simplifications ci-après:

- La réflexion par l'ionosphère se comporte comme celle d'un miroir, l'altitude apparente du point de réflexion étant estimée à 110 km pour la couche E et à 250 km pour la couche F.
- L'angle de réflexion est égal à l'angle d'incidence Ø pour les couches ionosphériques en question.
- Le coefficient équivalent de réflexion ionosphérique est indépendant de la fréquence et de l'angle d'incidence Φ.
- Abstraction faite des pertes dues à la réflexion, l'intensité de champ de l'onde d'espace est inversement proportionnelle au trajet D' effectivement parcouru de l'antenne émettrice à l'ionosphère et du point de réflexion au point de réception situé au sol.

Examinons de plus près quatre des trajets de propagation qui peuvent dans tous les cas être envisagés pour une distance de propagation D donnée, dans un grand rayon, sur le dessin géométrique du rayonnement de la *figure 2*. L'angle au centre de la terre, entre les rayons terrestres passant au point d'émission S et au point de réception E, est désigné par Θ . La longueur moyenne du rayon terrestre a est de 6367 km. Entre l'angle Θ et la distance de propagation D existe le rapport suivant

$$\Theta^{\circ} = \mathsf{D} \cdot \frac{360^{\circ}}{2 \, . \, a \, . \, \pi} \tag{1}$$

Le premier trajet de propagation comporte un bond E de propagation (1E) avec un angle d'incidence Φ_1 sur la couche E de l'ionosphère. Le deuxième trajet de propagation comporte deux bonds E de propagation (2E) avec un angle d'incidence Φ_2 sur la couche E et réflexion par la terre au milieu du trajet. Le troisième trajet comporte un bond F et le quatrième 2 bonds F de propagation (1F ou 2F) avec dans le premier cas un angle d'incidence Φ_3 et dans le second un angle d'incidence Φ_4 sur la couche E de l'ionosphère.

Pour une distance de propagation donnée D, les quatre angles d'incidence sur la couche E peuvent être calculés de la manière suivante

$$\Phi_{1} = \operatorname{arc} \operatorname{tg} \frac{\sin\left(\frac{\Theta}{2}\right)}{1 + \frac{\mathbf{h'}_{\mathsf{E}}}{\mathbf{a}} - \cos\left(\frac{\Theta}{2}\right)}$$
(2a)

$$\Phi_{2} = \operatorname{arc} \operatorname{tg} \frac{\sin\left(\frac{\Theta}{4}\right)}{1 + \frac{\mathbf{h'}_{\mathsf{E}}}{a} - \cos\left(\frac{\Theta}{4}\right)}$$
(2b)

Der erste Übertragungsweg entspricht einer 1-Sprung-E-Übertragung (1E) mit dem Einfallswinkel Φ_1 in die E-Schicht der Ionosphäre. Der zweite Weg ist eine 2-Sprung-E-Übertragung (2E) mit Einfallswinkel Φ_2 in die E-Schicht und Reflexion am Erdboden im Streckenmittelpunkt. Der dritte und vierte Weg ist eine 1-Sprung-F-, beziehungsweise 2-Sprung-F-Übertragung (1F oder 2F) mit Einfallswinkeln Φ_3 , beziehungsweise Φ_4 in die E-Schicht der Ionosphäre.

Für eine gegebene Übertragungsdistanz D lassen sich die vier Einfallswinkel in die E-Schicht folgendermassen berechnen:

$$\Phi_{1} = \operatorname{arc} \operatorname{tg} \frac{\sin\left(\frac{\Theta}{2}\right)}{1 + \frac{\mathbf{h'}_{\mathsf{E}}}{a} - \cos\left(\frac{\Theta}{2}\right)}$$
(2a)

$$\Phi_2 = \operatorname{arc} \operatorname{tg} \frac{\sin\left(\frac{\Theta}{4}\right)}{1 + \frac{\mathbf{h'}_{\mathsf{E}}}{a} - \cos\left(\frac{\Theta}{4}\right)}$$
(2b)

$$\Phi_{3} = \operatorname{arc} \operatorname{tg} \frac{\sin\left(\frac{\Theta}{2}\right)}{1 + \frac{\mathbf{h'}_{\mathsf{F}}}{a} - \cos\left(\frac{\Theta}{2}\right)}$$
(2c)

$$\Phi_{4} = \operatorname{arc} \operatorname{tg} \frac{\sin\left(\frac{\Theta}{4}\right)}{1 + \frac{\mathbf{h'}_{\mathsf{F}}}{a} - \cos\left(\frac{\Theta}{4}\right)}$$
(2d)

Bei geneigtem Einfall in die E-Schicht ($\Phi > 0^\circ$) wird die Betriebsfrequenz kritisch, wenn

$$f_{B} = \frac{f_{0E}}{\cos \Phi}$$
(3)

Je grösser also Φ , desto höher die kritische Betriebsfrequenz.

Kritische Betriebsfrequenz f_B und Übertragungsdistanz D sind durch die Gleichungen (1)...(3) miteinander verknüpft. Berechnet man das Verhältnis aus der kritischen Betriebsfrequenz f_B zur kritischen Frequenz bei senkrechtem Einfall in die E-Schicht in Funktion der Übertragungsdistanz für die vier in Figur 2 eingezeichneten Übertragungsarten, so ergibt sich *Figur 3*.

Nimmt man als Beispiel an, dass für einen gegebenen Zeitpunkt nach Sonnenuntergang die Betriebsfrequenz f_B gerade doppelt so gross wie die für senkrechten Einfall in die E-Schicht kritische Frequenz f_{oE} sei, das heisst $f_B = 2.f_{oE}$, so ergeben sich aus Figur 3 für die verschiedenen Übertragungsdistanzen folgende Verhältnisse:

Für die Übertragungsdistanz 390 km wird der der 1E-Übertragung entsprechende Einfallswinkel Φ_1 kritisch, das

Fig.3

Die von der Übertragungsdistanz und dem Verhältnis der Betriebsfrequenz zur kritischen Frequenz bei senkrechtem Einfall in die E-Schicht abhängigen Übertragungsbereiche

Zones de transmission dépendant de la distance de la transmission et du rapport entre la fréquence d'exploitation et la fréquence critique en cas d'incidence à la verticale dans la couche E

$$\Phi_{a} = \operatorname{arc} \operatorname{tg} \frac{\sin\left(\frac{\Theta}{2}\right)}{1 + \frac{\mathbf{h'}_{\mathsf{F}}}{a} - \cos\left(\frac{\Theta}{2}\right)}$$
(2c)

$$\Phi_{4} = \operatorname{arc} \operatorname{tg} \frac{\sin\left(\frac{\Theta}{4}\right)}{1 + \frac{\mathbf{h'}_{\mathsf{F}}}{a} - \cos\left(\frac{\Theta}{4}\right)}$$
(2d)

Lorsque la couche E est attaquée avec une inclinaison ($\Phi > 0^{\circ}$), la fréquence critique d'exploitation interviendra si

$$f_{\rm B} = \frac{f_{\rm 0 E}}{\cos \Phi} \tag{3}$$

C'est-à-dire que plus Φ sera grand et plus la fréquence critique d'exploitation sera élevée.

La fréquence critique d'exploitation f_B et la distance de propagation D sont associées par les équations (1)...(3). Si l'on calcule le rapport entre la fréquence critique d'exploitation f_B et la fréquence critique pour une attaque perpendiculaire de la couche E, en fonction de la distance de propagation pour les quatre formes de propagation de la figure 2, on obtient la *figure 3*.

En prenant pour exemple que, pour un moment donné, après le coucher du soleil, la fréquence d'exploitation f_B est exactement deux fois aussi grande que la fréquence critique f_{oE} correspondant à une attaque perpendiculaire de la couche E, c'est-à-dire $f_B = 2.f_{oE}$, on obtient au moyen de la figure 3 pour les différentes distances de propagation les conditions suivantes:

Pour la distance de propagation de 390 km, l'angle d'incidence Φ_1 correspondant à la propagation 1E devient critique, heisst für kleinere Einfallswinkel wird bei dieser Betriebsfrequenz die E-Schicht durchstossen und es tritt F-Reflexion ein. Die der 1E-, 2E-, 1F- und 2F-Übertragung entsprechenden Einfallswinkel Φ_1 , Φ_2 , Φ_3 und Φ_4 sind für Übertragungsdistanzen zwischen 0 und 390 km alle kleiner als der kritische Wert, so dass in diesem Bereich und zu diesem Zeitpunkt nur die 1F- und die 2F-Übertragungen möglich sind; 1E- und 2E-Übertragungen fehlen, weil an der E-Schicht für die entsprechenden Einfallswinkel keine Reflexion möglich ist.

Für die Übertragungsdistanzen über 390 km kommt die 1E-Übertragung dazu, weil hier Φ_1 grösser als der kritische Wert ist. In 780 km wird der der 2E-Übertragung entsprechende Einfallswinkel Φ_2 kritisch, das heisst für kleinere Einfallswinkel als Φ_2 wird die E-Schicht durchstossen, für grössere tritt Reflexion an der E-Schicht auf. Kleiner als Φ_2 sind Φ_3 und Φ_4 ; grösser als Φ_2 ist Φ_1 . Zwischen 390 km und 780 km sind also zu diesem Zeitpunkt nur die 1E-, 1Fund 2F-Übertragung möglich.

Für Übertragungsdistanzen über 780 km kommt die 2E-Übertragung dazu, weil hier Φ_2 grösser als der kritische Wert ist. In 930 km wird der der 1F-Übertragung entsprechende Winkel Φ_3 kritisch; das heisst für kleinere Einfallswinkel als Φ_3 wird die E-Schicht durchstossen, für grössere tritt Reflexion an der E-Schicht auf. Kleiner ist lediglich noch Φ_4 , grösser sind Φ_1 und Φ_2 . Zwischen 780 und 930 km sind demnach zu diesem Zeitpunkt alle vier Übertragungsarten möglich, während über 930 km die 1F-Übertragung wegfällt, weil der diesen Übertragungsdistanzen entsprechende Einfallswinkel grösser als der kritische Wert von Φ_3 ist.

In 1860 km schliesslich wird auch der der 2F-Übertragung entsprechende Einfallswinkel Φ_4 kritisch. Zwischen 930 und 1860 km sind nur noch die 1E-, 2E- und 2F-Übertragungen möglich, während über 1860 km auch noch die 2F-Übertragungsmöglichkeit wegfällt.

Wenn also, wie im gewählten Beispiel, zu einem bestimmten Zeitpunkt $f_B = 2f_{oE}$ ist, so sind übertragungsdistanzmässig die in der *Tabelle I* angegebenen Bereiche mit unterschiedlichen Übertragungsmöglichkeiten zu unterscheiden.

Tabelle I	Tableau I
-----------	-----------

Bereich Zone	Distanzbereich étendue de la zone	Übertragungsmöglichkeit possibilités de transmission				
		1E	2E	1 F	2F	
I	0390 km			x	х	
П	390780 km	x		x	х	
Ш	780930 km	х	х	x	х	
IV	9301860 km	х	х		х	
v	> 1860 km	x	x			

autrement dit pour des angles d'incidence plus faibles, dans le cas de cette fréquence d'exploitation, la couche E est traversée et la réflexion se produit sur la couche F. Les angles d'incidence des propagations 1E, 2E, 1F et 2F, soit Φ_1, Φ_2, Φ_3 et Φ_4 , pour des distances de propagation entre 0 et 390 km sont tous inférieurs à la valeur critique, c'est-àdire que dans ce domaine et à ce moment-là, seules les propagations 1F et 2F sont possibles; les propagations 1E et 2E font défaut parce qu'aucune réflexion n'est possible sur la couche E pour les angles d'incidence en question.

Pour les distances de propagation de plus de 390 km, s'ajoute la propagation 1E parce que dans ce cas Φ_1 est plus grand que la valeur critique. A 780 km, l'angle d'incidence Φ_2 correspondant à la propagation 2E devient critique, autrement dit, avec des angles d'incidence plus petits que Φ_2 , la couche E est traversée; avec des angles d'incidence plus grands intervient la réflexion de la couche E. Φ_3 et Φ_4 sont plus petits que Φ_2 et Φ_1 est plus grand. Il en résulte qu'entre 390 et 780 km à ce moment-là seules les propagations 1E, 1F et 2F sont possibles.

Pour des distances de plus de 780 km s'ajoute la propagation 2E parce que Φ_2 est plus grand que la valeur critique. A 930 km, l'angle correspondant à la propagation 1F devient critique, c'est-à-dire qu'avec des angles d'incidence plus petits que Φ_3 la couche E est traversée; pour des angles d'incidence plus grands intervient la réflexion sur la couche E. Seul Φ_4 est plus petit, Φ_1 et Φ_2 sont plus grands. Entre 780 et 930 km, au moment choisi, les quatre formes de propagation sont toutes possibles, tandis qu'au delà de 930 km la propagation 1F fait défaut parce que l'angle d'incidence correspondant à cette distance de propagation est plus grand que la valeur critique de Φ_3 .

Enfin, à 1860 km, l'angle d'incidence Φ_4 correspondant à la propagation 2F devient critique. Entre 930 et 1860 km ne sont possibles que les propagations 1E, 2E et 2F, et au delà de 1860 km la possibilité de propagation 2F disparaît elle aussi.

Il en résulte que, ainsi que dans l'exemple choisi, lorsque à un moment donné $f_B = 2 f_{oE}$, les domaines fixés dans le *tableau I* doivent être considérés du point de vue de la distance de propagation comme étant au bénéfice de possibilités diverses.

Suivant la valeur de la fréquence d'exploitation f_B , l'étendue des variations de f_B/f_{oE} diffère évidemment et selon le moment choisi après le coucher du soleil les distances auxquelles les combinaisons de propagation des domaines I...V sont possibles varient également.

La figure 4 montre le rapport f_B/f_{oE} en fonction du temps après le coucher du soleil pour différentes fréquences d'exploitation, en particulier également pour la fréquence 1562 kHz. Le rapport appliqué dans l'exemple mentionné, $f_B/f_{oE} = 2$ atteint pour 1562 kHz environ 2,6 heures après le Je nach der Grösse Betriebsfrequenz f_B ist selbstverständlich der Variationsbereich von f_B/f_{oE} verschieden und damit für eine gegebene Zeit nach Sonnenuntergang die Distanzbereiche, in denen die Übertragungskombinationen der Bereiche I...V möglich sind.

Figur 4 enthält das Verhältnis f_B/f_{oE} in Funktion der Zeit nach Sonnenuntergang für verschiedene Betriebsfrequenzen, besonders auch für die Frequenz 1562 kHz. Das im erwähnten Beispiel verwendete Verhältnis $f_B/f_{oE} = 2$ wird für 1562 kHz etwa 2,6 Stunden nach Sonnenuntergang, für 1000 kHz aber erst etwa 7,5 Stunden nach Sonnenuntergang erreicht.

Aus den Figuren 3 und 4 lassen sich für jede der angegebenen Betriebsfrequenzen die Distanzbereiche I...V in Funktion der Zeit nach Sonnenuntergang ermitteln.

Die an einem bestimmten Empfangsort auftretende Feldstärke setzt sich aus den einzelnen Raumwellen-Komponenten zusammen, die den verschiedenen gleichzeitig möglichen Übertragungsarten entsprechen. Je nach der Zeit nach Sonnenuntergang liegt die in Frage stehende Übertragungsdistanz in einem der Übertragungsbereiche I...V. Die Gesamtfeldstärke kann demnach zwei, drei oder vier Raumwellenkomponenten enthalten.

Zur Berechnung der einzelnen Komponenten ist neben der effektiven Weglänge D' die Kenntnis des entsprechenden Einfallswinkels Φ in die E-Schicht, beziehungsweise des vertikalen Abstrahlwinkels Δ erforderlich. Während die effektive Weglänge D' im wesentlichen massgebend für die Ausbreitungsdämpfung ist, bringt der vertikale Abstrahlwinkel die Strahlungseigenschaften der Sendeantenne mit ins Spiel.

Unter Bezugnahme auf Figur 2 und die Gleichungen (1) und (2) wird für die 1-Sprung-Übertragung:

$$\mathsf{D}' = 2 \cdot \left| \sqrt{2 \cdot \mathbf{a} \cdot (\mathbf{a} + \mathbf{h}') \cdot \left[1 - \cos\left(\frac{\Theta}{2}\right) \right] + {\mathbf{h}'}^2}$$
(4)

$$\varDelta = \arccos\left[\frac{D^{\prime 2} - 4 \cdot h^{\prime} \cdot (h^{\prime} + 2 \cdot a)}{4 \cdot a D^{\prime}}\right] - 90^{\circ}$$
 (5)

Für die 2-Sprung-Übertragung wird:

$$D' = 4 \cdot \left| \sqrt{2 \cdot a \cdot (a + h') \cdot \left[1 - \cos\left(\frac{\Theta}{4}\right) \right] + {h'}^2}$$
 (6)

$$\varDelta = \arccos\left[\frac{D^{\prime\,2} - 16 \cdot h^{\prime} \cdot (h^{\prime} + 2 \cdot a)}{8 \cdot a \cdot D^{\prime}}\right] - 90^{\circ} \tag{7}$$

Der Zusammenhang mit der Grosskreis-Übertragungsdistanz D ist mit Gleichung (1) über den Winkel Θ gegeben. Für h' ist, je nachdem ob Reflexion an der E- oder F-Schicht stattfindet, 110 km oder 250 km einzusetzen.

Abhängigkeit des Verhältnisses $f_{\scriptscriptstyle B}$ zu $f_{\scriptscriptstyle OE}$ von der Zeit nach Sonnen-untergang

Rapport $f_{\text{B}}\,/\,f_{\text{oE}}$ en fonction du temps écoulé après le coucher du soleil

coucher du soleil et pour 1000 kHz seulement environ 7,5 heures après le coucher du soleil.

Les figures 3 et 4 permettent de déterminer l'étendue des distances I...V en fonction du temps après le coucher du soleil pour toutes les fréquences d'exploitation données.

Les intensités de champ mesurables à un point de réception déterminé se composent des composantes de toutes les ondes d'espace correspondant aux différentes formes de propagation intervenant simultanément. Suivant le moment, après le coucher du soleil, la distance de propagation entrant en considération se situe dans un des domaines I...V. La valeur de l'intensité de champ peut être par conséquent l'addition de deux, trois ou quatre composantes de l'onde d'espace.

Pour calculer la valeur de chaque composante, il faut tenir compte de la longueur effective du trajet D' et connaître l'angle d'incidence Φ sur la couche E correspondante, c'est-à-dire l'angle de rayonnement vertical Δ . La longueur effective du trajet D' est déterminante en ce qui concerne l'affaiblissement de la propagation, mais l'angle de rayonnement vertical fait entrer en jeu les caractéristiques de l'antenne émettrice. Die für eine bestimmte Übertragungsart im fernen Empfangpunkt homogen und ungedämpft auftretende Feldstärke ist

$$\mathsf{E}^{\prime\prime} = \frac{60 \cdot \mathbf{I}_{\mathsf{b}}}{\mathsf{D}^{\prime}} \cdot \mathsf{L}_{(\varDelta, \varphi)} \qquad [\mathsf{V}/\mathsf{m}] \tag{8}$$

- I_{b} = Strom im wirklichen oder fiktiven Strombauch der Sendeantenne in A
- D' = effektive Länge des Ausbreitungsweges in m
- $L_{(\varDelta, \varphi)}$ = Richtcharakteristik oder Strahlungsverteilung der Sendeantenne
- φ = Azimut (Winkel zwischen einer durch den Antennenfusspunkt gehenden vertikalen Bezugsebene und der den Übertragungsweg enthaltenden Vertikalebene)

Anderseits ist

$$I_{b} = \sqrt{\frac{P_{o}}{R_{b}}}$$
(9)

 P_{o} = gesamte abgestrahlte Leistung in W

R_b = Strahlungswiderstand im wirklichen oder fiktiven Strombauch

Rechnet man P_o in kW und D' in km, so wird

$$\mathsf{E}^{\prime\prime} = \mathsf{k} \cdot \frac{\sqrt{\mathsf{P}_{\mathsf{0}}(\mathsf{k}\mathsf{W})}}{\mathsf{D}^{\prime}(\mathsf{k}\mathsf{m})} \cdot \mathsf{L}_{(\varDelta, \varphi)} \qquad [\mathsf{m}\mathsf{V}/\mathsf{m}] \tag{10}$$

wobei k =
$$\frac{60 \cdot 1000}{\sqrt{R_b}}$$
 (10a)

Der nach der Reflexion in der Ionosphäre ungedämpft am Empfangsort einfallende Medianwert der Raumwellenfeldstärke, wie er mit einer linear polarisierten Empfangsantenne gemessen werden kann, ist

$$\mathsf{E}' = \delta_1 \cdot \delta_2 \cdot \mathsf{E}'' \tag{11}$$

Dabei ist δ_1 ein durch Interferenzfading und δ_2 ein durch Polarisationsfading bedingter Reduktionsfaktor.

$$\delta_1 = 0,832$$

 $\delta_2 = 0,707$

Der nach Reflexion in der Ionosäphäre am Empfangsort tatsächlich einfallende Medianwert der Raumwellenfeldstärke ist bei einmaliger Reflexion:

$$\mathsf{E} = \delta_{\mathsf{R}}.\mathsf{E}' \tag{12}$$

und bei zweimaliger Ionosphärenreflexion mit dazwischenliegender Reflexion am Erdboden:

$$\mathsf{E} = \delta_{\mathsf{R}}^2 \cdot \delta_{\mathsf{B}} \cdot \mathsf{E}' \tag{13}$$

Dabei sind:

- $$\begin{split} \delta_{\rm R} &= {\rm D} \ddot{\rm a} {\rm mpfungsfaktor} ~{\rm f} \ddot{\rm u} {\rm r} ~{\rm lonosph \ddot{a} {\rm renreflexion}} ~(\delta_{\rm RE} ~{\rm bei} \\ {\rm Reflexion} ~{\rm in} ~{\rm der} ~{\rm E-Schicht}, ~{\rm beziehungsweise} ~\delta_{\rm RF} ~{\rm bei} \\ {\rm Reflexion} ~{\rm in} ~{\rm der} ~{\rm F-Schicht}) \end{split}$$
- $\delta_{\rm B} = {\rm D}\ddot{\rm a}{\rm m}{\rm p}{\rm fungs}{\rm faktor}$ für Reflexion am Erdboden.

En nous référant à la figure 2 et aux équations (1) et (2), la propagation à un bond sera

$$\mathsf{D}' = 2 \cdot \left| \sqrt{2 \cdot \mathbf{a} \cdot (\mathbf{a} + \mathbf{h}') \cdot \left[1 - \cos\left(\frac{\Theta}{2}\right) \right] + \mathbf{h}'^{2}}$$
(4)

$$\Delta = \arccos\left[\frac{D^{\prime 2} - 4 \cdot h^{\prime} \cdot (h^{\prime} + 2 \cdot a)}{4 \cdot a \cdot D^{\prime}}\right] - 90^{\circ}$$
(5)

Pour la propagation à deux bonds, nous aurons

$$\mathsf{D}' = 4 \cdot \left| \sqrt{2 \cdot \mathbf{a} \cdot (\mathbf{a} + \mathbf{h}') \cdot \left[1 - \cos\left(\frac{\Theta}{4}\right) \right] + {\mathbf{h}'}^2}$$
(6)

$$\Delta = \arccos\left[\frac{D^{\prime 2} - 16 \cdot h^{\prime} \cdot (h^{\prime} + 2 \cdot a)}{8 \cdot a \cdot D^{\prime}}\right] - 90^{\circ}$$
(7)

Le rapport avec la distance de propagation D dans un grand cercle est donné par l'équation (1) appliquée à l'angle Θ . Pour h', on devra utiliser 110 km ou respectivement 250 km, selon la réflexion, sur la couche E ou sur la couche F.

L'intensité de champ *homogène et non atténuée* entrant en ligne de compte au point éloigné de la réception pour une forme de propagation donnée sera calculée comme il suit

$$\mathsf{E}^{\prime\prime} = \frac{\mathbf{60} \cdot \mathbf{I}_{\mathsf{b}}}{\mathsf{D}^{\prime}} \cdot \mathsf{L}_{(\varDelta, \varphi)} \qquad [\mathsf{V}/\mathsf{m}] \tag{8}$$

 intensité au ventre de courant réel ou fictif de l'antenne d'émission en A

L_(Δ, φ) = caractéristique directionnelle ou répartition du rayonnement de l'antenne d'émission

= azimut (angle formé entre un plan vertical de référence passant par le pied de l'antenne et le plan vertical contenant le trajet de propagation).

D'autre part, on a

 I_{b}

$$I_{b} = \sqrt{\frac{P_{o}}{R_{b}}}$$
(9)

P_o = puissance rayonnée au total en W

R_b = résistance de rayonnement au ventre de courant réel ou fictif.

Si l'on calcule P_o en kW et D' en km on aura

$$\mathbf{E}^{\prime\prime} = \mathbf{k} \cdot \frac{|\langle \mathbf{P}_0 (\mathbf{k} \mathbf{W}) |}{\mathbf{D}^{\prime} (\mathbf{k} \mathbf{m})} \cdot \mathbf{L}_{(\mathcal{A}, \varphi)} \qquad [\mathbf{m} \mathbf{V}/\mathbf{m}]$$
(10)

et k =
$$\frac{60 \cdot \sqrt{1000}}{\sqrt{R_{b}}}$$
(10a)

La valeur médiane de l'intensité de champ de l'onde d'espace non atténuée au point de réception, après la réflexion dans l'ionosphère, telle qu'elle peut être mesurée avec une antenne de réception polarisée linéairement, sera Unter der vereinfachenden Annahme, dass die nach der ersten Ionosphärenreflexion am Erdboden reflektierte Welle im wesentlichen horizontal polarisiert sei, gilt:

$$\delta_{\rm B} = \frac{\sqrt{|\epsilon'| - \cos^2 \Delta} - \sin \Delta}{\sqrt{|\epsilon'| - \cos^2 \Delta} + \sin \Delta} \tag{14}$$

Falls $|\varepsilon'| \gg 1$, ist

$$\delta_{\rm B} \simeq \frac{\sqrt{|\varepsilon'|} - \sin \Delta}{\sqrt{|\varepsilon'|} + \sin \Delta}$$
(15)
$$\varepsilon' = \varepsilon - \mathbf{j} \cdot \mathbf{6} \cdot \sigma \cdot \lambda_{\rm m} \cdot \mathbf{10}^{12}$$

Wenn die Bodenreflexion an trockenem Erdboden erfolgt, wird mit $\sigma = 1.10^{-14}$ emu, $\varepsilon = 10$ und $\lambda = 192,06$ m (1562 kHz) $|\varepsilon'| = 16$ und damit aus (15)

$$\delta_{\rm B} \simeq \frac{4 - \sin \Delta}{4 + \sin \Delta} \tag{16}$$

Zur Abschätzung der Grösse von δ_{R} wurde folgendermassen verfahren:

Einige Stunden nach Sonnenuntergang geschieht bei der Frequenz 1562 kHz und sehr steiler Abstrahlung die Reflexion mit Sicherheit nur in der F-Schicht, wobei die 1-Sprung-F-Übertragung dominiert. Für eine Steilstrahl-Sendeantenne und P_o = 145 kW ergibt sich in einer Grosskreisdistanz D = 100 km nach (10) und (11) ein ungedämpft einfallender Feldstärkemedianwert von 6,309 mV/m beziehungsweise 76 dB über 1 μ V/m (dB μ), wenn die Reflexionshöhe mit 250 km angenommen wird. Mit der gleichen Steilstrahlantenne und derselben abgestrahlten Gesamtleistung wurde in angenähert der gleichen Übertragungsdistanz ein mittlerer Feldstärkemedianwert von 70 dB μ gemessen. Die Reflexionsdämpfung in der F-Schicht (einschliesslich Absorption in der E-Schicht) beträgt demnach rund 6 dB, das heisst $\delta_{\text{RF}} \cong$ 0,5.

Der Einfachheit halber soll angenommen werden, dass $\delta_{\rm RF}$ für alle in Betracht kommenden Einfallswinkel konstant bleibe.

Für eine Grosskreisdistanz D = 1000 km ist mit der Frequenz 1562 kHz von kurz nach Sonnenuntergang an mit Sicherheit mit E-Reflexion zu rechnen, wobei hier bei Verwendung einer vertikalen 0,625. λ -Sendeantenne die 1E-Übertragung dominiert. Nach den UER-Ausbreitungskurven (CCIR Rapport Nr. 264) ergibt sich für den vorliegenden Fall mit P_o = 5 kW ein Feldstärkemedianwert von 48 dB μ . Ohne Reflexionsdämpfung wird aber mit (10) und (11) für die gleiche Sendeantenne und die gleiche Leistung ein Wert von 54 dB μ erhalten. Die Reflexionsdämpfung in der E-Schicht dürfte demnach rund 6 dB betragen; δ_{RE} ist also ebenfalls ungefähr 0,5.

Der Einfachheit halber soll hier ferner angenommen werden, dass δ_{RE} für alle in Betracht kommenden Einfallswinkel praktisch konstant bleibe.

$$\mathsf{E}' = \delta_1 \cdot \delta_2 \cdot \mathsf{E}'' \tag{11}$$

 δ_1 est un facteur de réduction dépendant de l'effet du fading d'interférence et δ_2 un facteur de réduction influencé par le fading de polarisation.

$$\delta_1 = 0,832$$

 $\delta_2 = 0,707$

La valeur médiane effective de l'intensité de champ de l'onde d'espace au point de réception après réflexion par l'ionosphère, pour une seule réflexion, est la suivante

$$\mathsf{E} = \delta_{\mathsf{R}} \,.\, \mathsf{E}' \tag{12}$$

et pour deux réflexions dans l'ionosphère avec entre les deux une réflexion sur le sol terrestre:

$$\mathsf{E} = \delta_{\mathsf{R}}^2 \cdot \delta_{\mathsf{B}} \cdot \mathsf{E}' \tag{13}$$

Dans cette équation

- δ_{R} = facteur d'atténuation dû à la réflexion par l'ionosphère (δ_{RE} pour la réflexion par la couche E et δ_{RF} pour la réflexion par la couche F)
- $\delta_{\rm B} =$ facteur d'atténuation dû à la réflexion par la surface terrestre.

En admettant pour simplifier que l'onde réfléchie par la surface terrestre après la première réflexion par l'ionosphère soit essentiellement polarisée horizontalement, on a

$$\delta_{\rm B} = \frac{\sqrt{|\varepsilon'| - \cos^2 \varDelta} - \sin \varDelta}{\sqrt{|\varepsilon'| - \cos^2 \varDelta} + \sin \varDelta}$$
(14)

Et dans le cas $|\varepsilon'| \gg 1$

$$\delta_{\mathsf{B}} \cong \frac{\sqrt{|\varepsilon'|} - \sin \Delta}{\sqrt{|\varepsilon'|} + \sin \Delta} \tag{15}$$

$$\varepsilon' = \varepsilon' - \mathbf{j} \cdot \mathbf{6} \cdot \mathbf{\sigma} \cdot \lambda_{\mathsf{m}} \cdot \mathbf{10^{12}}$$

Quand la réflexion terrestre est faite par un sol sec, on a pour $\sigma = 1.10^{-14}$ emu, $\varepsilon = 10$ et $\lambda = 192,06$ m (1562 kHz) $|\varepsilon'| = 16$ puis selon (15)

$$\delta_{\rm B} \simeq \frac{4 - \sin \varDelta}{4 + \sin \varDelta} \tag{16}$$

Pour l'estimation de la valeur de $\delta_{\rm R}$, on a procédé comme il suit:

Pour la fréquence de 1562 kHz, quelques heures après le coucher du soleil, le rayonnement est très vertical, la réflexion se produit certainement sur la couche F et la propagation à un bond est dominante. Avec une antenne d'émission à rayonnement vertical et $P_o = 145 kW$, selon (10) et (11), on obtient dans un périmètre D = 100 km une valeur médiane de l'intensité de champ non atténuée de 6,309 mV/m, c'est-à-dire de 76 dB au-dessus de 1 μ V/m (dB μ), en considérant que le point de réflexion se situe à 250 km. Avec la Mit den Werten $\delta_1 = 0,832, \delta_2 = 0,707, \delta_{RE} = \delta_{RF} = \delta_R = 0,5$ wird unter Verwendung der Formeln (10)...(13) der Feldstärkemedianwert für die 1E- und 1F-Übertragung:

$$\mathsf{E} = \mathbf{0}, \mathbf{294} \cdot \mathsf{k} \cdot \frac{|\langle \mathbf{P}_{\mathbf{0}} (\mathsf{kW}) }{\mathsf{D}' (\mathsf{km})} \cdot \mathsf{L}_{(\varDelta, \varphi)} \quad [\mathsf{mV}/\mathsf{m}] \tag{17}$$

und für die 2E- beziehungsweise 2F-Übertragung:

$$\mathsf{E} = \mathsf{0}, \mathsf{147} \cdot \delta_{\mathsf{B}} \cdot \mathsf{k} \cdot \frac{|\langle \overline{\mathsf{P}_{\mathsf{0}}} (\mathsf{kW})}{\mathsf{D}' (\mathsf{km})} \cdot \mathsf{L}_{(\varDelta, \varphi)} [\mathsf{mV}/\mathsf{m}] \tag{18}$$

Die Gleichungen (17) und (18) gelten im Rahmen unserer Voraussetzungen streng genommen nur für die Frequenz 1562 kHz. Da die Dämpfungsverhältnisse sich sowohl bei der Ionosphären- als auch bei der Bodenreflexion wohl kaum wesentlich mit der Frequenz ändern, können die Beziehungen (17) und (18) mit genügender Genauigkeit zumindest für den oberen Bereich des Mittelwellenspektrums verwendet werden.

3. Der Einfluss der Sendeantenne

In den Beziehungen (17) und (18) kommt der Einfluss der Sendeantenne durch den Faktor k und die Strahlungsverteilung $L_{(\Delta, \varphi)}$ zum Ausdruck. Nach (10a) hängt k nur vom Strahlungswiderstand im wirklichen oder fiktiven Strombauch der Sendeantenne ab.

Als Antennengewinn G ist das Verhältnis aus der maximalen Strahlungsintensität der betrachteten Antenne zur maximalen Strahlungsintensität der Bezugsantenne gleicher Leistung definiert.

Die Strahlungsintensität in einer bestimmten Richtung ist proportional dem Quadrat der Feldstärke an einem beliebigen Empfangsort in dieser Richtung.

Als Bezugsantenne wird – besonders bei der Darstellung von Mittelwellen-Ausbreitungskurven – gerne die kurze, gegen Erde erregte Vertikalantenne auf ∞ leitendem Boden gewählt. Der auf diese Antenne bezogene Antennengewinn wird mit G_v bezeichnet.

Die von der kurzen Vertikalantenne in der Hauptstrahlungsrichtung, das heisst in der Richtung maximaler Strahlungsintensität erzeugte Feldstärke ist:

$$E_{0_{max}} = 300 \cdot \frac{\sqrt{P_0} (kW)}{D' (km)} \qquad mV/m$$

Für eine beliebige Antenne ist mit (10) die Feldstärke in der Hauptstrahlungsrichtung

$${E''}_{max} = k \cdot \frac{\sqrt{P_o} (kW)}{D' (km)} \cdot L_{max}$$

Definitionsgemäss ist daher

$$G_{v} = \frac{E^{\prime\prime 2}_{max}}{E_{0_{max}}^{2}} = \left(\frac{k \cdot L_{max}}{300}\right)^{2}$$
(19)

même antenne à rayonnement vertical et la même puissance totale rayonnée, à peu près à la même distance de propagation, on a mesuré une moyenne de la valeur médiane de l'intensité de champ de 70 dB μ . L'atténuation par la réflexion sur la couche F (y compris l'absorption par la couche E) est par conséquent de 6 dB, cela signifie que $\delta_{\text{RF}} \cong 0,5$.

Pour simplifier, supposons que $\delta_{\rm RF}$ demeure constant pour tous les angles d'incidence entrant en considération.

Avec la fréquence de 1562 kHz, dans un cercle situé à D = 1000 km, aussitôt après le coucher du soleil, on peut compter avec certitude sur la réflexion par la couche E et lorsqu'on a recours à une antenne d'émission verticale 0,625. λ , la propagation 1E domine. D'après les courbes de propagation de l'UER (Rapport CCIR no 264), on obtient dans le cas entrant en considération avec P_o = 5 kW, une valeur médiane de l'intensité de champ de 48 dB μ . Pour la même antenne d'émission et la même puissance, on obtient avec (10) et (11), sans atténuation par la réflexion, une valeur de 54 dB μ . L'atténuation résultant de la réflexion par la couche E devrait être de 6 dB; δ_{RE} est par conséquent également environ 0,5.

Pour simplifier, admettons aussi dans ce cas que $\delta_{\rm RE}$ demeure pratiquement constant pour tous les angles d'incidence entrant en considération.

Avec les valeurs $\delta_1 = 0,832$, $\delta_2 = 0,707$, $\delta_{RE} = \delta_{RF} = \delta_R = 0,5$ en appliquant les formules (10)...(13) la valeur médiane de l'intensité de champ pour les transmissions 1E et 1F se traduit par

$$\mathbf{E} = \mathbf{0}, \mathbf{294} \cdot \mathbf{k} \cdot \frac{|\langle \overline{\mathbf{P}_0} (\mathbf{kW})}{\mathsf{D}' (\mathbf{km})} \cdot \mathsf{L}_{(\varDelta, \varphi)} \quad [\mathsf{mV}/\mathsf{m}]$$
(17)

et pour les transmissions 2E et 2F:

$$\mathbf{E} = \mathbf{0}, \mathbf{147} \cdot \delta_{\mathsf{B}} \cdot \mathbf{k} \cdot \frac{\sqrt{\mathsf{P}_{\mathsf{0}}} (\mathsf{kW})}{\mathsf{D}' (\mathsf{km})} \cdot \mathsf{L}_{(\varDelta, \varphi)} [\mathsf{mV}/\mathsf{m}]$$
(18)

Dans le cadre rigoureusement défini de nos suppositions, les équations (17) et (18) ne s'appliquent qu'à la fréquence de 1562 kHz. Comme le degré d'atténuation ne change pas de façon très sensible avec un changement de fréquence, aussi bien dans le cas de la réflexion ionosphérique que dans celui de la réflexion terrestre, les rapports contenus dans (17) et (18) garantissent une exactitude suffisante, au moins pour la partie supérieure du spectre des fréquences moyennes.

3. Influence de l'antenne d'émission

Dans les formules (17) et (18), l'influence de l'antenne d'émission est exprimée par le facteur k et la répartition du rayonnement L (Δ , φ). Selon (10a), k dépend de la résistance de rayonnement au ventre de courant réel ou fictif de l'antenne d'émission. Für $P_o = 1 \text{ kW}$ und D' = 1 km wird

$$E_{0_{max}}$$
 (1 kW, 1 km) = 300 mV/m

und

$$E''_{max}$$
 (1 kW, 1 km) = k · L_{max} mV/m (20)

Für die gegen Erde erregte Vertikalantenne der Länge I über ∞ leitendem Boden ist die Strahlungsverteilung

$$L_{(\varDelta)} = \frac{\cos\left(360^{\circ} \cdot \frac{1}{\lambda} \cdot \sin \varDelta\right) - \cos\left(360^{\circ} \cdot \frac{1}{\lambda}\right)}{\cos \varDelta}$$
(21)

und bei sinusförmiger Stromverteilung der Strahlungswiderstand im Strombauch:

$$R_{b} = 60 \cdot \int_{0}^{90^{\circ}} L^{2}(\varDelta) \cdot \cos \varDelta \cdot d \varDelta$$
 (22)

Da die Strahlungsverteilung vom Azimut φ unabhängig ist, sind Vertikalantennen sogenannte Rundstrahler.

Für die im Mittelwellenbereich üblichen Vertikalantennen mit Längen unter etwa 0,7. λ tritt das Strahlungsmaximum bei $\Delta = 0^{\circ}$, also in der Horizontalebene ein.

Die Gleichung (22) wird sehr oft durch graphische Integration gelöst.

Antennen mit Strahlungsmaximum in der Vertikalen, sogenannte *Steilstrahlantennen*, lassen sich mit horizontalen Strahlungselementen aufbauen. Am zweckmässigsten sind es gleichphasig gespeiste horizontale Dipolgruppen, die in einer bestimmten Höhe über einem gut reflektierenden Erdnetz ausgespannt werden. Solche Antennen wurden bis heute lediglich für den Kurzwellenrundspruch in den tropischen Zonen eingesetzt.

Gemäss [2] gilt für die Strahlungsverteilung einer solchen Steilstrahlantenne:

$$\mathsf{L}_{(\varDelta,\,\varphi)} = \tag{23}$$

$$\frac{\sin\left(n\cdot 90^{\circ}\cdot M\right)\cdot\sin\left(n\cdot 90^{\circ}\cdot N\right)\cdot\cos\left(90^{\circ}\cdot M\right)\cdot\sin\left(360^{\circ}\cdot\frac{h}{\lambda}\cdot\sin\varDelta\right)}{\sin\left(90^{\circ}\cdot M\right)\cdot\sin\left(90^{\circ}\cdot N\right)\cdot\left|\sqrt{1-M^{2}}\right|}$$

wobei $M = \cos \varDelta . \sin \varphi$

 $\mathbf{N}=\cos\varDelta.\cos\varphi$

- n = Zahl der λ /2-Dipole je Reihe und gleichzeitig Zahl der im Abstand von 0,5. λ nebeneinander liegender Reihen.
- h = Höhe der Antennenebene über dem Erdboden.

Je grösser n, desto stärker wird die Strahlungsenergie nach oben gebündelt. Anderseits ist aber n im Mittelwellenbereich durch die Gesamtabmessung in horizontaler Richtung, das heisst durch das verfügbare ebene Antennengelände begrenzt. Ein vernünftiger Kompromiss zwischen vertikaler Bündelung und horizontaler Abmessung liegt bei n = 2, das heisst bei einer aus zwei $\lambda/2$ -Dipolen je Le gain de l'antenne G est défini par le rapport entre l'intensité maximale de rayonnement de l'antenne entrant en considération et l'intensité maximale de rayonnement de l'antenne de référence à la même puissance.

L'intensité du rayonnement dans une direction donnée est proportionnelle au carré de l'intensité de champ mesurée à un point quelconque de réception situé dans cette direction.

Pour l'établissement des courbes de propagation des ondes moyennes en particulier, on adopte de préférence comme antenne de référence une antenne verticale courte excitée par rapport à la terre, sur un sol conducteur ∞ . Le gain obtenu par rapport à cette antenne de référence est désigné par G_v .

L'intensité de champ produite par l'antenne verticale courte dans la principale direction du rayonnement, c'est-àdire dans la direction du maximum d'intensité du rayonnement, s'exprime ainsi:

$$E_{0_{max}} = 300 \cdot \frac{\sqrt{P_0} (kW)}{D' (km)} \qquad mV/m$$

Pour n'importe quelle antenne, l'intensité de champ dans la principale direction du rayonnement sera selon (10):

$$E''_{max} = k \cdot \frac{\sqrt{P_0} (kW)}{D' (km)} \cdot L_{max}$$

Par définition, on obtient

et

$$G_{v} = \frac{E_{max}^{\prime \prime 2}}{E_{0_{max}}^{2}} = \left(\frac{k \cdot L_{max}}{300}\right)^{2}$$
(19)

Si $P_o = 1 \text{ kW}$ et D' = 1 km, on aura

 $E_{0_{max}}$ (1 kW, 1 km) = 300 mV/m

$$E''_{max}$$
 (1 kW, 1 km) = k · L_{max} [mV/m] (20)

Pour l'antenne verticale excitée par rapport à la terre de longueur l, sur sol conducteur ∞ , la répartition du rayonnement sera

$$L_{(\varDelta)} = \frac{\cos\left(360^{\circ} \cdot \frac{1}{\lambda} \cdot \sin \varDelta\right) - \cos\left(360^{\circ} \cdot \frac{1}{\lambda}\right)}{\cos \varDelta}$$
(21)

et pour une répartition sinusoïdale du courant la résistance de rayonnement au ventre de courant sera

~~

$$R_{\rm b} = 60 \cdot \int_{0}^{90^{\circ}} L^{2}(\varDelta) \cdot \cos \varDelta \cdot d \varDelta$$
 (22)

Comme la répartition du rayonnement est indépendante de l'azimut φ , les antennes verticales sont des antennes omnidirectionnelles.

Pour les antennes verticales habituelles utilisées en ondes moyennes, d'une longueur inférieure à environ 0,7 λ ,

Räumliche Anordnung der die Steilstrahlantenne bildenden Dipole. Definition der räumlichen Koordinaten

Disposition dans l'espace des dipôles composant l'antenne à rayonnement vertical. Définition des coordonnées dans l'espace

Reihe in zwei Reihen angeordneten Antenne. Als optimale Höhe der Antennenebene über Boden in Bezug auf die Strahlungsintensität im Strahlungsmaximum erweist sich $0,2.\lambda$.

Die räumliche Anordnung der Steilstrahlantenne (n = 2) ist aus *Figur 5* ersichtlich. Die durch den Antennenfusspunkt gehende vertikale Bezugsebene ist so gelegt, dass sie senkrecht zu den Dipolachsen zu liegen kommt. Die x-y-Ebene ist Horizontalebene auf der Erdoberfläche. Die z-Achse fällt mit der Vertikalen durch den Antennenfusspunkt zusammen. Die Einzelstrahler sind so numeriert, dass den wirklichen Dipolen ungerade Zahlen, den in gleichem Abstand unter der Erdoberfläche liegenden fiktiven Spiegelbildern aber die nächstfolgenden geraden Zahlen zugeordnet sind.

Mit n = 2 wird aus (23) die Strahlungsverteilung der in Figur 5 dargestellten Steilstrahlantenne

$$L_{(\varDelta, \varphi)} = \frac{\sin (180^{\circ} \cdot M) \cdot \sin (180^{\circ} \cdot N) \cdot \cos (90^{\circ} \cdot M) \cdot \sin (72^{\circ} \cdot \sin \varDelta)}{\sin (90^{\circ} \cdot M) \cdot \sin (90^{\circ} \cdot N) \cdot |/1 - M^2}$$
(24)

Für $\varDelta = 90^{\circ}$ wird L maximal

Bezeichnet man mit R₁₁ den Eigenwirkwiderstand im Strombauch von Dipol 1 und mit R_{1x} den Kopplungs-Wirkwiderstand von Dipol x im Strombauch von Dipol 1, so wird der auf den Strombauch von Dipol 1 bezogene Strahlungswiderstand der Steilstrahlantenne

(25)

$$\mathsf{R}_{\mathsf{b}} = 2 \cdot [\mathsf{R}_{\mathsf{11}} + \mathsf{R}_{\mathsf{13}} + \mathsf{R}_{\mathsf{15}} + \mathsf{R}_{\mathsf{17}} - (\mathsf{R}_{\mathsf{12}} + \mathsf{R}_{\mathsf{14}} + \mathsf{R}_{\mathsf{16}} + \mathsf{R}_{\mathsf{18}})]$$

le maximum de rayonnement peut être constaté à $\varDelta=0^\circ$, c'est-à-dire dans le plan horizontal.

L'équation (22) est souvent résolue sous une forme graphique.

Les antennes dont le rayonnement maximale est à la verticale, autrement dit les *antennes à rayonnement per-pendiculaire*, peuvent être construites à l'aide d'éléments horizontaux de rayonnement.

Les plus appropriés sont des groupes de dipôles horizontaux alimentés en phase, déployés à une certaine hauteur au-dessus d'un réseau terrestre réfléchissant bien. Les antennes de ce genre n'ont été utilisées jusqu'ici que pour la radiodiffusion sur ondes courtes de la zone tropicale.

Selon (2), la répartition du rayonnement d'une telle antenne à rayonnement vertical est exprimée par

$$L_{(\varDelta, \varphi)} =$$
(23)
n · 90° · N) · cos (90° · M) · sin $\left(360^{\circ} \cdot \frac{h}{\lambda} \cdot \sin \varDelta\right)$

$$\sin(90^{\circ} \cdot M) \cdot \sin(90^{\circ} \cdot N) \cdot \sqrt{1 - M^2}$$

où M = $\cos \varDelta . \sin \varphi$

 $\mathsf{N} = \cos \varDelta . \cos \varphi$

 $sin(n \cdot 90^{\circ} \cdot M) \cdot sin($

- n = nombre des λ/2-dipôles par rang et simultanément nombre des rangs situés à des intervalles de 0,5.λ
- h = hauteur du plan de l'antenne au-dessus de la surface terrestre.

Plus n sera grand et plus l'énergie de rayonnement sera fortement concentrée vers le haut. D'autre part cependant, n, dans la bande des ondes moyennes, sera limité par la dimension totale orientée en direction horizontale, c'est-àdire par l'étendue plane à disposition de l'antenne. On obtient un compromis raisonnable entre la formation en faisceau verticale et les dimensions horizontales en adoptant n = 2, c'est-à-dire avec une antenne se composant de deux $\lambda/2$ -dipôles par rang, disposés en deux rangs. La hauteur optimale du plan de l'antenne au-dessus du sol, par rapport à l'intensité du rayonnement dans le maximum de rayonnement, sera de 0,2. λ .

On voit dans la *figure 5* la disposition de l'antenne verticale (n = 2). Le plan de référence vertical passant par le pied de l'antenne est placé de façon telle qu'il relie perpendiculairement les axes de dipôles. Le plan x-y est un plan horizontal à la surface de la terre. L'axe z rencontre la verticale au pied de l'antenne. Chaque élément rayonnant est numéroté de telle façon que des nombres impairs sont attribués aux véritables dipôles et les nombres pairs suivants aux réflecteurs fictifs situés à intervalles semblables au-dessus de la surface de la terre.

Si n = 2, selon (23) la répartition du rayonnement de l'antenne à rayonnement vertical représentée dans la figure 5 sera

$$\begin{array}{ll} R_{13} = & 26,4 \text{ Ohm} & R_{17} = -11,7 \text{ Ohm} \\ R_{14} = & -3,2 \text{ Ohm} & R_{18} = -13,8 \text{ Ohm} \end{array}$$

 $R_{\rm b} = 221.6 \text{ Ohm}$

Tableau II

Mit (25) wird

tenne zusammengestellt.

In Tabelle II sind die interessierenden Konstanten der gebräuchlichsten Vertikalantennen und der Steilstrahlan-

Taballa II			
I abelle II			

	(22) (25)	(10a)		(20)	(19)
Antenne	R _b Ohm	k	L _{max}	E″ _{max} (1 kW, 1 km) mV/m	G_v
Kurze Vertikalantenne (Bezugsantenne) Courte antenne verticale (antenne de référence)	40	300	1	300	1
0,25 · λ-Vertikalantenne 0,25 · λ-antenne verticale	36,6	314	1	314	1,095
0,5·λ-Vertikalantenne 0,5·λ-antenne verticale	99,6	190	2	380	1,604
0,625 · λ-Vertikalantenne 0,625 · λ-antenne verticale	52,85	261	1,707	445	2,20
Steilstrahlantenne (n = 2) Antenne à rayonnement vertical (n = 2)	221,6	127	3,804	483	2,59

Das Verhältnis der Feldstärke in einem beliebigen Raumpunkt zur Feldstärke in einem in gleicher Entfernung im Strahlungsmaximum liegenden Empfangspunkt nennt man die *normierte Strahlungsverteilung*.

$$\frac{E''}{E''_{\max}} = \frac{k \cdot \frac{|\langle \mathbf{P}_{\mathbf{o}}(\mathbf{kW}) |}{\mathbf{D}'(\mathbf{km})} \cdot \mathbf{L}_{(\varDelta,\varphi)}}{k \cdot \frac{|\langle \mathbf{P}_{\mathbf{o}}(\mathbf{kW}) |}{\mathbf{D}'(\mathbf{km})} \cdot \mathbf{L}_{\max}} = \frac{\mathbf{L}_{(\varDelta,\varphi)}}{\mathbf{L}_{\max}}$$
(26)

Die in dB ausgedrückte normierte Strahlungsverteilung ist

$$A_{(\varDelta, \varphi)} = 20 \cdot \log \frac{\mathsf{L}_{(\varDelta, \varphi)}}{\mathsf{L}_{\max}}$$
(27)

In *Figur 6* sind die normierten Strahlungsverteilungen in einer beliebigen, durch den Antennenfusspunkt gehenden Vertikalebene von drei der gebräuchlichsten vertikalen Sendeantennen dargestellt, und zwar für eine $\lambda/4$ -, eine $\lambda/2$ - und eine 0,625. λ -Antenne.

Figur 7 zeigt die normierte Strahlungsverteilung der Steilstrahlantenne in drei verschiedenen durch den Antennenmittelpunkt gehenden Vertikalebenen, und zwar in einer Vertikalebene senkrecht zu den Dipolachsen ($\varphi = 0^{\circ}$

$$\mathsf{L}_{(\varDelta,\,\varphi)} = \frac{\sin\left(180^{\circ} \cdot \mathbf{M}\right) \cdot \sin\left(180^{\circ} \cdot \mathbf{N}\right) \cdot \cos\left(90^{\circ} \cdot \mathbf{M}\right) \cdot \sin\left(72^{\circ} \cdot \sin \varDelta\right)}{\sin\left(90^{\circ} \cdot \mathbf{M}\right) \cdot \sin\left(90^{\circ} \cdot \mathbf{N}\right) \cdot \left|1 - \mathbf{M}^{2}\right|}$$
(24)

Lorsque $\Delta = 90^{\circ}$, L sera au maximum.

Si l'on désigne par R_{11} la résistance réelle propre du dipôle 1 au ventre de courant et par R_{1x} la résistance couplée du dipôle x au ventre de courant du dipôle 1, la résistance de rayonnement résultante en ce point du dipôle 1 de l'antenne à rayonnement vertical sera

(25)

 $R_{b} = 2 \cdot [R_{11} + R_{13} + R_{15} + R_{17} - (R_{12} + R_{14} + R_{16} + R_{18})]$

Par suite, avec les valeurs suivantes

$R_{11} =$	73,1 ohm	$R_{_{15}} = -12,5 \text{ ohm}$
$R_{12} =$	6,5 ohm	$R_{_{16}} = -25 \text{ ohm}$
$R_{13} =$	26,4 ohm	$R_{17} = -11,7 \text{ ohm}$
$R_{14} =$	— 3,2 ohm	$R_{_{18}} = -13,8 \text{ ohm}$

 R_{b} Selon (25) = 221,6 ohm

Dans le *tableau II* sont récapitulées les constantes se rapportant aux antennes verticales les plus courantes et aux antennes à rayonnement vertical.

Le rapport entre l'intensité du champ en un point quelconque de l'espace et l'intensité de champ maximale à un point de réception situé à la même distance est désigné par l'expression: répartition normalisée du rayonnement.

$$\frac{\mathbf{E}^{\prime\prime}}{\mathbf{E}^{\prime\prime}_{\max}} = \frac{\mathbf{k} \cdot \frac{|\mathbf{P}_{0}(\mathbf{k}\mathbf{W})|}{\mathbf{D}^{\prime}(\mathbf{k}\mathbf{m})} \cdot \mathbf{L}_{(\varDelta,\varphi)}}{\mathbf{k} \cdot \frac{|\mathbf{P}_{0}(\mathbf{k}\mathbf{W})|}{\mathbf{D}^{\prime}(\mathbf{k}\mathbf{m})} \cdot \mathbf{L}_{\max}} = \frac{\mathbf{L}_{(\varDelta,\varphi)}}{\mathbf{L}_{\max}}$$
(26)

Fig.6

Normierte Strahlungsverteilung in einer beliebigen, durch den Antennenfusspunkt gehenden Vertikalebene für die gegen Erde erregte Vertikalantenne über ∞ leitendem Boden. Antennenlängen 0,25. λ , 0,5. λ und 0,625. λ

Répartition normalisée du rayonnement dans n'importe quel plan vertical passant par la base de l'antenne, pour une antenne verticale excitée par rapport à la terre, sur un sol conducteur ∞ ; longueurs de l'antenne 0,25. λ , 0,5. λ et 0,625. λ

Normierte Strahlungsverteilung der Steilstrahlantenne in durch den Antennenmittelpunkt gehender Vertikalebene mit dem Antennenazimut $\varphi=0^\circ,\,45^\circ$ und 90°

Répartition normalisée du rayonnement de l'antenne à rayonnement vertical dans un plan vertical passant par le milieu de l'antenne, avec un azimut de l'antenne $\varphi = 0^{\circ}$, 45° et 90°

bzw. 180°), in einer Vertikalebene parallel zu den Dipolachsen ($\varphi = 90^{\circ}$ bzw. 270°) und in Vertikalebenen, die die Dipolachsen unter 45° bzw. 225° oder 123° bzw 315° schneiden.

In *Figur 8* ist die normierte Strahlungsverteilung der Steilstrahlantenne auf Kegelflächen dargestellt, wobei die Kegelspitze im Antennenmittelpunkt und die Kegelachse senkrecht zur Erdoberfläche stehend gedacht sind. Die Neigung der Kegelmantelfläche entspricht den konstanten Abstrahlwinkeln ⊿.

Es ist ersichtlich, dass für Abstrahlwinkel über 20° die Steilstrahlantenne praktisch Rundstrahleigenschaften aufweist, die sich umso besser dem idealen Rundstrahldiagramm anpassen, je grösser der Abstrahlwinkel Δ wird. Für Abstrahlwinkel unter 20° zeigt die Steilstrahlantenne Richteigenschaften, die mit fallendem Δ ausgeprägter werden. Die Strahlungsdiagramme sind inbezug auf die $\varphi = 0^{\circ}$ und $\varphi = 90^{\circ}$ -Achsen symmetrisch mit gleich grossen Maxima in $\varphi \approx 40^{\circ}$, 140°, 220° und 320°; die Minima liegen bei $\varphi = 90^{\circ}$ bzw. 270°; weniger stark ausgeprägte Minima bei $\varphi = 0^{\circ}$ bzw. 180°.

Der am Empfangsort auftretende Feldstärkemedianwert jeder möglichen Übertragungsart in Funktion der Grosskreis-Übertragungsdistanz kann unter Verwendung der Gleichungen (1), (4)...(7), (17), (18), (21) und (22) für die in Frage stehenden Sendeantennen berechnet werden. Die entsprechenden Ergebnisse sind für eine total abgestrahlte Leistung von $P_o = 1$ kW in den *Figuren 9...14* dargestellt.

Welche der vier gezeigten Übertragungsarten gleichzeitig möglich sind, hängt von der Zeit nach Sonnenuntergang und der Übertragungsdistanz D ab. Die eingezeichneten Übertragungsbereiche I...V und die bei den Vertikalantennen in Erscheinung tretende Bodenwelle gelten für La répartition normalisée du rayonnement exprimée en dB sera:

$$A_{(\varDelta, \varphi)} = 20 \cdot \log \frac{L_{(\varDelta, \varphi)}}{L_{\max}}$$
(27)

Dans la *figure 6* sont représentées les répartitions normalisées du rayonnement dans un plan vertical quelconque passant par le pied de l'antenne pour trois des antennes verticales les plus courantes, c'est-à-dire pour les antennes $\lambda/4$ -, $\lambda/2$ - et 0,625. λ -.

La figure 7 montre la répartition normalisée du rayonnement de l'antenne à rayonnement vertical dans trois plans verticaux passant par le milieu de l'antenne, c'est-à-dire dans un plan vertical perpendiculaire à l'axe des dipôles ($\varphi = 0^{\circ}$ et 180°), dans un plan vertical parallèle à l'axe des dipôles ($\varphi = 90^{\circ}$ et 270°) et dans un plan vertical coupant les axes des dipôles à 45° et 225° ou 135° et 315°.

Dans la *figure* 8, la répartition normalisée du rayonnement de l'antenne à rayonnement vertical est représentée sur des surfaces coniques, le sommet du cône passant par le point central de l'antenne et l'axe du cône étant supposé perpendiculaire à la surface de la terre. L'inclinaison de la surface circulaire du cône correspond à l'angle constant du rayonnement \varDelta .

On constate que, pour un angle de rayonnement plus grand que 20°, l'antenne à rayonnement vertical présente

Fig.8

Normierte Strahlungsverteilung der Steilstrahlantenne in Funktion des Antennenazimutes φ für konstante vertikale Abstrahlwinkel \varDelta Répartition normalisée du rayonnement de l'antenne à rayonnement vertical en fonction de son azimut φ pour un angle de rayonnement vertical constant \varDelta

Fig. 9 0,25. ^λ-Vertikalantenne 0,25. ^λ-antenne verticale

Fig. 11 0,625. ^J-Vertikalantenne 0,625 ^J-antenne verticale

Fig. 13

Antennenazimut $\varphi = 45^{\circ}$, 135° , 225° und 315° Azimut de l'antenne $\varphi = 45^{\circ}$, 135° , 225° et 315°

Fig. 9...11

Feldstärkemedianwerte der vier möglichen Raumwellen-Komponenten und der Bodenwelle $f_{B}=1562\ kHz;\ P_{o}=1\ kW$

Valeurs médianes de l'intensité de champ des quatre composantes possibles de l'onde d'espace et de l'onde de sol $f_{\rm B}=1562~kHz$; $P_{\rm o}=1~kW$

Fig. 10 0,5.^λ-Vertikalantenne 0,5.^λ-antenne verticale

Fig. 12 Antennenazimut $\varphi = 0^{\circ}$ und 180° Azimut de l'antenne $\varphi = 0^{\circ}$ et 180°

Fig. 12...14

Feldstärkemedianwerte der vier möglichen Raumwellen-Komponenten. Steilstrahlantenne; $f_B=1562~kHz;~P_\circ=1~kW$

Valeurs médianes de l'intensité de champ des quatre composantes possibles de l'onde d'espace. Antenne à rayonnement vertical: $f_B=1562\ kHz;\ P_o=kW$

die Frequenz 1562 kHz. Die Grösse der Bodenwelle wurde anhand des Avis Nr. 368 CCIR berechnet ($\sigma = 3.10^{-3}$ mho/m; $\varepsilon = 4$).

Betrachtet man beispielsweise die Übertragungsdistanz D = 1000 km, so ist ersichtlich, dass dieser Empfangsort von Sonnenuntergang an bis etwa 1 Stunde danach im Übertragungsbereich V liegt, das heisst es sind hier nur die 1E- und die 2E-Übertragung möglich. Von 1 bis 3 Stunden nach Sonnenuntergang liegt jedoch der gleiche Empfangsort im Übertragungsbereich IV, das heisst hier kommt zu den 1E- und 2E-Übertragungen noch die 2F-Übertragung dazu. 3 bis 4 Stunden nach Sonnenuntergang liegt der fragliche Empfangsort im Bereich III, in dem alle vier Übertragungsarten gleichzeitig möglich sind. Später als 4 Stunden nach Sonnenuntergang ist die Distanz D = 1000 km im Übertragungsbereich II, in welchem die 2E-Übertragung fehlt.

Je nach Übertragungsbereich setzt sich die am Empfangsort wirksame Gesamtfeldstärke aus 2 bis 5 Einzelkomponenten zusammen, die den Feldstärkemedianwerten der gleichzeitig möglichen Raumwellen-Übertragungsarten oder bei vertikalen Sendeantennen zusätzlich der Bodenwellen-Feldstärke entsprechen. Der resultierende Feldstärkemedianwert kann als Wurzel aus der Summe der Quadrate der Einzel-Feldstärkemedianwerte definiert werden, das heisst

$$E = \sqrt{E_1^2 + E_2^2 + \dots E_x^2}$$
 mV/m (28)

$$\mathbf{F} = \mathbf{20} \cdot \log \left(\mathbf{1000} \cdot \mathbf{E}_{m \, \text{V/m}} \right) \qquad \mathrm{dB} \,\mu \tag{29}$$

In *Figur 15* ist die für $P_o = 1$ kW geltende Gesamtfeldstärke in Funktion der Übertragungsdistanz je Übertragungsbereich für die 0,625. λ -Vertikalantenne und in *Figur 16* für die Steilstrahlantenne mit $\varphi = 90^{\circ}$ beziehungsweise 270° dargestellt.

Fig. 15

Gesamtfeldstärke der 0,625. $\lambda\text{-Vertikalantenne};~f_{\text{B}}=1562$ kHz; $P_{\text{o}}=1~\text{kW}$

Valeur totale de l'intensité de champ de l'antenne verticale 0,625. $\lambda;$ $f_B=1562$ kHz; $P_o=1$ kW

pratiquement les mêmes caractéristiques qu'une antenne omnidirectionnelle qui s'approcherait d'autant plus d'un diagramme de rayonnement idéal que son angle de rayonnement \varDelta deviendrait plus ouvert. Avec des angles de rayonnement plus petits que 20°, l'antenne à rayonnement vertical a les propriétés d'une antenne directionnelle, qui deviennent d'autant plus marquées que \varDelta devient plus fermé. Les diagrammes de rayonnement sont symétriques par rapport à des axes $\varphi = 0^\circ$ et $\varphi = 90^\circ$ avec un maximum de même grandeur dans $\varphi \approx 40^\circ$, 140°, 220° et 320°; les minimums les plus accentués se situent à $\varphi = 90^\circ$ et 270°, ceux les moins accentués à $\varphi = 0^\circ$ et 180°.

La valeur médiane de l'intensité de champ au point de réception de toutes les formes possibles de transmission par rapport au grand cercle de la distance de propagation peut être calculée en utilisant les équations (1), (4)...(7), (17), (18), (21) et (22) pour l'antenne en question. Les résultats correspondants, pour une puissance totale rayonnée de $P_o = 1$ kW, sont représentés dans les *figures 9...14*.

Parmi les quatre sortes de transmissions indiquées, celles qui peuvent simultanément entrer en ligne de compte après le coucher du soleil dépendent de l'heure et de la distance de propagation D. Les zones de transmission I...V et l'onde de sol qui apparaît avec les antennes verticales concernent la fréquence de 1562 kHz. La valeur de l'onde de sol a été calculée d'après l'Avis no 368 du CCIR ($\sigma = 3.10^{-3}$ mho/m; $\varepsilon = 4$).

Si l'on prend en considération par exemple une distance de transmission D = 1000 km, on constate que ce point de réception est situé dans la zone V depuis le coucher du soleil pendant environ une heure, cela signifie que pendant ce temps, à ce point, les transmissions 1E et 2E sont possibles. Entre une et trois heures après le coucher du soleil, le même point de réception se situe dans la zone de transmission IV, c'est-à-dire qu'intervient alors, en plus des transmissions 1E et 2E, la transmission 2F. Entre trois et quatre heures après le coucher du soleil, le point de réception se trouve dans la zone III, où les quatre sortes de transmission deviennent possibles simultanément. Au delà de quatre heures après le coucher du soleil, la distance D = 1000 km est dans la zone de transmission II, dans laquelle la transmission 2E fait défaut.

Selon la zone de transmission, l'intensité de champ globale efficace au point de réception se compose de 2 à 5 composantes individuelles, correspondant aux valeurs médianes de l'intensité de champ des ondes d'espace des sortes de transmission intervenant simultanément et en plus de l'intensité de champ de l'onde de sol pour les antennes d'émission verticales. La valeur médiane de l'intensité de champ qui en résulte est définie par la racine de la somme des carrés de chacune des valeurs médianes de l'intensité de champ, c'est-à-dire: Für eine Übertragungsdistanz D = 990 km beispielsweise ergibt die 0,625. λ -Vertikalantenne mit P_o = 1 kW einen Medianwert der Gesamtfeldstärke von 42 dB μ , und zwar von etwa 4 Stunden nach Sonnenuntergang an (Bereich II), wobei die 1E-Komponente mit 41 dB μ dominiert. Ihr folgt die 1F-Komponente mit 34 dB μ und dann die 2F-Komponente mit 14,5 dB μ . Die Steilstrahlantenne (mit φ = 90° bzw. 270°) ergibt für die gleiche Übertragungsdistanz und unter den gleichen leistungsmässigen und zeitlichen Bedingungen eine Gesamtfeldstärke von 17,9 dB μ ; wobei die 2F-Komponente mit 17,2 dB μ dominiert. Ihr folgt die 1F-Komponente mit 9,5 dB μ , während die 1E-Komponente lediglich — 19 dB μ beträgt.

Die Steilstrahlantenne ergibt also in dieser Distanz bei gleicher total abgestrahlter Leistung eine um 24,1 dB geringere Gesamtfeldstärke als die für maximale Bodenwelle optimale $0,625.\lambda$ -Vertikalantenne.

Gerade umgekehrt liegen die Verhältnisse in einer Übertragungsdistanz von etwa 100 km, die schon kurz nach Sonnenuntergang für den Rest der Nacht in den Übertragungsbereich I zu liegen kommt. Als Raumwellen-Übertragungsmöglichkeiten kommen nur die 1F- und 2F-Übertragung in Frage. Mit der 0,625. λ-Vertikalantenne ergibt sich hier eine Gesamtfeldstärke von 35,4 dBµ, wobei die Bodenwelle mit 32,4 dB μ und die 1F-Komponente mit 32,3 dBµ nahezu gleich stark sind, während die 2F-Komponente nur 10,3 dBµ ausmacht. Mit der Steilstrahlantenne ergibt sich hingegen eine Gesamtfeldstärke von 48,2 dBµ, wobei die 1F-Komponente mit 48,1 dBµ die 2F-Komponente von 32,4 dBµ eindeutig dominiert. Die Steilstrahlantenne ergibt in diesem Falle eine um 12,8 dBµ höhere Gesamtfeldstärke, als die 0,625. λ-Vertikalantenne. Dazu ist noch zu bemerken, dass für Abstände der Komponenten-Feldstärkemedianwerte kleiner als etwa 8 dB mit Selektivschwund und entsprechenden Verzerrungen zu rechnen ist, die umso stärker werden, je kleiner der Pegelabstand ist.

4. Die besondern Verhältnisse der Planposition 1562 kHz

Im Plan von Kopenhagen wurde die Frequenz 1562 kHz Portugal, Schweden und der Schweiz zum Betrieb synchronisierter Sendernetze zugeteilt. Für das schweizerische Sendernetz wurde dabei eine totale Senderleistung von maximal 5 kW zugestanden.

Dem Sinne der Plan- und Vertragsbestimmungen entsprechend bezieht sich die Beschränkung der gesamten Senderleistung (5 kW) auf eine Rundstrahlsendeantenne mit Strahlungsmaximum in der Horizontalebene.

Massgebend für die vom schweizerischen Sendernetz in Schweden und in Portugal erzeugten maximal zulässigen

Fig. 16

Gesamtfeldstärke der Steilstrahlantenne; Antennenazimut $\varphi = 90^{\circ}$; f_B = 1562 kHz; P_o = 1 kW

Valeur totale de l'intensité de champ de l'antenne à rayonnement vertical, azimut de l'antenne $\varphi = 90^\circ$, f_B = 1562 kHz; P_o = 1 kW

$$E = \sqrt{E_1^2 + E_2^2 + \dots + E_x^2} \qquad mV/m$$
(28)

$$F = 20 \cdot \log (1000 \cdot E_{m V/m}) dB\mu$$
 (29)

Dans *la figure 15* est représentée l'intensité de champ globale si $P_o = 1$ kW en fonction de la distance de transmission pour chaque zone de transmission, avec une antenne verticale 0,625. λ -, et dans *la figure 16*, avec une antenne à rayonnement vertical de $\varphi = 90^\circ$ et 270°.

Par exemple, pour une distance de transmission D = 990 km, l'antenne verticale 0,625. λ - avec P_o = 1 kW produit une valeur médiane de l'intensité de champ globale de 42 dB μ , à partir de quatre heures après le coucher du soleil (zone II), dans laquelle la composante 1E est dominante avec 41 dB μ . Cette dernière est suivie de la composante 1F avec 34 dB μ et de la composante 2F avec 14,5 dB μ . L'antenne à rayonnement vertical (avec $\varphi = 90^{\circ}$ et 270°) donne pour la même distance de transmission, avec la même puissance et aux mêmes heures, une intensité de champ globale de 17,9 dB μ dans laquelle la composante 2F domine avec 17,2 dB μ . Cette dernière est suivie de la composante 1F avec 9,5 dB μ , tandis que la composante 1E n'atteint que – 19 dB μ .

L'antenne à rayonnement vertical ne procure par conséquent, à cette distance, avec une puissance totale rayonnée égale, qu'une intensité de champ globale de 24,1 dB μ plus faible que l'antenne verticale optimale 0,625. λ - pour l'onde de sol maximum.

Pour une distance de propagation de 100 km, les conditions sont inversées, car peu de temps après le coucher du

Fig. 17

Geographische Lage und optimale Orientierung der 1562-kHz-Steilstrahlantenne Beromünster in Bezug auf die nächstliegenden Versorgungsgebiete der Gleichkanalpartner Schweden und Portugal

Position géographique et orientation optimale de l'antenne à rayonnement vertical pour 1562 kHz de Beromünster par rapport aux régions les plus rapprochées de la Suède et du Portugal qui utilisent le même canal

Störfeldstärken ist demnach vertragsgemäss die von einer Vertikalantenne total abgestrahlte Leistung von 5 kW.

Wird anstelle des über das ganze Land verteilten synchronisierten Sendernetzes mit im gesamten 5 kW Senderleistung ein Einzelsender mit der gleichen Leistung in Beromünster betrieben (was vertragsmässig ohne weiteres zulässig ist), so liegt der Beromünster am nächsten liegende Punkt des schwedischen Territoriums in 55,4° nördlicher Breite und 13,7° östlicher Länge. Der von Beromünster aus in Richtung Lissabon gelegene nächstliegende Punkt des portugiesischen Territoriums liegt in 40,0° nördlicher Breite und 6,9° westlicher Länge.

Azimut und Grosskreisdistanz von Beromünster aus zu den erwähnten Orten in Schweden und Portugal sind aus *Figur 17* ersichtlich.

Wie aus den Figuren 9...16 hervorgeht, liegen die Übertragungsdistanzen D = 990 km (Schweden) und D = 1450 km (Portugal) von Sonnenuntergang an beginnend der Reihe nach in den Übertragungsbereichen V, IV, III und II. In der *Tabelle III* sind für diese beiden Übertragungsdistanzen die mit 5 kW total abgestrahlter Leistung mit den gebräuchsoleil cette distance entre dans la zone de transmission l pour le reste de la nuit. Les possibilités de transmission de l'onde d'espace entrant en considération sont seulement les suivantes: 1F et 2F. Avec l'antenne verticale $0,625.\lambda$, on obtient alors une intensité de champ globale de 35,4 dB μ , l'onde de sol avec 32,4 dB μ et la composante 1F avec 32,3 dBµ étant à peu près également fortes tandis que la composante 2F n'est que de 10,3 dB μ . Avec l'antenne à rayonnement vertical, on a par contre une intensité de champ globale de 48,2 dB μ , la composante 1F avec 48,1 dB μ dominant nettement la composante 2 F avec 32,4 dBµ. L'antenne à rayonnement vertical procure dans ce cas une intensité de champ globale de 12,8 dB μ supérieure à celle de l'antenne verticale 0,625. *l*. Il convient d'ajouter que lorsque l'écart entre les composantes de la valeur médiane de l'intensité de champ est inférieur à environ 8 dB, il faut s'attendre à des évanouissements sélectifs et à des distorsions, devenant d'autant plus marqués que l'écart de niveau diminue.

4. Les conditions particulières de la position 1562 kHz du Plan

Dans le Plan de Copenhague, la fréquence de 1562 kHz a été attribuée au Portugal, à la Suède et à la Suisse pour l'exploitation de réseaux synchronisés. La puissance totale du réseau autorisée pour la Suisse est au maximum de 5 kW.

Dans l'esprit du Plan et des dispositions de l'accord, la limite fixée pour la puissance totale des émetteurs (5 kW) se rapporte à une antenne d'émission omnidirectionnelle, avec un maximum de rayonnement sur un plan horizontal.

Pour la Suède et le Portugal, ce qui est déterminant par rapport au réseau des émetteurs suisses, c'est l'intensité du champ perturbateur, qui ne doit pas dépasser celle résultant de la puissance totale de 5 kW rayonnée par une antenne verticale.

Si, au lieu d'un réseau synchronisé dont les émetteurs seraient disséminés dans tout le pays et dont la puissance totaliserait 5 kW, la Suisse exploitait un seul émetteur de cette puissance à Beromünster (ce qui serait parfaitement légal selon l'accord), le point le plus proche du territoire suédois serait situé à 55,4° de latitude nord et à 13,7° de longitude est. En direction de Lisbonne, le point le plus proche du territoire portugais est situé à 40,0° de latitude nord et à 6,9° de longitude ouest.

L'azimut et le grand cercle par rapport à Beromünster sont représentés dans la *figure 17*.

Comme on peut s'en rendre compte dans les figures 9...16, les distances de transmission D = 990 km (Suède) et D = 1450 km (Portugal) se situent à partir du coucher du soleil successivement dans les zones de transmission V, IV, III et II. Les valeurs médianes de l'intensité de champ Tabelle III

Tableau III

		${\sf F_{skW}}$ in dB μ ${\sf F_{skW}}$ en dB μ			
	Übertragungsbereich Zone de transmission	v	IV	Ш	П
	Simultan auftretende Übertragungsarten Modes de transmission en jeu simultanément	1 × E 2 × E	2 × F 1 × E 2 × E	1 × F 2 × F 1 × E 2 × E	1 × F 2 × F 1 × E
	Zeit in Stunden nach Sonnenuntergang, in der die entsprechenden Bereiche wirksam sind Durées en heures après le coucher du soleil, pendant lesquelles chaque zone entre en considération	00,9	0,93,0	3,04,0	4,0
	0,25. λ -Vertikalantenne 0,25. λ -antenne verticale	46,41	46,52	48,50	48,19
D = 990 km	0,5.λ-Vertikalantenne 0,5.λ-antenne verticale	47,60	47,63	49,15	48,89
	0,625.λ-Vertikalantenne 0,625.λ-antenne verticale	48,21	48,22	48,98	48,82
1450 km	Zeit in Stunden nach Sonnenuntergang, in der die entsprechenden Bereiche wirksam sind Durées en heures après le coucher du soleil, pendant lesquelles chaque zone entre en considération	01,8	1,85,2	5,27,9	7,9
	0,25.λ-Vertikalantenne 0,25.λ-antenne verticale	43,51	43,74	45,96	45,59
	0,5.λ-Vertikalantenne 0,5.λ-antenne verticale	44,99	45,10	47,13	46,79
= D	0,625. <i>λ</i> -Vertikalantenne 0,625. <i>λ</i> -antenne verticale	46,09	46,10	47,77	47,47

lichsten vertikalen Sendeantennen in den einzelnen Übertragungsbereichen auftretenden Medianwerte der Gesamtfeldstärke zusammengestellt.

Da sich im Übertragungsbereich III die Gesamtfeldstärke aus allen vier Übertragungskomponenten zusammensetzt, tritt hier im Laufe der Nacht die höchste Störfeldstärke auf. In 990 km Distanz wird dabei die höchste Störfeldstärke mit einer 0,5.*λ*-Vertikalantenne erzeugt, in 1450 km Distanz hingegen von einer 0,625.*λ*-Vertikalantenne.

Dem Sinne der Vertragsbestimmungen von Kopenhagen entsprechend ist für den von Beromünster aus in 990 km Distanz (Schweden) erzeugte Störfeldstärkemedianwert von 49,15 dB μ gerade noch zulässig; in 1450 km Distanz (Portugal) sind es noch 47,77 dB μ .

Es stellt sich nun die Frage, wie hoch die mit der Steilstrahlantenne abgestrahlte Leistung sein darf, damit die genannten gerade noch zulässigen Störfeldstärkemedianwerte nicht überschritten werden. globale pour une puissance totale de 5 kW rayonnée par des antennes verticales courantes d'émission, se rapportant à ces deux distances de transmission et pour les différentes zones de transmission, figurent dans le *tableau III*.

Comme dans la zone de propagation III l'intensité de champ globale est formée par les composantes des quatre sortes de transmission, la plus forte intensité de champ perturbatrice intervient durant la nuit. A 990 km, la plus forte intensité de champ perturbatrice est produite par une antenne verticale $0,5.\lambda$ et à 1450 km par une antenne verticale $0,625.\lambda$.

Au sens des dispositions de la Convention de Copenhague, la valeur médiane de l'intensité de champ perturbatrice provoquée par Beromünster à la distance de 990 km (Suède), de 49,15 dB μ , est encore tout juste tolérable; à 1450 km de distance (Portugal), elle est encore de 47,77 dB μ .

On peut se demander quelle peut être la puissance rayonnée admissible pour une antenne à rayonnement vertical,

Maximaler Störfeldstärkemedianwert (Gesamtfeldstärke) der 1562-kHz-Steilstrahlantenne in 990 und 1450 km Übertragungsdistanz; $P_{\rm o}=1\ kW$

Valeur maximale de l'intensité du champ perturbateur (intensité de champ totale) de l'antenne à rayonnement vertical, à la distance de transmission de 990 km et à celle de 1450 km; $P_{o} = 1 \text{ kW}$

In *Figur 18* ist der mit der Steilstrahlantenne und 1 kW total abgestrahlter Leistung in 990 km und 1450 km Übertragungsdistanz erzeugte maximale Störfeldstärkemedianwert in Funktion des Antennen-Azimuts φ dargestellt (Übertragungsbereich III).

Wird die Steilstrahlantenne so aufgestellt, dass gemäss den Figuren 17 und 18 die Dipolachsen parallel zur Richtung nach Schweden zu liegen kommen (Antennen-Azimut $\varphi = 90^{\circ}$ stimmt mit dem geographischen Azimut 20,6° überein), so hat das Antennen-Azimut nach Portugal die Grösse $\varphi = 311,4^{\circ}$.

In diesem Fall kann die für die Steilstrahlantenne übertragungsmässig zulässige Höchstleistung wie folgt bestimmt werden:

Höchstzulässiger Störfeldstärkemedianwertin D = 990 km Distanz (Schweden)= 49,15 dB μ Maximale Störfeldstärke der Steilstrahl-

antenne in 990 km Distanz (Schweden) bei 1 kW total abgestrahlter Leistung und $\varphi = 90^{\circ} = 17,94 \text{ dB}\mu$ 10.log (P_o kW) = 31,21 dB

perturbatrice tolérables ne soient pas dépassées. La *figure 18* montre la valeur moyenne de l'intensité de champ perturbatrice produite à 990 km et à 1450 km de

champ perturbatrice produite a 990 km et a 1450 km de distance, pour une puissance rayonnée de 1 kW par une antenne à rayonnement vertical et en fonction de l'azimut de l'antenne φ (zone de transmission III).

pour que les valeurs médianes de l'intensité de champ

Si l'antenne à rayonnement vertical est installée de telle façon que conformément aux figures 17 et 18 les axes de dipôles soient placés parallèlement à la direction de la Suède (azimut de l'antenne $\varphi = 90^{\circ}$ concordant à l'azimut géographique 20,6°), l'azimut de l'antenne en direction du Portugal sera $\varphi = 311,4^{\circ}$.

Dans ce cas, la puissance la plus élevée admissible pour l'antenne à rayonnement vertical pourra être déterminée de la façon suivante:

maximum de la valeur médiane admissible de l'intensité de champ perturbatrice à D = 990 km (Suède)

= 49,15 dB μ

intensité de champ perturbatrice maximale provoquée par l'antenne à rayonnement verti-

= 1321 kW

Gegenüberstellung der bei $f_{\rm B}=1562$ kHz zwei Stunden nach Sonnenuntergang mit vertikaler Sendeantenne (I = 0,625. λ) und Steilstrahlantenne im eigentlichen Bedienungsbereich auftretenden Medianwerte der Nutzfeldstärke bei gleich grosser Störfeldstärke in 990 bzw. 1450 km Übertragungsdistanz. Die gestrichelten Kurven gelten für die Betriebsdaten der Versuchsanlage

Comparaison des valeurs médianes de l'intensité de champ utile produites deux heures après le coucher du soleil avec une antenne d'émission verticale (I = 0,625. λ) et avec une antenne à rayonnement vertical dans la zone desservie, l'intensité du champ perturbateur à 990 km et à 1450 km de distance de propagation demeurant la même. Les courbes pointillées se rapportent aux données d'exploitation de la station d'essai

P_o max (Schweden)

Höchstzulässiger Störfeldstärkemedianwert in D = 1450 km Distanz (Portugal)	= 47,77 dBμ
Maximale Störfeldstärke der Steilstrahl- antenne in 1450 km Distanz (Portugal) bei 1 kW total abgestrahlter Leistung und	
$arphi=$ 311,4 $^{\circ}$	= 16,84 dB μ
10.log (P _o kW) P _o max (Portugal)	= 30,93 dB = 1239 kW

Rechnet man für diese orientierte Steilstrahlantenne mit einer total abgestrahlten Leistung von maximal 1200 kW und für die gemäss Kopenhagen-Plan betriebene 0,625. λ -Vertikalantenne mit 5 kW, so ergeben sich im eigentlichen Bedienungsbereich des Senders zwei Stunden nach Sonnenuntergang die in *Figur 19* dargestellten Nutzfeldstärken.

Aus Figur 19 ist klar ersichtlich, dass mit dem Steilstrahlbetrieb der Bedienungsradius gegenüber dem konventionellen Betrieb mit vertikaler Sendeantenne ganz erheblich erweitert werden kann, ohne die Störfeldstärke in 990 km oder 1450 km Distanz zu erhöhen. Rechnet man mit einer minimalen Nutzfeldstärke von 57 dB μ , so liegt die Grenze des Bedienungsbereiches beim konventionellen Betrieb mit Vertikalantenne (I = 0,625. λ ; P_o = 5 kW) bei etwa 45 km, während sie beim Steilstrahlbetrieb mit P_o = 145 kW je nach Antennenazimut φ zwischen 450 und 570 km variiert. Würde man den Steilstrahlbetrieb mit der maximal zulässigen Leistung von 1200 kW durchführen, so würde die Grenze des Bedienungsbereiches auf über 600 km ausgedehnt.

Literaturverzeichnis

- [1] BBC Research Department. Radio Group. Technical Memorandum No RA-1022
- [2] CCIR «Diagrammes d'antenne». Union internationale des télécommunications. Genève 1953

cal, à 990 km de distance (Suède), pour une		
puissance totale rayonnée de 1 kW et $\varphi=$ 90°	=	17,94 dB μ
10.log (P _o kW)	=	31,21 dB
P _o max (Suède)	=	1321 kW
Maximum de la valeur médiane admissible de		
l'intensité de champ perturbatrice si		
D = 1450 km (Portugal)	=	47,77 dBμ
intensité de champ perturbatrice maximale		
provoquée par l'antenne à rayonnement verti-		
cal, à 1450 km de distance (Portugal), pour		
une puissance rayonnée totale de 1 kW et		
$arphi=$ 311,4 $^{\circ}$	=	16,84 dB μ
10.log (P _o kW)	=	30,93 dB
P _o max (Portugal)	=	1239 kW

Si l'on fait les calculs pour cette antenne à rayonnement vertical orientée comme indiqué ci-dessus, en tenant compte d'une puissance maximale rayonnée de 1200 kW et pour une antenne verticale $0,625.\lambda$ exploitée conformément au Plan de Copenhague avec une puissance de 5 kW, deux heures après le coucher du soleil, on constate dans la zone desservie par l'émetteur les intensités de champ utiles représentées dans la *figure 19*.

On voit clairement dans la figure 19 qu'avec le rayonnement vertical le rayon de la zone desservie peut être sensiblement augmenté par rapport à l'exploitation conventionnelle utilisant une antenne verticale, sans que l'intensité de champ perturbatrice à 990 km ou à 1450 km soit augmentée. Si l'on admet une intensité minimale du champ utile de 57 dB μ . la limite de la zone desservie dans l'exploitation conventionnelle à l'aide d'une antenne verticale ($I = 0,625.\lambda$, $P_o = 5$ kW) se situe environ à 45 km, tandis qu'avec l'exploitation à rayonnement vertical, si $P_o = 145$ kW, selon l'azimut de l'antenne φ , elle varie entre 450 et 570 km. Si l'on utilise dans l'exploitation la puissance maximale admissible de 1200 kW, la limite de la zone desservie s'étend au delà de 600 km.