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Newtonian Approximations to a Zero
of a Function

By Pairir HarTMmAN, Baltimore (U. S. A.)

This note is concerned with conditions required for the convergence
of the Newtonian approximations to a zero of a function, f(x). These
approximations are given by the recursion formula

xn+l=xn—f(xn)/f,(xn)’ 7?/:0,1,2,..., (1)

where x, is arbitrary and f’(x) denotes the derivative of f(x). The
convergence of the numbers (1) to a zero of f(x) is usually proved under
the assumptions that f(x) has a continuous second derivative, that the
derivative f’(x) is bounded away from zero,

| fl(@) | =m>0, (2)

and that z, is chosen sufficiently near a zero of f(x). For such a proof,
see Runge [3]. The “sufficiently near to a zero of f(z)” is usually defined
in terms of upper and lower bounds of |f/(x)| and the least upper
bound of |f”(x) | .

For reasons of local convexity, there is considerable simplification in
case f(x) is a polynomial, cf., e.g., Fricke [1]. It may be noted that, in
this case, the standard requirement that f(x) have no multiple roots
is superfluous.

It is known (cf., e.g., Ostrowski [2]) that the convergence statement
can be so formulated that the existence of a zero of f(x) is not presup-
posed and that the condition of the proximity of z, to a zero can be
replaced by a condition to the effect that f(z,) be sufficiently small.
The “sufficiently small”’ in this case is defined in terms of bounds of the
first and second derivatives of f(x) and the greatest lower bound of
the absolute value of f’(x), which is required to be different from zero.

It will be shown below that the sequence of numbers (1) converges to
& zero of f(x) even if the standard condition involving the existence of
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a second derivative 18 dropped, that is, if it is only assumed that f(z) has
& continuous first derivative satisfying (2), and that z, is chosen suffi-
ciently near a zero of f(x). The ‘“sufficiently near” is defined in terms
of the “modulus of continuity of f’(z)”. Also, this condition on z, can
be transcribed in terms of the smallness of | f(x,)|. Needless to say,
the results obtained for the problem in one dimension can be extended
to higher dimensions without additional effort, so that only first order
partial derivatives are needed for convergence statements.

This raises the question as to the possibility of improving the assump-
tions still further. The existence of a derivative f’(x) must, of course,
be assumed (at least for every x near to, but distinct from, the root) in
order to define the recursion formula (1) at all.

As to the other conditions imposed on f(z), a negative result, (ii)
below, will show that condition (2) cannot be omitted. In other words,
if f(x) is defined and has a continuous derivative on |z |<1 and
if f(0)=0, and f'(x) >0 for = % 0, then the sequence need not
converge for all z, sufficiently near z = 0.

On the other hand, (i) below will show that the continuity of the deri-
vative f/(x) at the zero of f(x) cannot be omitted; that is, if f(x) is
defined and possesses a derivative on |z | <1, and if f(0) =0, and
f'(z) is continuous for all x £ 0 and satisfies 0 <m < f’(x) <M on
| x| =1, then the sequence of numbers (1) need not converge for all
x, sufficiently near = 0.

Thus, in a certain sense, the following theorem is the ‘“best’’:

(I) Let f(x) be defined on | x| <1 and possess a derivative f'(x)
satisfying (2). Let f(0) =0 and f'(x) be continuous at x = 0. Then
the sequence of numbers defined by (1) converges to zero whenever | x,| 8
sufficiently small.

»

Let 0 be arbitrarily chosen in the interval 0 < 6 < 1. In virtue of
the continuity?) of f/(x) at « = 0, there exists a number &> 0 such
that \

| f/(x') — f(2?) | < 6m, whenever |21| <4 and [22|< 45, (3)

1) Professor Ostrowsk: has pointed out to me that the proof of the theorem (I) does
not use fully the assumption that f/(z) is continuous at « = 0 but merely the fact that
the oscillation of f/(z) at « = 0 is less than m, that is, that (3) holds for some pair of
numbers § and &, where 0 << 6 << 1 and & > 0. On the other hand, in the example
constructed to prove (i), the oscillation of f/(x) at x = 0 is exactly m, but the New-
tonian approximations do not converge for all sufficiently small | ]| .
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where m is the positive number occurring in (2). It will be shown that
sequence (1) converges to zero whenever

| % | = 6. (4)
By the mean value theorem,

f(O) zf(xn) - xnf,(x'n) + xn(f,(xn) —f/(én)) ’ (5)
n=20,1,2,..., where £, is a number between 0 and z,; so that, in
particular,

| &al <| 2] . (6)

Dividing (5) by f’(x,), using (1) and the fact that f(0) = 0, one
obtains

Ly = xn(f,(xn) _f,(é.n))/fl(xn)’ n=20,1,2,.... (7)

Placing n =0 in (7), the inequalities (2), (3), (4) and (6) imply
|z, | < 0] x| ; in particular, | z; | =< 6, and so, by induction,

|2, | =0z, | S0 2], n=20,1,.... (8)

This completes the proof of (I).

It may be remarked that, in the standard proofs requiring the exist-
ence of a continuous second derivative, the estimate (8) can be replaced
by

K|z, |/2m< (K| x| /2m)?, n=1,2,..., (9)

where m, as above, is a lower bound for | f/(x) | and K is an upper bound
for |f"(x)|. Actually, the above proof of (8) implies

lxnl—s—lxn—llw(lxn—ll)/m’ n=1’23"'? (10)
where (d) is the modulus of continuity of f/(x) at z = 0, that is,
o(d) =L ub.|f/(22) —f/(2?)] for |a'|<Zd, |x2]|<Z6.

Thus, .if f/(x) satisfies a Lipschitz condition at # = 0 (for instance, if

it is differentiable at x = 0), then there exists a constant €' >0 such
that

w(d)=CJd.
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In this case, (10) becomes
|z, | =C | %,y )% m, n=1,2,...,
or
Cla,|/m< (C|a,||m)?, n=1,2,.... (9 bis)

In order to avoid a condition involving the proximity of x, to a zero
of f(x), one can restate (I) as follows:

(II) Let f(x) be defined for | x| < a and possess a continuous deriva-
twve f'(x) satisfying (2). Let 6 > 0 be such that, for some 6 <1,

| f/ (') — f/(x?) | < O0m whenever |a! — a2]|< 4. (11)

Let x, be any number such that
|f(x) | <dm and |z <a—26. (12)

Then the sequence of numbers (1) determined by this x, converges to a zero
of flz).

It is clear that conditions (12), (2) and the continuity of f’(x) imply
the existence of a zero within a distance é of x,. The proof is now an
immediate consequence of (I).

The two negative results mentioned above will now be set forth.

(i) If f(x), where | x| <1, has the properties that f(0)= 0, that
f(z) is differentiable for | x| < 1, that the derivative f'(x) is continuous
for every x # 0 and is such that there exist constants m, M satisfying

M>f(x) =2m >0, lz|Z1,

then the sequence of numbers (1) need mot converge for all sufficiently small
| %] -

Let 1 < ay <o < --- be a sequence of increasing numbers such that
a,—~1 as n—>oo. Let a, = 2"a2, b, =2"2" n=0,1,2,.... For
| x| =1, define the function f(x) as follows:

f0) =0
fla) = 2m11g? | if a,<z<b,
f@) = —f(—a).

For the moment, f(x) remains undefined if b,,<| 2| <a,.
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Consider the sequence of numbers (1) if x, is chosen on the interval
a,<x=b,. From the case n =0 of (1),

x]_ == xo —_ 2—n+1 xo% / 2—””:”0—% _ - 230 .
But z,= —x, = x,, since f(x)= —f(—x), so that the sequence
defined by (1) is z,, —x,, %,,..., Which does not converge.

It remains to be shown that the definition of f(x) can be extended for

all z in | x| <1, so that f(x) will have the stated properties. First, if
e, =x<b,,
@) =2na
so that
1<fl(x) S oy’ ;
in addition
2= f(2) 2 < 205t

n

The definition of f(x) will be extended in such a way that

f(0) =1im f(z) [ =2, (11)

z->0

and that, for x £ 0, f’(x) exists, is continuous and is not less than 1.

The mean value of f’(z) on the interval b, ,<z=<a,,

(@0 — b)) | /(@) de = (f(@) — b)) | (@ — Brea)

bn+1
is seen to be
2(4a, — 1)/ (40) — 1) ;

and has, therefore, the limit 2 as n — co. Let §,, d,,... be a sequence
of numbers which tends to zero so rapidly that 6,/b,—0 as n— co.
Then a sequence of numbers m,, m,,... can be determined in such a

way that m,—2 4+ 0 as n— oo, and that, if f'(z) is defined to be
the constant m, on the interval b, + ¢, < z=<a, — J, and linear
on the intervals b,,<2<b,,+ 06, a,—06,=x=a,, then the
function f(x), obtained by integration, has the required smoothness.
In the two intervals of length §,, the derivative f’(x) will increase from
1 to m, and decrease from m, to «; ', respectively; while

m, > 2(4a, — 1)/ (402 — 1)
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The existence and continuity of f’(z) for all z £ 0 is clear, as is, also,
the inequality f/(z) = 1. The limit relation (11) follows from m, — 2
and 4,/b,—>0 as m—>o0.

This completes the proof of (i).

(i) If f(x), where |z | <1, has the properties that f(0) = 0, that
f/(x) exists and is continuous for | x| < 1, and that f'(x) >0 if x #0,
then the sequence of numbers (1) need not converge for all sufficiently small
| o] -

Let a, = 242 and b, = 2% forn = 0,1,...,and,for |z | < 1, let

For a moment, f(x) remains undefined for b,,<|z|<a,.

It is clear from the proof in the last example that, if x, is chosen on
the interval a, < x <b,, then the sequence of numbers (1) becomes
x,, — Ly, Xy, .. and is, therefore, divergent.

In order to complete the definition of f(x) with the stated properties,
note that, if ¢, <2 <0,

0<f/(x) = 2—-4n—3x"% < 2-2n—2

and -1
0<<f(z) [ 2t == 2402y % < J-20-1

The mean value of f/(x) on the interval b,,, < x <a, is seen to be
(2——6n—3 —_— 2—6n—-8) / (2—-411,—-2 _ 2—4%—4) — 92—-2n—4 31/3

which has the limit 0 as % — co . The construction may now be carried
out as before ; in this case, m, - + 0 as n— oco.

(Regu le 13 novembre 1947.)
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