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On the use of a complex (Quaternion)
velocity potential in three dimensions

By Alan Rosé, Manchester

The following investigations concern the use of a stream-function
which can be defined for any three-dimensional motion. It appears that
in the case of motion which is axially symmetrical, if we take a set of
rectangular axes OX, OY, OZ and an imaginary fourth axisOïF per-
pendicular to the other three, then in terms of the velocity-potential
0 and the stream-function W we can define a function

0 h

which is a right-regular quaternion function of w + ix + jy -f kz.
The theory is used to détermine the efïect of placing a point-source on

the axis of symmetry of an arbitrary solid of révolution.

Définition: We define the stream-function W(x, y, z, Ç,rj, Ç) of the
pair of points A(x, y, z), B(x + f, y + r\, z -f- f) to be the rate of
flow of fluid across the triangle formed by thèse two points and the origin.
We make the sign convention that if when an observer views the triangle
OAB with AB appearing horizontal, O below AB, B to the right of A,
and the plane of the triangle appearing vertical the flow is towards the
observer, then W is positive.

Y
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Velocity at the point (x,y,z) in terms oî W

We make the convention that ail partial derivatives are considered to
be evaluated at (x, y, z, |, r\, £) (x, y, z, 0, 0, 0).

Lemma: Since we can regard the point (x,y,z) as the point
(x + Ç — Ç9y,z) wehave

W(x, y, z, |, 0, 0) - W(x + i, y, z, -£, 05 0)

Hence, by Taylor'sTheorem, since for ail x,y,z W(x, y,z,0,0,0)=Q

£4 i &

Hence, proceeding to the limit | -> 0 we hâve

dp dx d£

Similarly
d2W _ d*W
drf dy drj

and

dp dzdC
*

Let the components of velocity in directions parallel to OX, OY, OZ be

respectively vx,vy,vz.
We consider the inward rates of flow across the faces of the tetrahedron

ABCO where the coordinates of A, B, G are (x, y, z), (x, y + rj,z),
(x, y,z + £) respectively. Since the algebraic sum of thèse rates of flow
is zéro, we hâve

W(x,y + tj,z,O, —rj,O) + W(x,y,z,0y0,C) + ^P{^,y^ + f ,0,17, — £)

— rate of flow across ABC in positive direction of OX 0.
Hence we hâve by Taylor's Theorem

or more in rj, Ç rate of flow across ^4JS0 in positive direction of OX.
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Hence, by the lemma

Flow across ABC _____ I terms of degree 3 or more
x

dz drj drj 3£ J

in ri, Ç. Hence, dividing by \r\£ and proceeding to the limit r\, Ç -> 0,
wehave

Similarly, by considering outward rates of flow, we hâve

/ a2 W d2XF\
x ~~~

\dy dÇ drjdç)
Hence, by addition

x dzdrj dydÇ

If we take the velocity potential convention that

v —- grad 0

B0 d2 W &
we hâve

dzdrj dydÇ

Similarly

and

4-
dy

[

dxdÇ dzdÇ

~ "

0
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Since ail fonctions occurring so far are indépendant of w, ail partial
dW

derivatives with respect to w are zéro. Hence, if we define ÎP1 -^-r-

\p _ dW
\p _.

dW

arj aç
+ fP% + k*FB to be a right-regular function of w
satisfied.

three of thefour conditions for <P-\- iWx

i% + jy ~\- kz are

Axially symmetrical motion, the fourth regularity condition

We define the vector }P to be the vector whose components at any
point (x, y, z) in directions parallel to OX, OY> OZ respectively, are

dW dW dW
the values of -^r, -5-, ~^r at that point.

oç or\ oÇ

Since the motion is axially symmetrical, the stream-function of any
pair of points in an axial plane is zéro. Hence the vector W at any point
will be perpendicular to the axial plane through that point. Also, in view
of the axial symmetry, ÎPwill hâve the same value at any two points
whose cylindrical coordinates differ only in the value of the angular coor-
dinate. We now consider the intégral JJ S7- ndS where n is the unit
normal vector over the surface ABCDEFGH, where ABCD, EFOH are
portions of axial planes and BCOF, ADHE are portions of the surfaces
of cylinders whose axes are coïncident with the axis of symmetry of the
motion. In view of what we hâve proved about the direction of W, the
contributions of ail parts of the surface otherthan ABCD saidEFGH
will be zéro, and in view of our resuit about cylindrical coordinates the
contributions of thèse two faces to the intégral will be equal and opposite.
Hence the intégral JJ W• ndS over the surface is zéro. Hence the
intégral of div. y7 over the volume of the interior of the surface will be
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zéro by Green's Theorem. Since this is true for ail bodies ABCDEFOH
of this type, wherever situated and however small, the value of div. W

will be zéro everywhere. But since ^— is zéro everywhere, we hâve

dw dx dy dz '

which is the remaining condition required for <P -{- %W1-\- j W^-\- kWz
to be a right-regular function of w + ix + jy + kz.

The Stream-function of a Uniform Stream

We consider a uniform stream moving with velocity V in the positive
direction of the #-axis. The area of the triangle formed by the origin and
the points (x, y, z), (x + f, y + y, z + 0 expressed vectorially is

— £(z, y,z)A(x + |, y + r?,z -f Ç)

i. e.

Hence the stream-function is the scalar product of this vector with the
vector (F, 0, 0) so that we hâve

The complex potential of the motion will therefore be

The condition that î(x, y, z, f, rj9 C) be a stream-function

Let the pseudo-velocity corresponding to f(x, y,z9 Ç,t), Ç) hâve

components vx9 vy, vz, and let the actual stream-function of this motion
be y(*,y,«,f,i?,C). Then

d>(V-f)
dzdv dydç wx "x v

dxdC dzdÇ ' dydÇ dxdrj
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From now on we will choose our axes so that OX is the axis ôf sym*
metry. Since the stream veetor (W) of any point is perpendicular to the
axial plane through that point, we hâve

dW 7f=-f •

Hence, in view of the axial symmetry1)

- yX(x,

so that, writing g for W — /, and i? for x2 + y2 we hâve

X + 2z2-M+X + 2y^=0, y^=0 sothat ^ + i
whence

where A: is a constant. Hence

Tt is usually possible to détermine k by considering the value of W at
infinity.

The stream-fmiction oî a unit point source at the point (a, 0,0)
In view of the axial symmetry, we hâve from the above that W must

be of the form
{rjz -

Since the velocity veetor at (x, y,z) is

y/ x — a

\((x-a)*+y* + z*f*' ((^fl)
we hâve

vj^= l r -x + a
9 dx ((a;_a)2 + y2 + z2)»/»' * (yi + i8«)((a._o)i+î,. + ig.)V.

+ /(y2 + z2)

*) We are assuming hère that/ is also of this form, otherwise it is obviously not a stream-
function.
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where / is an arbitrary function, so that a value of iPwhich on differentia-
tion yields correct values for the y- and z-eomponents of velocity is

(t]Z — Çy) (— x + a)
2)1/2

"

(V2 + z2) ((x - af + 2/2 + *2)

By differentiation it is readily seen that in this way this value of W also

yields the correct value for the #-component of velocity. Hence for some
value of k the correct value of the stream-function is

(rjz __
(y2 + *2) ((* ~ af + y2 + z2)1'2 2/2

The value of k dépends upon whether a is greater or less than 0. We con-
sider the tetrahedron formed by the origin, the points (x, y,z) and

(x + f, y + rj,z + C), and the point (a?, 0,0).

+0

source
XC(x,0,0) O (a,0,0)

We consider the case a>0, and consider ABCO for large négative x.
Since the source is outside the tetrahedron, the algebraic sum of the
rates of flow across the faces of ABCO is zéro. Since ACO, BCO are
portions of axial planes, the rates of flow across thèse faces are zéro. Hence

W(x, y,z,£,rj,Ç) is equal to the rate of flow across the face ABC> But
if we let x->—oo while y and z remain finite, the area of ABC will
remain finite and the velocity at points of ABC will tend to zéro. Hence
W will tend to zéro. Now as x->—oo the above value of W tends to

Hence k — 1. Thus

Zy) l x~a_
« «.v I/o I

«)2 + y2 + *
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Similarly when a > 0

x-a \

When a 0 we hâve a singularity at the origin and so this method
cannot be used. This difficulty can be overcome, however, by an
c - method similar to that of the next two sections.

The stream-fmiction eorresponding to the velocity potential r~n-*Pn(d)

Sinee the motion is axially symmetrical W will be of the form

We consider the figure formed by an isosceles triangle whose equal sides

are equally inclined to the #-axis, the circular arcs, centre 0, joining the
extremities of thèse sides to the #-axis and the portion of spherical
surface determined by them, and the plane portions determjned by thèse
two sides, the arcs and the #-axis.

A

We first consider a velocity potential of the form (r — a)~~n~xPn(0)

where a is small and positive and take (a, 0, 0) as centre of the sphère
while leaving O as a vertex.

Since n
Pn(d)sindd0

is zéro, the algebraic sum of the rates of flow across the faces of OABC
is zéro, and since OAC, OBG are portions of axial planes the rates of
flow across thèse are zéro. When A and B are near together we can iden-

tify the surface ABO with the triangle ABO, so that W(x, y9z,^,rj, C)
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is equal to the rate of flow across the spherical surface ABC. Now since
OA and OB are equal in length and equally inclined to OX, the spherical
angle ACB is equal to _ r

Hence the rate of flow across ABC is2)

va

/
sine - a)« + t +

(— 2 cos 0)

YjZ

(» - a)2 *?> ("

Thus
rjz — Çy

{(x - af

Similarly this holds if a is a little less than 0 However this method
does not apply when a 0, since in this case we hâve a singularity
at the origin. If, however we take the point (€,0,0), where € ^ a, a ^ 0

instead of the origin, as a vertex of the triangle associated with the
définition of W, the value of W for 0 (r — a)~~2 Px (0) will be the same
as before.

(€.0,0)

2) for n 1 ; for other values the method is similar.
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For since e ^ a, the algebraic sum of the rate of outward flow of
fluid across the faces of the tetrahedron OABC is zéro.3)

But as the motion is axially symmetrical the rate of °^f }£ g" S^K)
flow across OBC is equal to the rate of X«d (r!H.SÏÏ fl°w

across ABC, so that the value of W is unaltered if we replace 0 by A.
Hence when o^O we hâve that if e ^ 0 and € ^ a, then

(* - «)2 + 2/2 -

and by continuity, if a 0 then

The boundary conditions satisfled on the surface 0! an obstacle

containing the origin

Since the stream-function of a pair of points on the surface of the
obstacle is small compared with f, ^ and C when f, ^ and f are small
(and is in fact zéro when the body is convex), the tangential components
of the stream-veetor are zéro. (This boundary condition does not apply
to bodies for which lines can be drawn through the origin meeting the
body more than twice.) Hence the stream-veetor is either the null-vector
or else it is along the normal to the surface at the point under considération.

But we ïiave already shown that the stream-veetor is either the
null-vector or else it is perpendicular to the axial plane through the point
under considération. Hence the stream-veetor is the null-vector, i. e. the
boundary conditions are

dr,

3) There may be a singularity at an interior point of OA, but this will hâve no
7T

effect since f Pn(B) sin OdO 0
0
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Regular fonctions assoeiated with motion symmetrical about OX

It has been shown that if f(z) is an analytic function of the quaternion
variable z, then A(J(z)) is a right- and left-regular function of z.

Corresponding to x + iy in two variables, we hâve in four variables
the first degree regular polynomial A(zz), i. e. — 4t(3w + ix + jy
+ Jcz).

For axially symmetrical motions we need functions in which the
coefficients of j and k are in the ratio z: — y, and the coefficient of i is zéro.
As the highest coefficients in the two above cases are 1 and 3 respectively,
and the other coefficients are ail 1, this suggests that a corresponding
function for three real variables may be

2x — jz + ky

This can easily be shown to be, in fact, right-regular.

Corresponding to (x -\- i y)~x or — ^ in two variables we hâve in
x -f- y

four variables A (z-1) or
— é(w — ix — jy — kz)

(w2 + x2 + y2 + z2)2

Since the numerators both hâve 1 for the first coefficient and — 1 for
ail others, and the denominators are of degree 2 and 4 respectively, this
suggests as a corresponding function in three variables

x + jz — ky
(x2 +y2 + z2f*

and this can easily be verified to be right-regular.
Thèse stream-functions are in fact the complex potentials evaluated

above for a uniform stream of velocity (—2, 0, 0) and for the velocity
potential r-2Px(0).

Détermination of the effect on a uniform stream of a spherical obstacle,

by a method analogous to the complex-variable method for the cylinder4)

We consider the sphère x2 + y2 + z2 1 in a stream of velocity
(—2, 0, 0). In the cylindrical case we find that by transforming

int0

4) We are hère considering the case | € | | <* | — | € | > 0

10 Commentarii Mathematici Helvetici



the cylinder is transformée! into a plane surface of finite wûith. Takmg
the correspondis functions of three variables, we find that by trans-
forming

--^ + ^ + ^T7T^ int° U~iv + k"

the sphère *. + y + *• 1 » transformed into that part of the *-axis
for which - f < x <f. For, when «• + y» + # L

O

The boundary conditions are preserved for the same reasons as in the
two dimensional case :

Since the needle-shaped body does not disturb the motion for the new
system of coordinates, we hâve that the complex potential is
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or —
1

so that the velocity potential is

2x H jt- or 2(rcos0 + 4r~2cos0)

Détermination of the effect of placing a point source on the axis of sym-
metry of an arbitrary solid of révolution which can be made to satisfy the

boundary conditions

We choose the axes so that the axis of symmetry is the #-axis and that
the origin is inside the body. We consider only bodies for which this can
be done in such a way that any line through the origin meets the body
exactly twice.

We consider the domain bounded by the hyper-cylinders A and B,
where the axes of the cylinders are the w-axis and their sections by the
prime w 0 are the body and the sphère x2 + y2 + z2 r2 respec-
tively, and r is chosen so that A and B hâve no point in common.

Let the équation of the surface of the body be y2 + z2 f(%), and
the source be of strength m at the point (a, 0, 0).

In view of the boundary conditions, the imaginary parts of the com-
plex potential at points on the boundary of the obstacle are zéro.

We define the complex potential at (x, y,z,w) to be the same as at
(x, y, z, 0), thus making the complex potential right-regular at ail
points outside the body except (a, 0, 0, w). On the surface of A the
real part of the complex potential can be regarded as a function of x
only, since it is independent of w and the motion is axially symmetrical.

Thus we can express 0 as a Fourier séries in x. We assume that ail sin
terms after the first n and ail cos terms after the first n can be neglected.
If the resuit obtained does not confirm this, we must start again, taking
a larger value for n.

We consider the domain determined by A and B in the case when the
w-coordinates of the plane faces of the ends of the cylinders ail four tend
to infinity, one tending to + oo and one to — oo for each cylinder. We
remove from the domain a small hyper-cylinder G whose ends form part
of the same planes as the ends of the other cylinders, and whose axis
has the équations : x — a, y — 0, z 0. Using Fueter's second Intégral

Theorem we calculate the complex potential at ail points of the do-
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main and express its value on the surface of A as a Fourier séries in x to n
sine terms and n cosine ternis. Equating the n sine coefficients and the n
cosine coefficients to the original values, we hâve 2n homogeneous équations

in the 2n original unknown coefficients. Thèse can thereforebe solv-
ed to within a constant factor. This factor can then be determined by
taking into considération the boundary conditions. The intégrais required
for the application of the second Intégral Theorem can be evaluated as
follows. The complex potential tends to zéro as the distance from the
body of the point under considération tends to infinity, so that as the
plane ends of the outermost cylinder are of finite area, their contribution
to the intégral tends to zéro. The contribution of the surface A can be

evaluated in terms of the original unknown coefficients. Since the disturb-
ing terms of the complex potential will be right-regular outside A, we
hâve by Intégral Theorems 1 and 2 that the contribution of that part of
the value on B relating to the undisturbed motion and the contribution
of G will together be the complex-potential of the undisturbed source.
To find the effect of the rest of J3's contribution, we consider the domain
determined by B and a coaxial cylinder of large radius. As before, we let
the lengths of the axes of the cylinders tend to infinity. Let us dénote the
outer surface by D. By the first Intégral Theorem, the contribution of B
is the same as that of D would hâve been. But since the disturbing terms
must be of degree less than — 1 in x, y and z, the contribution of D tends
to zéro as its radius tends to infinity. Hence the contribution of B is zéro.

I should like to express my gratitude to Dr. K. Mahler and Prof. Dr.
R. Fueter for two important suggestions relating to the earlier and latter
parts of this paper respectively.

(Received the llth July 1949.)
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