
A New Curvature Theory for Surfaces in a
Euclidean 4-Space.

Autor(en): Wong, Yung-Chow

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 26 (1952)

Persistenter Link: https://doi.org/10.5169/seals-21272

PDF erstellt am: 18.09.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-21272


À New Curvature Theory
for Surfaces in a Euclidean 4-Space

By Yung-Chow Wong (Hong Kong)

1.1. Introduction
In the study of local properties of surfaces in the Euclidean 4-space i?4,

our attention has so far centred on the Kommerell conic (Kommerell [7],
p. 553) and the curvature ellipse (Schouten-Struik [11], pp. 104—111).
Let £, f ' be the tangent and normal planes of a surface (A) at the point A
Then the Kommerell conic (K) of (A) at A is the locus of the point K of
intersection of £' by the normal planes of (A) consécutive to f '. The
curvature ellipse (G), also lying in £', is obtained as follows. Let J be any
tangent unit vector of (A) at A, and (C) any curve on (A) tangent to J
at A ; then the component in f ' of the curvature vector of (C) at A, with
respect to i?4, dépends only on J (Meusnier's Theorem); the locus of the
end point of this component as J takes on ail the directions in £ is the
curvature ellipse (G). The conics (K) and (G) are polar reciprocal of eack
other with respect to the unit circle in £'.

Analytically, the introduction of (G) into the study of surfaces in i?4

is quite natural because (G) is tied up closely with the two fundamental
forms of (A) on which the Gauss-Codazzi-Rieci équations of (^4) dépend.
Geometrieally, however, the introduction of (K) is more natural. In view
of the fact that the first curvature of a curve is defined to be the rate of
change of the angle between two consécutive tangent Unes, it is rather
surprising that no systematic study has been made of the corresponding
rôle played by the two angles (cf. § 1.4) between a pair of consécutive
tangent planes of a surface in i?4. As far as the author is aware, the only
known results in which thèse two angles play a direct or indirect part
are the conjugate directions, the Kwietniewski-Kommerell-Eisenhart
theorem (§1.3), and the ''principal directions" of Struik [12] on an
m-surfaee in a Riemannian w-space, which for a surface in J?4 are identi-
cal with the principal directions of the function A defined later in § 1.5.

The purpose of this paper is to présent a curvature theory for surfaces
in j?4 based on the two angles between consécutive tangent planes of the
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surface. Let A, A* be two consécutive points, at a distance ds apart, of
the surface (A), and let d\px, df2 be the two angles between the tangent
planes £ and f* of (A) at A and A*, and dénote djds by ds. Then d^,
dstp2 are functions of the point A and the direction AA*, and will be
called the two first curvatures of (^4) at the point A for the direction AA*.

The main results which will be obtained are: (i) some new charaete-
ristic properties for a few well-known spécial types of point of the
surface, such as the minimal point, the focus point, the J?-point, etc. § 1.3),
(ii) the introduction of jR-directions at a point on the surface (§§ 2.3,
3.1) and (iii) the theorem (Corollary 5.1) that a given non-minimal
surface in j£4 is essentially determined by its linear élément and the two
fîrst curvatures.

It is to be pointed out that this new curvature theory also applies to,
and ail the results obtained in this paper, except those in § 5, also hold
for surfaces in a Riemannian 4-space, provided that the angles between
two consécutive tangent planes f, £* at the points A, A* of a surface
are understood to mean the angles between | and the plane obtained by
transporting f* parallelly from A* to A along the arc A*A.

1.2. Curvature ellipse (G). A îamily oî canonical îrames for (A).
(Cf. Wong [13], §§2.1, 2.3.)

Pollowing Boruvka [1], we shall use Cartan's [3, 4] method of moving
frames to find the équations of A frame A — I% (i, j, k 1, 2, 3, 4)
in jR4 is the figure consisting of four mutually orthogonal unit vectors It
attached to a point A. If a family of frames dépends on a number of

parameters, then between two consécutive frames in the family there
are the relations :

dA =cotlt dl% col3l, (1.1)

(summation over repeated indices). Hère the co's are linear difïerential
forms in the parameters, which satisfy œt3 + wn 0 and the équations
of structure for i?4

do)t [cokœkt] dcot) [o)îkœk3] (1.2)

where a d before a difïerential form dénotes exterior differentiation.
Let the point A(u, v), depending on two parameters u, v, describe

a surface {A), on each of whose tangent planes is assigned (in a contin-
uous manner) a positive direction of rotation. We confine ourselves to
a small enough région of the surface so that this orientation of the
surface is possible. Now to each point A(u,v) of (^4), let us attach a frame
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A — Ii so that the unit vectors A — Ix, A — I2 lie in the tangent
plane and the rotation from A — Ix to A — I2 is positive. Then we
hâve a two-parameter family of frames A — /,. for which

o>3 ct>4 0 (1.3)

Exterior differentiation of thèse gives, by (1.2),

tco!ft>13] + O2eo23] 0 [o^o^] + [co2<w24] 0

which are équivalent to

+ bco2 o>14 ~a'a)x + b'co2

co23 =bœ1 + cco2 <y24 b'œx + cfco2

where a, b, c, af, bf, cf are funetions of u, v.
Let (C) be any curve on (^4) through the point A, and let

J It cos (p + I2 sin <p

be the unit tangent vector of (G) at A. Then by (1.1), the component
in the normal plane £' A —/3/4 of the curvature vector dsJ of (C)

at A is

m 9? 1/3 + I-^ cos ç? +-^Lsinç?| /4\ ds ds

which dépends only on J. Hence the équations of the curvature ellipse
(G) referred to the axes A —/3J4 in the normal plane |' are, by (1.4),

xz \ (a -\- c) +1 (# — c) cos 2(p -\- b sin 2ç?

i' — cr) cos 2ç? -j~ 6' sin 2ç>

It is obvious that for a surface (A) in jB4 there are infinitely many
families of frames A — Ii satisfying the conditions (1.3). The following
theorem establishes the existence of a particular one of such families,
called a family of canonicalframes, which will be used exclusively in the
rest of the paper.

Theorem 1.1. Given any surface {A) in iî4, there exists a family of
canonical frames A —It defined over (A) smh that

(oz eo4 0 co13 amx cou af(ot + bfco2

ct>23 cco2 w24 bf(a1 + a1 (o2

and

\{a—c) >6; >0 (1.7)
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The équations of (G), referred to the axes A — /3/4, are then

(a— c)eos2<p

Ae centre o/ (G) is at the point {| (a + c), a'} and the major and
minor semi-axes of (G) are of lengths \ (a — c), 6', respectively.

Proof. To arrive at (1.5), we hâve chosen Il9 I2 to lie in the tangent
plane | in an assigned order (and consequently, /3, /4 lie in the normal
plane |'). We first prove the theorem in the gênerai case when (G) is not
a circle nor a line segment. As the direction J rotâtes from Ix in the
positive direction, <p increases from 0, and the corresponding point
G{x*{ty)> #4(9)} describes (G) in a direction which we take to be the
positive direction of (G). Let C be the centre and Gx, 6?2, G[, Gf2 be the
four vertices of (G) in the order in which they are encountered when we
describe (G) in the positive direction starting out from a vertex Gt on
the major axis of (G). Now in f, take A —/3 parallel to CGX, A —J4
parallel to OC?2. In £, take A — Ix, A — /2 to be the directions
corresponding, by (1.5), to the vertices G1,Gf1, respectively. Then since the
coordinates of O1 (9? 0) and C are Ox(a9ar)9 C {| (a + c),\ (a' + c')},
we hâve a' =-| {a' + c'), a>\ (a + c). Therefore, a' —c' =0 and
a — c > 0. Evidently, the length of the major semi-axis of (G) is

a — -| (a + c) | (a — c). Moreover, at Gj (99 0), we hâve dx^jdy 0,
dxJd<p>0. Therefore, 6=0, 6'>0.

Since now the équations of (G) are (1.8), the q> for 6?2 is the smallest
value of <p satisfying

\ (a + c) +\(a —c) cos 2<p xz =| {a + c) i. e. cos 2ç> 0

Therefore, q> —— for (?2, whose coordinates are consequently

The length of the minor semi-axis of (G) being a' -\- b' —af =bf>0,
we hâve that \ (a — c)>&'>0. This finishes the proof of the theorem
for the gênerai case.

To complète the proof, we need only observe that the cases where (G)
is a circle or a line segment correspond to the cases \ (a — c) bf or
6' 0, respectively. In the case where {G) is a circle, we shail always
take A —/, ihrough the centre of (G) so that in (1.6) and (1.8) a' =0.

For a given surface, the question as to how far the family of canonical
frames is determined can easily be settled but is of no importance to us.
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1.3. Spécial types of point on a surface in R4

There are certain spécial types of point on a surface in 2?4 which we
shall meet frequently in our later work. In this section the définitions
and the most important of the known properties of thèse spécial types
of point are given. The relations in a, c, a', bf foliowing each définition
are the conditions for a point of the surface to be of this particular type
when the surface is referred to a family of canonical frames.

(i) Minimal point is a point A at which the curvature ellipse (G) of (A)
has its centre at A (a + c a' 0). Eisenhart [5] proved that (^4) is

a minimal (in area) surface if and only if every point of (A) is a minimal
point. A minimal point is said to be gênerai if it is not an J?-point (6' ^ a,
see (iii) below).

(ii) Circle point is a point at which the (G) of (^4) is a circle {a' 0,

\{a — c) b'). Axial point is a spécial circle point at which the circle
(G) reduces to a point {a' bf 0, a c). An axial point A is said
to be spécial if the (G) at A reduces to the point A (a 0). It is easy
to show that a surface in i?4 is a sphère (a plane) in an Rz if and only if
every point of it is a non-special (spécial) axial point.

(iii) R-point is both a minimal point and circle point {a' 0, b' a
—c). A surface is called an R-surface if ail its points are iî-points.

The Kwietniewski-Kommerell-Eisenhart theorem [8, 7, 5] states that
the tangent planes of (^4) are ail isocline to one another (cf. § 1.4) if and
only if (-4) is an R-surface. R-surface has also been studied by Boruvka [1 ]
and the author (Wong [13]).

(iv) Focus point is a point A at which (G) has a focus at A (a' bf 2

-f- ac 0). Calapso [2] proved that if every point of (^4) is a focus

point, then the conjugate lines on (^4) are geodesics of (^4). The converse
is not always true.

(v) Line-segment point is a point at which (G) dégénérâtes into a line
segment (b1 0). Perepelkine [10] called such point "semi-umbilical"
point. Fabricius-Bjerre [6] prove that (A) has no normal torsion if and
only if every point of (^4) is a line-segment point.

1.4. Angles between two consécutive planes in it4

In this section we give some formulas and définitions which will be
needed in our later work. While the theory of angles between two planes
in JK4 is classic (see, for example, Manning [9]), the formulas given hère

are believed to be new.
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Let A — I,, A* — /* be two consécutive frames connected by

dA=A*-A =0.,/, dI,^I*-It =»„/,, (1.9)

where the co's are infinitesimals, and eonsider the consécutive planes
I a —ixi2, i* -4* —i*Jt • Then tt is easy to show that the
angle efy between the direction J(0) i^ cos 6 + /2 sin 0 in | and its
projection in £* is given by

(sin dtp)2 (œ>l3 + g>J4) cos2 6 + 2(co13co23 + o>14co24) sin 0 cos 0

(1.10)

and that the two stationary values of (sin d\p)% are:

(sin dy>t

(sin dip2 *
• (î.n)

The angles dyl, dy>2, thus determined except for signs, are called the
two angles between the planes f, £*. The two directions J(dt), J(62)
in | giving thèse angles dy)x, dxp2 will be called the angle directions of £

with respect to £*. It follows at once from (1.10) that 0l9 02 are the roots
of the équation

tan 20 -X 1S
888_ 74 2

2 (1.12)

which show that the two angle directions are mutually orthogonal.
The planes £ and £* are said to be isocline to each other if the dtp given

by (1.10) is independent of 0. (This relation between two planes is sym-
metrical.) Obviously, a necessary and sufficient condition for this to be

the case is that
2 | 2 2 [ 2 | r\ /-t 1 Q\

which are équivalent to

o)24=ea)13, co14=—eœ23 (e ±1) (1.13')

The bivaluedness of e indicates that two planes can be isocline to each
other in one or the other of two sensés. Moreover, it follows from (1.12)
and (1.13) that two consécutive planes £, £* are isocline to each other if and

only if the angle directions of one with respect to the other are indeterminate.
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1.5. Fimdamental formulas

Let us define for a surface {A) in J?4 the foliowing three functions:

which, like the two first eurvatures ds^i> d8y)2 of (.4) defined in § 1.1,
are functions of the point A and the direction AA* of (A) at JL

If we refer (^4) to a family of canonical frames, and apply the results
of the preceding section by regarding the planes f, £* as the tangent
planes of (^4) at the consécutive points A, A*, then on account of (1.11),
the functions X, jll, ve can be expressed in terms of the co's as follows:

(1.15)
(t»14 + eco23)2}/(ds)2 (e ±1)

where (ds)2 col + col. ^ ^s ^° ^e noted that by omitting the ambi-
guous sign in the expression for ju, we hâve partially removed the
arbitrariness of the signs of ds%p1, dsy)2. ^^

To indicate clearly that ^4*, |* dépend on the length ds AA*, and
the angle <p <£ ^4/, J[^4* Arc tan coj^, we sometimes write them
as A*{<p,ds), Ç*(cp,ds). Now using (1.6) in (1.12) and (1.15) and

writing cos (p, sin <p for cojds, cojds, we hâve the following explicit
formulas for tan 20, À, \x, ve for the direction <p (at the point A):

tan 20lœ) - 2{2a6 + (a + 6 + ac)sin2y}tan 2^(9?) " "^ - c2 + {a2 + c2 + 2(a'« - &'*)} cos 27 ' (1'16)

X(<p) =|(a2+c2)+ a/2+6/2 + |(a2 —c2)cos2ç) + 2a/6/sin2^ (1.17)

=i(a — c)6'+4(a + c)b'cos 2y +|(a— c)a'sin2ç? (1.18)

+ c2) + «/2 + b'*-eb'(a-c)
— c — 2e6;) {|(a + c)cos2ç> — 6a'sin2^} (1.19)

Thèse formulas are fundamental as most of our results will be derived
from them.

2.1. Angle directions at a point on a surface for a given direction

From (1.16) it follows that to every direction <p at a point A of a
surface (A) in -R4, there correspond two mutually orthogonal directions 0,

0 + — which are the limiting positions of the angle directions in the
2
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tangent plane | of (A) at A with respect to its consécutive tangent plane
£*(<p, ds) as ds approaches zéro, the <p being kept fixed. We shall call

0,0 + — the angle directions of (A) at A for the direction (p. Conversely,

given any pair of mutually orthogonal directions 6, 6 -{--—, there exist

in gênerai two andonly twodirections yx, q>2 suchthat 6, 6 -\- -— are the
2

angle directions of (A) at A for each of the directions <pl9 ç>2- We shall
sometimes refer to them as the directions of (A)at A giving rise to the angle

directions 6,6 + —

We recall that the dip given by (1.10) is the angle that a direction 6

in the plane £ makes with its projection on the consécutive plane |*.
For our case where f, f* |*(<p, ds) are two consécutive tangent planes
of the surface (A), we hâve, on using (1.6) in (1.10) and writing cos 6,
sin (p for cojds, cojds, that

(dsxp)2 {(a2 + a'2) cos2 cp + 2a'V cos <p sin <p + 6/2 sin2 6} cos2 6

+ {b'2 cos2 cp + 2a'b' cos <p sin <p + (c2 + a/2) sin2 <p) sin2 0

The expression on the right is symmetric in (p and 6. Hence

Theorem 2.1. At a point A of a surface (A) in i?4, the angle between a
direction 6 of (A) and the tangent plane f*(<p, ds) is equal to the angle
between the direction (p of (A) and the tangent plane £*(0, ds).

By définition, among ail the directions r in the tangent plane |, the

angle directions 6, 6 H of | with respect to the tangent plane |* (cp, ds)

make stationary angles with £*(<p, ds). Therefore, using Theorem 2.1,
we hâve that among ail the tangent planes £* (r, ds), where t is variable

and ds is fixed, the two tangent planes £*(0, ds) and f* l& + —,
make stationary angles with the direction q>. Hence

Theorem 2.2. For a surface (A) in RA, the angle directions 6,6 + — in

the tangent plane £ at any point A with respect to the tangent plane |* (cp, ds)

are characterized by the property that among ail the tangent planes of (A)
whose points of contact are at equal small distance ds from A, the two in the

directions 6,6 + — make stationary angles with the direction <p.
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Corollary 2.2. // |*(ç>, ds) is isocline to f, then the direction <p makes
the same angle with ail the tangent planes of (A) whose points of contact are
at equal small distance ds from A, and conversély.

It is to be pointed out that in thèse theorems and in what follows,
"equal (or the same)" means "equal (or the same) when the second and

higher orders of the infinitésimal ds are neglected".

2.2. Directions corresponding to the vertices of (G).
Let us refer a surface (^4) to a family of canonical frames (and we shall

do this throughout the rest of this paper without spécifie mentioning).

Then the directions y 0, —- ; <p —, -——, which correspond, by (1.8),
2* 4 4

to the two pairs of opposite vertices of (0), will appear frequently in our
later work. It is therefore interesting that we hâve in the following theo-
rem a characteristic property for thèse directions in terms of the angle
directions alone.

Theorem 2.3. On a surface in i?4, the directions 6,6 + — at a point

A correspond to a pair of opposite vertices of the curvature ellipse at A if
and only if thèse directions hâve the same angle bisectors as the two directions

that give rise to the angle directions 6,6 +-—
z

Proof. The condition for the directions 6,6+— to hâve the same
angle bisectors as the directions <pt, cp2 is that

If we double this and take the tangent of both sides, the resuit is

1 — mxm% tan 26 ' '

where mx tan q>l9 m2 tan ç>2.

If 6,6 + — are the angle directions for the directions <p1} cp2, the ml9

m2 are the two roots for m tan <p of (1.16), which is now written as

(oc' + y'm2) tan 20 — (oc + 2fim + ym2) 0 (2.2)
where

y'_«' =_{a2 + c2 + 2(a'«-6'«)}
y -oc =0 20 =2(a'2 + b'* + ac) K''
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Consequently, équation (2.1) becomes

^ L_ (24)(/ — <%') tan 20 tan 20 ' v ' '

To solve this équation for 0, we observe first that by (2.3) the condition

2/3 + y' — <xr 0 reduces to 46'2 — (a —¦ c)2 0, and is there-
fore the condition for the curvature ellipse (G) to be a circle.

If (G) is not a circle, équation (2.4) can only be satisfied by 0 0, — ;

or 0 —, —-, which are the directions corresponding to the two pairs

of opposite vertices of (G).
If (G) is a circle, équation (2.4) is satisfied by every 0. But then every

point of (G) is a vertex. Hence our theorem is completely proved.

2.3. Jt-directions. Characteristic properties of the focus point, a spécial
line-segment point, and the A-point.

On a surface (^4) in i?4, a direction AA* from the point A to a consécutive

point A* will be called an R-direction of (A) at A if the tangent
plane |* at ^4* is isocline to the tangent plane f at A. Two i2-directions
AA* AA* of (A) a>t A (if they exist) are said to be of the same or opposite
type according as the tangent planes |x* |* at A*, A*, respectively, are
isocline to f in the same or opposite sensé.

We observe that the statements at the end of § 1.4 and in Corollary 2.2
are two characteristic properties of -R-direction.

We shall now prove the following theorem.

Theorem 2.4. For a surface (A) in i?4, a necessary and sufficient
condition for ail the directions of (A) at a point A to give rise to a common pair
of angle directions is that A be one of the following types of point : (i) focus
point, (ii) a point A at which the curvature ellipse (G) is a Une segment ending
at A, (in) a point A at which (G) is a Une segment subtending a right angle
at A, and (iv) an R-point. At a point of the type (i), (ii) or (iii), there exist,
respectively, no (real) R-direction, one R-direction or two R-directions; ail
other directions give rise to a common pair of determinate angle directions,
which correspond to the two end points of the major axis of (G). At an
R-point, every direction is an R-direction.

Proof. At a point Aoi {A), ail directions of (A) give rise to a common
pair of angle directions if and only if the right-hand member of (1.16)
has the same value for ail <p. Therefore, this situation can arise only in
one of the following three ways :

11 Commentarii Mathematici Helvetici * " *



a2—c2^0, a'2+6'2+ac 0, a2+c2+2(a'2—6'2) 0; (2.6)

a2_c2=0) aa + c2 + 2(a/2 — 6'2) =0; (2.7)

aA6'=0, a'2 + 6'2 + ac 0 (2.8)

To each of thèse sets of équations, the inequality (1.7), namely,

i(a— c)>6'>0 (2.9)
must be added.

Confining ourselves to real values only, simple arguments will show
that (2.6) is impossible and that (2.7) is included in (2.8).

For (2.8), three cases arise according as 1) a' 0, bf ^ 0, 2) a1 ^ 0,
V 0, 3) a' =bf 0.

Case 1. a' 0, 6; =£0. Then 6'2 + ac =0. By (2.9) we hâve

| (a —c) ^ 6'>0. Therefore, ^4 is a focus point, and équations (1.16)
reduces to

tan 20 =-.—¦— ^ ^-¥-v(a + c) (a cos2 y — c sin2 ç>)

If a-f c^0, J. is not an iî-point. Then since ac —6/2<0, there
are two and only two imaginary directions à cos2 cp — c sin2 q> 0

giving indeterminate 0. AU real directions give rise to the same deter-

minate pair of angle directions 0 0,—-, which correspond to the extre-
mities of the major axis of (G).

If a + o 0, A is an 12-point. In this case, the angle directions for
every direction are indeterminate.

Case 2. 6/ 0, af ^ 0. Then a'2 + ac 0. Since by (2.9) a—c > 0,
we must hâve ac — a'2<0, a>c. Therefore, the (G) at .4 is a Une

segment subtending a right angle at A, and équation (1.16) reduces to

0
tan 20

(a — c) (a cos2 9? + c sin2

Hence there are two and only two (real) directions cp — ±Arc tan ]/—ajc
giving rise to indeterminate 0. From the équations of (G)

xz a cos2 <p -\- c sin2 cp, #4 a'

it follows that thèse two directions both correspond to the foot of the
perpendicular from A to the line segment (G) and therefore are the directions

correspondingto the smallest normal curvature at A. Ail the direc-

162



tions other than thèse two give rise to the same determinate pair of

angle directions 0 0,—, which correspond to the two end points
of {G).

Case 3. a1 b' 0. Then ac 0. Since a — c > 0 by (2.9), we
hâve two subcases according as a > 0, e 0 or a c 0.

If a>0, c 0, the (6?) at A is a line segment ending at A, and
équations (1.16) reduces to tan 20 =0/a2eos29?. Therefore, there is

one and only one real direction <p — giving rise to indeterminate 6.

This direction corresponds to the end point A of the line segment Ail

other directions give rise to the same pair of angle directions 0 0,—

If a c 0, the (6?) at A is the point A. Every direction gives rise
to indeterminate angle directions.

Thus our theorem is proved.

3. Existence oî Jt-directions

In the last section we came across some results concerning the i?-direc-
tions. In this section we shall study the iî-directions directly by regard-
ing them as the real zéro-directions of the invariant ve (cf. (1.19)):

ve | (a2 + c2) + a/2 + b'*—eb'{a—c)
+ (a — c — 2eb'){\{a + c)cos2<p — eafsm2<p} (3.1)

where e is -f 1 or — 1.

It is easy to show that the zéro-directions of ve are given by

tan <p'e \ _ —g'{2b' — e{a — c)} ± ]/- 1 {a'2 + (a — eb')(c + eb')}
a'* + (c + eb')*

Therefore, each ve has two zéro-directions, which are in gênerai distinct
and imaginary. But when the two zéro-directions of ve coincide, they
coincide in one (real) iî-direction <pre qfre). The condition for this is

a'2 + (a_eft/)(c + ebf) =0
that is,

a'*_ô'2_j_ac + 6ft/(a_c) =o (3.3)

We remember that \(a —c) and b1 are the lengths of the semi-axes
of (0). Also, as a conséquence of the Gauss équation for the surface (A),
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a'2 —b'2 + ac is equal to the Gaussian curvature K of (A) (cf. Wong
[13], formula (3.6) and Theorem 2.2). Therefore, a géométrie interprétation

of (3.3) is

(Power of A with respect to the director circle of (G) at A)
(Gaussian curvature of (A) at A) (3.4)

- — (Areaof (G))
Hence n

Theorem 3.1. At a point A on a surface (A) in Ré, there exista in
gênerai no B-direction. There exists an B-direction if and only if the area
of the curvature ellipse (G) at A is equal to \n Urnes the numerical value of
the Gaussian curvature of (A) at A.

Let us suppose that there exist at A two iî-directions of the same type.
Then for e + 1 or —1, (3.3) holds and furthermore, the right hand
member of (3.2) is indeterminate. Therefore, we hâve

a'* + {a—eb')(c + eb') af{2b' — e(a — c)} =a'2 + (c + eb')2 0

that is,
af c + ebf 0

But then ve J(a —eb')(l + cos 2ç>), and it has to be zéro for two
directions. Therefore, a —eb' 0, so that A is an jB-point (and by
(1.7), e 1). The converse is obvious. Hence

Theorem 3.2. 1/ there exist at A two distinct B-directions of the same

type, then A is an B-point. Conversdy, at an B-point of (A), ail directions

of (A) are B-directions of the same type.

Let us now suppose that there exist at A two JS-directions, one of
each type. Then (3.3) holds for both values of e, so that

a'2_6'2 + ac =o } b'{a— c) =0
Since \(a —c) ^ br ^ 0 (cf. (1.7)), the above équations are équivalent

to b' 0, a'2 + ac 0. Therefore, the (G) at A is a Une segment
subtending a right angle at A. In this case, it follows from (3.2) that
the zéro direction of ve is given by tan (pre —ea'jc or is indeterminate
according as a — c>0 or 0. In the latter case, (6?) is the point A.

Suppose that a —c>0, then the two zéro-directions <pfe (e ±1)
coincide if and only if a1 =0 or c =0. If a1 =0, then a 0, c>0,
and (G) is a line segment ending at A, in which case, the two zero-direc-
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tions coincide in the direction q> 0. Using a1 b1 a 0 in (1.17)
and (1.18), we see that for the direction <p 0, both A and fi are zéro,
i. e. d9\px da^2 ^ 0« Therefore, the tangent plane of (^4) at a point -4*
consécutive to Ain the direction ç> 0 is parallel to the tangent plane

of (A) at A (to within infinitesimals of higher order than ds AA*).
The case c 0 is geometrically the same as the case a' — 0. Hence

Theorem 3.3. There exist at A two and only two R-directions of différent

types if and only if the (G) at A is a Une segment svbtending a right
angle at A. When two such R-directions exist, they are equally inclined to
the two (mutually orthogonal) directions corresponding to the extremities of
the Une segment (0). In particular, thèse two R-directions coincide if and

only if the Une segment (G) has an end point at A ; in this case, the two
R-directions coincide in the direction AA* corresponding to the end point A
of (G), and the tangent plane at A* is parallel to that at A (to within infinitesimals

of higher order than ds AA*).

4.1. Directions for which A or // has the same value

From (1.17), namely,

|(a2 + c2) +a'2 + &'2+|(a2— c2)cos2ç> + 2a/6/sin2<p, (4.1)

it follows easily that A(ç>x) A(ç>2) if and only if the directions <px, <p2

satisfy the équation

Therefore, in particular, the directions giving stationary values to X (<p),

i. e. the (Struik) principal directions of A(ç>), are given by

4a'6'

For fi((p) the équations corresponding to (4.1)—(4.3) are

=|(a — c)bf +\(a + c)b' cos2<p +J(a — c) a' sin 2<p (4.4)

A conséquence of the preceding équations is
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Theorem 4.1. At a point on a surface in J24, the two principal directions

of A (9?) {or /u>((p)} are mutually orthogonal. And A (9^) A(ç>2)

{or ju>((fi) — ^(çj2)} if and only if the directions cpx, <p2 are equally inclined
to the principal directions of A(9?) {or jbt(<p)}.

From (1.16) it is easy to show that the pair of directions giving rise

to the angle directions 6,6 + — are mutually orthogonal if and only if
Là

tan 26 =éa'br/(a2—c2). Hence, comparing this with (4.3), we hâve

Theorem 4.2. At a point on a surface in i?4, there are in gênerai two
and only mutually orthogonal directions giving rise to the same pair of angle
directions. The angle directions for this pair of mutually orthogonal directions

are the principal directions of A (<p).

4.2. Characteristic properties 0! minimal point and axial point
The following facts, which are évident from the définitions (1.14) of

A(<p) and ju(q>), will be found useful.

// A (9^) A(ç?2) and (Jt(q>i) /*(<p2)> ^en ^e values of d8rpl} d8y>2

for the direction (px are equal to those for the direction <p2, and conversely.
In particular, if A (9?), [à, (9?) are both independent of ç>, so also are d%yx,

d8y)2, and conversely.
Now it follows from (4.2) and (4.5) that

éa'b' _a'(a-c)
a*-c* bf(a + c)

K }

is the condition for the existence of a pair (and therefore, of infinitely
many pairs) of directions 9^, 9?2, such that A(ç?1) A(ç>2) and ^((px)

fx((p2) hold at the same time.
If neither side of équation (4.7) is indeterminate, the équation can be

satisfied only in one of the following three ways: a' =0, or a + c =0,
or (a — c)2 46'2. If a' 0, the major axis of (0) passes through A,
and 9?! + <p2 0. If a + c — 0, the minor axis of (G) passes through

A, and ç?x + 9?2 —. If (a — c)2 46'2, (G) is a circle, in which case

we may suppose a1 0 (cf. end of § 1.2). Therefore, this case is included
in the first case.

If both sides of (4.7) are indeterminate, we hâve

a + c =a' =0 (4.8)
or

a— c =6' =0 (4.9)
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which are respectively the conditions for the point A to be minimal or
axial.

Since in ail cases, an axis of (G) passes through A, we hâve

Theorem 4.3. In order that there may exist at a point A of a surface
(A) in J?4 a pair of directions çpx, <p2 such that the angles between the tangent
plane £ of (A) at A and the consécutive tangent plane £*{<Pi, ds) are equal
to those between | and the consécutive tangent plane !*(<p2> ds), it is neces-

sary that an axis of the (G) at A passes through A. Conversely, if an axis of
the (G) at A passes through A, then any pair of directions equally inclined
to the two mutually orthogonal directions corresponding to the extremities of
this axis of (G) has the above-mentioned property.

It follows from (4.2), (4.5) that A(9?), fx{(p) are both indépendant of
q> if and only if (4.8) or (4.9) is satisfied. This can also be proved directly
from (4.1) and (4.4). Hence we hâve the foliowing characteristic
property of the minimal and the axial points :

Theorem 4.4. A necessary and sufficient condition for a point A of a

surface (A) in Ré to be minimal or axial is that the two first curvatures
dsy>i > d8xp2 of (A) at A are both independent of the direction at A, i. e. that
the tangent plane f of (A) at A makes the same angles with ail the consécutive

tangent planes £*((p,ds) whose points of contact are at equal small
distances ds from A. At a minimal point, the two first curvatures of (A) are

numerically equal to the lengths of the semi-axes of (G). At an axial point,
one of the two first curvatures is zéro, and the other is numerically equal to
the distance of the point (G) from A.

The last part of this theorem follows from (4.1) and (4.4), which give,
for a minimal point,

=abr

and for an axial point,

=0
The following theorem may be considered as a companion for Theorem

4.4:

Theorem 4.5. At a point A of a surface (A) in jR4, dstpx + dsrp2 has

the same value for ail the directions of (A)at A if and only if A is a minimal
or an axial point. At a point A of {A), d^ — dsy>2 has the same value for
ail the directions of {A) at A if and only if A is a minimal point or a circle
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point (the latter inclvding the axial point as spécial case). At a circle point,
dstpx — d8y)2 is numerically eqval to the distance from A to the centre of (G).

Proof. From (3.1) and (1.7), it foUows that v_x is independent of q>

if and only if (4.8) or (4.9) holds; and that v+1 is independent of tp if
and only if (4.8) or a —• c 26' holds. In the last case, where (G) is a
eirele, we may suppose a1 0 so that v+1 {|(a + c)}2. This proves
the theorem.

Another characteristic property of a minimal or an axial point is

given in the following theorem.

Theorem 4.6. At a point A on a surface (A) in i?4, (i) the reflection of
any direction <p of (A) about the two mutually orthogonal directions corre-
sponding to the extremities of the major axis of (G) is an angle direction of
(A) for the direction cp if and only if A is a gênerai minimal point ; and (ii)
any direction q> of (A) is itself an angle direction of (A) for the direction <p if
and only if A is a non-special axial point.

Proof. For a gênerai minimal point, or for a non-special axial point,
we hâve, respectively, (4.8) and b' ^ a, or (4.9) and a ^ 0. There-
fore, équation (1.16) becomes tan 26 =p tan 2y, which proves the
necessity of the conditions. The sufficiency of the conditions can be
proved by demanding that the right member of (1.16) be equal to
^= tan 2 <p identically in <p.

5. Isometric correspondenee o! surfaces in JR4 preserving angles between
consécutive tangent planes

Let the surfaces (A), (A), described by the points A(u,v), A{u, v),
where u, v; û,v are parameters, be in such a correspondenee. Then û,
v are some fonctions of u, v. We choose the orientations in the tangent
planes of (A), (A) so that they agrée with those induced by the isometric
correspondenee, and then refer (A), (A) to families of canonical frames.
Take any pair of corresponding points Ao, Ao, and displace (A) so that
Ao coincides with Ao, and the oriented plane Ao — IXI2 with the orient-
ed plane Ao — Ix I%. Then the normal planes Ao — 73 /4, Ao — 73 /4
coincide. Rotate Zo ¦— /3 in the plane Ao — /3/4 about Ao Ao
until Ao — J3 coincides with Ao — J3. Then Ao -— /4 either coincides
with or is opposite to Ao — J4. It suffices to consider only the former
case as the latter can be reduced to it by a reflection about the 3-plane
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Since (A), (A) are in isometric correspondance in which the orientations

A — IXI2, A — ItI2 in the corresponding tangent planes
correspond, we hâve

eux œ1 cos t — œ2 sin t
ô>

2 œ1 sin t + oj2 cos £

ft'2_^/2_^c=Z=JK:=6/2-a/2-ac (5.2)

where t is some function of u, v, and K is the Gaussian curvature of
(cf. Wong [13], formula (3.6)).

From (1.14) and (1.15) it foliows that the condition for the correspon-
dence to préserve angles between consécutive tangent planes is that

be satisfied at ail corresponding points and for ail corresponding directions

at the corresponding points. Since (A), (A) are referred to families
of canonical frames, we hâve

co13 aœx a>14 ar^ + bco2

co23 cco2 co24k =brw1 + a' co2

b'co2

|(a-c) >6r >0 (5.5)

and similar barred équations (5.4), (5.5) for (^4).

A rather lengthy but elementary discussion of the System of équations
(5.1) — (5.5), (5.4) and (5.5), which will be omitted hère, will show
that either the surfaces (^4), (^4) are congruent, or we hâve

b' =bf, â—~c=a — c, âf =af =0, i + c=a + c=0, sin2^^0,
which characterize a pair of minimal surfaces with equal curvature
ellipses at corresponding points. Hence

Theorem 5.1. In order that there may exist, between two surfaces (A),
(A) in jR4, an isometric correspondent preserving angles between consécutive

tangent planes, it is necessary and sufficient that either (A), (A) are
obtainable from each other by a displacement or a displacement together
with reflection about a S-plane, or (A), (A) are minimal surfaces with equal
curvature ellipses at corresponding points.

Minimal surfaces in J24 in isometric correspondent and with equal
curvature ellipses at corresponding points hâve been considered before
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but from différent points of view. We refer the reader to Eisenhart [5]
and Theorem 4.6 of Wong [13].

An important conséquence of Theorem 5.1 is the following

Corollary 5.1. A given non-minimal surface in i?4 is completely deter-
mined, except for a displacement or displacement with reflection about a
3-plane, by Us linear élément and the two first curvatures.
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