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On some séparation and mapping theorems
by D. G. Boubgin, Urbana (Illinois)

Introduction

The problems treated hère were discussed in some of my course
lectures 1952— 1953 on mapping theory. Publication of the results was
originally intended for a book on Fixed Points, but it appears désirable
to give them earlier circulation.

The stimulus for the first part of this paper cornes from a homotopy
view of perturbation theory. Thus if ht : X -> X where X is a compac-
tum, and 0 < t < 1, the fixed point set, X(t), for each t is a compac-
tum. The natural question is then whether when t changes slightly the
fixed points change very little. Since UX(t)xt C is easily verified
to be a compactum, our question is essentially whether C contains a
continuum joining X x 0 and X xl. The remaining sections are con-
cerned with sphère mappings. A theorem of Borsuk's, [B], asserts a real
valued map of an n sphère assigns the same value to some antipodal pair
(z, — z). Dyson, [D], has proved a real valued map of the 2 sphère assigns
the same value to the four end points of some pair of orthogonal diameters.

(Livesay [Li] has shown any preassigned angle between the diameters
can replace orthogonality). Dyson's proof is of set theoretic type. The
présent paper brings the methods of algebraic topology to bear on thèse

seemingly metric problems. The key tool is the lemma that a closed
carrier of an n dimensional mod 2 cycle, non bounding over a product of a pro-
jective space P and a segment I carries non bounding cycles of ail lower
dimensions. Let Z be an n sphère or more generally an n dimensional
symmetric homologically sphère like set. Let / map Z into the j dimensional

Euclidean space BK Our generalization of the Borsuk-Ulam theorem

states the symmetric sub set of Z for which f(z) /(— z) carries an
n — j dimensional cycle mod 2 which maps by identification of antipodal
pairs into a non bounding cycle in Pn xi. Our generalization of the
Dyson theorem states there are n — j + 1 orthogonal Unes ihrough the

origin whose end points lie in Z and are transformed by f into some j — 1

dimensional sphère about the origin of ffi'. Continuity of / can be weakened
to upper semi continuity of f(z) — /(— z) for both theorems. The sepa-

199



ration idea is central in such aspects of the various proofs as (1), (3.04)
and (4.00).

Throughout the paper we shall use the same letter for the inclusion
map of spaces for the induced chain maps and for the induced homo-
morphisms of the homology groups. Thus i : X -> Y induces i : G(X)
-+ C(Y) and also i:H(X, #)-> H (Y, G). The support of a chain on a

geometrical complex is understood to be the carrier defined by the union
of ail the geometrical simplexes entering the chain. In dealing with the
chain groups we shall often omit the i however, and write simply G(X)
in place of i C (JT). If D is a chain then \\D\\ is a point set attached to
D which is either the support or the carrier. However, when no confusion
is possible, the same symbol D will dénote the associated point set. The
field I2 is that of integers mod 2. Rn is the Euclidean n dimensional space
and 8n is the n sphère with center at the origin. / is the unit segment
0 < t < 1. By X we mean the set of inner points of X.

1. Séparation. The techniques involved and the arguments recur
throughout the paper even for somewhat changed situations. Unless
otherwise understood the cycles and carriers [W, p. 204] are Cech.

Theorem 1A. Let M be compact Hausdorff and let An bea non bounding
Cech cycle in M with the coefficient group G either compact or a field. Suppose

C°and C1 are disjunct compact sets in Mxl and suppose G1 does not
meet M0 Mx0 while C° does not meet M1 Mxl. Then there is an
n cycle Bn on Mxl, whose carrier does not meet M0 ^ M1 ^ C° ^ C1

and Bn~An(0) where An(Q) on M° corresponds to An on M.
Since M xi is compact M0 ^ C° and M1 ^ C1 can be covered by a

finite collection of open sets in Mxl whose union is j^° and N1 respec-

tively with iV° ^ iV1 0. Let X1 N1. Write X° Mxl - X\
and Q X° rs X1. Thus Q is the frontier of X1 and is disjunct from
both M°^C° and M1 ^ C1. Consider

Hn(M<>)

TT (f~\\ E

Hn(MxI)^-+Hn(MxI,
Hère i, r, s, l, are induced by the obvious inclusion maps and e is

induced by an excision map for X1 — X1 Q, M xi — X} X°.

200



Actually e is an excision isomorphism. [E. S. ; Theorem 5.4, p. 266.]
Since ail the homomorphisms in the square / are induced by either
inclusions or excisions commutativity obtains. Indicate the coset corres-
ponding to a cycle by curly brackets. Thus An(0) is a représentative of
{An(0)}eHn(M0). Since An(0) ~ An(l) over Mxl, ,4w(0)~0
mod M1 and hence An(0) ~ 0 mod X1. In the notation of (1) we hâve

srl{An(0)} 0 (1.01)
whence

e-isrl{An(0)} 0 (1.02)
or

0 (1.03)

The upper horizontal séquence is either exact or partially exact dépend-
ing on G. In either case the kernel of j includes the image of i. Since

according to (1.03), l{An(0)} is in the kernel of j, there must exist an
élément {Bn}eHn(Q) such that i{Bn} l{An(0)} or

iBn~lAn(0) (1.04)

Interesting spécial cases arise when M is taken as a closed n dimen-
sional orientable manifold2) or orientable pseudo manifold or orientable
circuit imbedded in Euclidean space with An the fondamental intégral
cycle. In such cases we hâve a partial converse. We first state a useful
lemma.

Lemma 1B. Let K° and K1 be compact Hausdorff spaces with union K
and common part Q. Suppose L is a compact subset of K°. Let An be an n
cycle of L with An ~ 0 on K. Then there is a cycle Bn in Q homologous to

An over K°.
The triad K, K°, K1 is proper since the sets are compact [E. S., p. 257].

The Mayer Vietoris séquence is

Hn(L)

II
«- g_iffl) ^ Bn(K) £ Hn{K°) + Hn(K') l Hn(Q)+-

Square brackets indicate the Bibliography.
1) C. T. Yang attended some of my lectures and independently obtained results like

those in sections 3—5. His methods though différent in appearance are basically like mine.
In the long interval since submission of this manuscript he has obtained interesting
variants.

2) A theorem for this case somewhat like Theorem IA was independently found by
Livesay.
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We hâve 0 l {An} 0 according to the hypothesis. Thus l {An} is in
the kernel of 0 whence by exactness some {Bn} c Nn(Q) satisfies {Bn}
— l {An}. This implies the assertion of the theorem.

Theorem 1C. Suppose M is a closed orientable n dimensional manifold
with Mxl in Bn+1 and with fundamental cycle An. C is a continuum in
Mxl meeting boih M0 and Mr. Suppose N is a closed n dimensional
orientable manifold with base cycle En, where En ~ An(0) over Mxl,
and 11 N || is a carrier of En. Then \\ N \\ meets C.

Compactify Bn+1 by adding the point oo to get Sn+1. The coefficient

group below is that of the integers. Suppose N séparâtes Sn+1 into the
domains N(l) and N(2), Mj séparâtes Sn+1 into the domains Mj(l) and
Jf/(2), j 0, 1. Suppose N(l) contains M0 and M'. By suitable labell-
ing we can require that ifcf°(l) d M1 and Jf'(l) -> M°. Then

Jf°(l)^ Jf;(l)D Mxl
Indeed if some point (m, r) of Mxl were not in ikf°(l) the line

{(m,t)\ x <t < 1}

would eut M°. Consider the sets

K° L X° M xi - N(2), Kr N(2), X' M0(2) - if'(2)
The compact sets X°, X1, X X° w X1 constitute a proper triad. Note

^ — ^(0)^0 over K K°^K'. Evidently also En — An(l) ~0
over K. Recourse to Lemma 1B establishes there are cycles C° l0En
and G'-=lxEn onN, such that (a) C°~En — An(0) and (b) O^j^—
An(l), both over K°. — Since neither An(0) nor An(\) bounds on M x 1,

m{ 1 — li 7^ 0, and Cn m0An(l) ¦— m^^O) is a cycle on
X° r> X1 Jf° v Mf whose homology class in Hn(X° ^ X1), denoted

by {Cn}> is not °- On the other hand Cn is evidently a bounding cycle
on both X° and X1. Thus {Cn} is in the kernel of the Mayer Vietoris

map (y)) into Hn(X°) + Hn(Xx) and therefore is the image (under A) of
Hn+1(X). Since X is a proper subset of $n+1, Hn+1(X) 0 and so

{Cn} 0. In short Jf° and Jf1 cannot both be in domain N(l) (or in
N(2)). Also Jf° (or M1) cannot meet both N(l) and N(2) for then so does

if°(2) whence v_^—
0 ^ ifo(2) r,N cMxI r,N 0

Suppose 11^11^0 0, then since the common boundary of N(l)
and N(2) is N it would follow that C is contained entirely in one or the
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other of N(l) or N(2). This would stand at variance with our require-
ment that G meet both M° and M1.

2. Basic Notions. We add the following conventions : AU homology
and chain groups are over I2. Nevertheless in the interests of naturalness
we shall use both + and — Indicate the metric norm in Bn+1 by | y |.
Let Y be the closed shell (in Rn+1), {y | 1 < | y \ < 2} or any other
positive bounds where necessary. 8m(s), m <n is a sphère in Y of
radius s about 0. (If the radius is arbitrary we write 8m.) This is also
the basic chain of a symmetric triangulation of the sphère. By X we
shall invariably mean a symmetric set (with respect to the origin) in Y.
The projective n dimensional space is indicated by Pn. Let px be the
reflection of x in the origin. Let Tx dénote the identification of x and px,
i. e. T(x ^ px) x! (x, px). The next few remarks are essentially
spécial cases of known results for periodic transformations [S]. Use the
same symbol T for the chain transformation which identifies a and pa,
i. e. T(\ + p) a ar. Throughout a prime on a set or chain indicates the

identification under T or under the corresponding simplex identification

Let a be given by the vertex scheme [yQ,..., yt], Indicate this by
[y]. Then pa [py0,..., <py{\ or [py] and T(l + p)[y] af [yr].
Observe T~xa' (1 + p)a. This is a unique correspondence though a
is not unique since pa serves as well. Write [z]{ for

L^O j • • • Zi-15 2*+l 9 ' ' ' t %l J •

The choice z y, py or yf is that of interest below. Thus dz Z [z]{.
We make use of the relations

dpa pda (2.00)
do' (d(l +p)a)'
dT-^a' T^da'

For instance,

dpa d[py] Zi[py]i pZ [yl pda
do' d[y'] ZT(l+ p)[yl T{\ + p)da

This shows incidentally that T is a chain map (on symmetric chains).
A chain, Cm is symmetric if and only if

(l+P)Gm 0 or Cm=(l+p)1Cm (2.01)

In applications we always assume that 1Gm contains no antipodal pair
of m simplexes. The closed half spaces to one side or other of an n dimen-
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sional hyperplane, Rn, containing the origin are indicated by
and Rn( —) respectively. The intersections with Y are written Y(+)
and Y(-). Qn+1 Pn X I Y'.

The following lemma and its direct proof are central in the develop-
ments of this paper. X and Y are hère considered simplicial complexes.

Lemma 2A. Let h dénote the inclusion map X -> Y where X is a
simplicial subcomplex of Y. If Am is a symmetric simplicial m cycle on
X, m <n, and hArm is non bounding (on Y') ihen \\Am\\ carries a
symmetric cycle Am_} where A'm_d is non bounding (on Y') for ail j < m.

It is sufficient to establish the lemma for j 1. A trivial application
of the Kùnneth relations shows the m dimensional homology groups
over Qn+1 and over Pn are isomorphic for m <n and are therefore iso-
morphic to /2. Plainly the chain Srm Pn is non bounding. The
hypothèses imply '' '1) (2.02)

The symmetric chain Cm+1 T~l(CfnJrl) may be represented as

(1 + P) xCm+1. Thus d(C'm+1) (dCm+1)' ((1 + V)(d1Cm+1))1 by vir-
tue of (2.00). Then applying T-1 to (2.02) there results

^+PHiAm-1Sm-d1Cm+1) 0 (2.03)

where 1Am may be chosen in a variety of ways conditioned merely by
the requirement that (1 + p)tAm T~1(Am)1 and that 1An and p1Am
hâve no m simplexes in common. Similar statements apply to 1Sn. Accor-
dingly

^-^-a^^^D, (2.04)

where (1 + p) Dn 0. Then

8^-3^ ^ • (2.05)

Ail chains in (2.05) are symmetric. Indeed since An is a symmetric cycle,

0 dAn d(l + p)xAm (1 + P)31Am

and so (2.01) establishes our assertion hère. Similarly B18m is symmetric.
Since Dm is symmetric so is dDm. We therefore dérive from (2.05),

(d.AJ' - (dA)' (dDJ d(Dm) (2.06)

Write Bm_x for d1Am. Then Bm_x is evidently an m — 1 symmetric
cycle. After suitable subdivision of the simplexes of the triangulation
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of Y, if necessary, we can choose 1Sm as the upper cap of the section
of Sm by a suitable hyperplane. Then d1Sn is the equatorial m — 1

sphère and so (#1$^)' is a non bounding m — 1 cycle in Y'. Thus
(2.06) guarantees Bm_1 is a non bounding cycle in Y'.

Suppose the l cycle XDU l<l, contains no pair at, /pal. Since the
mod 2 Betti numbers of Y vanish if the dimension is inferior to n, we
must hâve 1Dl dCl+1.

Then ((1 + p) Dt)f 3 ((1 + p) Gl+1)f or ((1 + p)^,)' - 0. Hence
Am and Bn_± can be replaced by subcycles Em and Em_1 on components
for m > 1 [L, p. 91] and

E\ ~5j, Z m — l,ra (2.07)

Theorem 2B. Le£ X be a closed symmetric carrier of a symmetric Gech

cycle Am with A'm r^ 0 on Y'. Suppose X Z w ^Z where Z is compact.
Dénote frontiers in X of subsets of X by Bd( Suppose Z ^ pZ
BdZ=W. Then W carries a symmetric Gech cycle Em_1 with Efm_1 ~ 8/m_1

in T.
For a symmetric cover VL, U eVL implies pU e U. We may assume

below Ur,pU 0. Then W {U'%\ U'% T(l + p)Ut,, UteU}.
We remark there is a cofinal séquence of finite symmetric open covers
{U (r) | r 1,2,...} with the following properties : (a) XI (s) is the star
of a symmetric triangulation of Y, A (s), and refînes U(r) for

(b) if T(r) is the nerve of U(r) and F» that of U'(r) then

Ht(Y(r)*tHt(Y)} and H%{T(r)) *> Ht(Y)

for ail i and (c) if a kernel [L, p. 245] meets both Z and pZ then it meets
W.

The only assertion not immediately obvious is (c). Appeal may be
made to the proof of an analogous assertion when no symmetry restriction

is imposed on the sets or covers [W, p. 202] and the resuit required
hère may be established by similar arguments. An alternative dérivation
(indeed the original one of the writer's) starts with a symmetric triangulation,

ô, of Y. A prescription can be given for the introduction of new
vertices to give ô1 whose zéro and one dimensional kernels satisfy (c).
Next new vertices are introduced to give ô2 such that the kernels of
dimension 2 or less satisfy (c). This inductive construction yields zl <5n+1

satisfying (c).

If Q is closed in Y then Q(r) is the subcomplex of Y(r) consisting of
simplexes whose kernels meet Q. We write 11 Q (r) 11, hère for the point
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set closure of the union of the kernels of simplexes in Q(r). Evidently
Q(r) may also be viewed as the closure of the Euclidean subcomplex of
A (r) consisting of simplexes (of À (r)) meeting Q with || Q(r) || the asso-
ciated point set. The m dimensional skeleton of Q(r) is written Qm(r).

We show first that W ^ 0. Assume the contrary. Thus for r, ro<r,
X(r) Z(r) w pZ(r) where Z(r) and pZ(r) are disjunct. We proceed as
in a similar situation occuring in the proof of Theorem 2 A. The sym-
metrie Cech cycle Am has the représentation {Am(s)}, where Am(s) is a
symmetric simplicial cycle and the hypothèses of Theorem 2B require
that for rx<r, Afm(r) rvO on Y1 (r), Choose r larger than either r0 or r±}
Let 1Am(r) consist of those simplexes of Am(r) which are in Z(r). Then no
pair cm(r), pam(r) occurs in 1Am(r) and, since

|| xAm{r) || - || p xAm{r) || 0, d ^m(r) 0

Hence, recalling property (b) of U(r), 1Am(r) dCm+1(r) where Cm+1(r)
is a chain on Y(r) and then

A» ((1 + p)xAn(r)y 3((1 + p)C'm+1(r))f or A'm(r)~0

in violation of our requirement.
The complexes Zm(r), (pZ)m(r) share a symmetric complex

Mm(r) 8biïd(pM)m(r) are closed complexes with no common m simplexes.
T pf

Km(r) Mn(r) ~ 'Zm(r)

where fZm(r) is the maximal closed subcomplex oïZm(r) which contains
no m simplexes occurring in Mm(r) or (pM)m(r).

The hypothèses of the theorem require that the symmetric Cech cycle
Am= {Am(r)} satisfies A'm{r) ~S'm{r). Write Am(r) (1.+ p)1Am(r)
where xAm(r) consists of the m simplexes of Am(r) occurring in Kn(r).
Evidently BdKm(r) is the symmetric complex consisting of ail m — 1

dimensional simplexes common to Km(r) and pKm(r) and is shown to be

non vacuous by the same type of argument used to establish W ^ 0.
Moreover

BdKm(r)cWm__Ar) (2.08)

In fact if am_x (r) is a face of a simplex of Km(r) as well as of one oîpKm(r)
then the kernel of Gm^t(r) meets both Z and pZ and hence meets W.

Write Bm_x{r) dxAm(r). We assert

B^ir) c W^ir) (2.09)
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Indeed i-4w(r) is on Km(r) and therefore so is Bm_1(r). This last chain is
symmetric and therefore is on pKm{r) also. Accordingly Bm_1(r) is on
BdKm(r) and so appeal to (2.08) establishes (2.09).

Since W(r) may be considered a symmetric Euclidean complex,
Hm-!(Wf(r)) evH^iWW'ir) ||). Let prs be the projection homomor-
phism induced by the inclusion map of 11 W(r) \| into 11 W(s) \\ while
i(r) is induced by the inclusion map || W {r) || -> F'. We hâve commu-
tativity in the squares below for s < r

(2.10)

The justification for asserting i (r) is onto in (2.10) is that i (r) B'm_x (r) r±j 0
in Y'(r). We note W (1 || W (r) ||. Since the groups occuring in
(2.10) are compact and || W(r) || c || W(s) \\, s< r we may take the
inverse limits and invoke the continuity property of the Cech groups to get
the exact séquence [E. S., p. 226J,

Hm-AW) £1^(11 W'(r) ||) XH^AY') -0
Since i is onto, iHm_1(W) is not trivial. Accordingly some cycle Bfm_1}

non bounding in Y\ is carried by Wf.

3. Sets Circumscribing a Frame of Orthogonal Diameters. The main
resuit hère, Theorem 3 A, is half of the Generalized Dyson theorem.

Theorem 3A. // X carries a symmetric m cycle Anof Y and A!m does not
bound in Y' there exist m + 1 mutually orthogonal diameters of some n
dimensional sphère about 0, m < n, whose termini lie in X.

Clearly a standard compactness argument serves to establish the
assertion once it is verified for neighborhoods (symmetric) of X. We may
therefore assume that X is a finite complex with symmetric triangulation.

We tacitly assume throughout that the triangulations are always
so chosen that the simplexes or faces are in the required sub spaces. By (2.07)
X can be supposed a component for m > 0.

The proof is by induction. The assertion of the theorem is patently
valid for m 0 and arbitrary n, n >m. Suppose then that for fixed
n and ail j < m — 1 the assertion of the theorem is valid.
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Let a ^ b e X where a is a nearest point to 0 and b a furthest point
from 0. Let L: L(t\ 0 <t <l) bea polygonal Une in X joining a and 6.
Dénote by r(t) the length of the line l(t) from 0 to the point L(t). Let
{et | 1 < i < n + 1} be a fixed orthonormal frame in JBn+1. We require
that en+1 lie along 1(0). Designate the orthogonal complément of l(t) by
Rn(t). Then the linear extension of {et \ i < n} is Rn(0) which we write
Rn. The rotation of en+1 as l (t) describes L détermines a linear isometry
of Rn onto Rn(t). Dénote this map by / : y xt y(t) where y e Rn and
y(t)€Rn(t). Thus / is on Rnxl onto UjRn(t) c Rn+1. Introduce
Yn Yn{0) where Yn(0) JK»(O) ^ 7. Similarly Yn(t) Rn(t)r,Y.
Then / induces a map of Ynxl onto UjYn(t) c F. We introduce also
the homeomorphic map, g-1 of Yn into a "funnel" in Fwx/. Specifically
let t \ y \ — 1 for i/ e Yn. Then aSw_!(1 + ^) is the linear map of
$n-i (r (0 x ^ determined by a dilatation in Fw x t followed by a
projection onto Yn. Thus g-1 : (y \ Yn) -+zx(\ y \ — l) e Ynxl where

\z\ r(\ y\ — 1) € Y. The construction and maps introduced in this
paragraph are suggested by the work of Yamabe and Yujobo [YY] on
the Kakutani problem.

Let the parameter range for a typical line segment of L be t0 < t < tx.
Dénote this interval by J. Remark that Yn x J is deformable to a homeo-

morph of UjYn(t) as follows easily from the fact that Yn x J — (E xJ)
is the homeomorph of UjYn(t) — E where E Yn(t0) ^ Yn{tx). Let
X(t) Yn(t)~X. Write X(J) for Uj(X(t)). Write (X(J),J) for
UjX(t)xt and E ^ (X(J),J) for Uj(E ^ X{t)xt) As usual, primes
will indicate identification under T.

We require the foliowing lemmas.

Lemma3(B). Ht(Xf(J))^Ht(Xf(J),J).
Observe / yields a homeomorphism of X(J) — E ^ X(J) and

(X(J), J)-Ers (X(J), J) and hence of X'(J) - E' r, X'(J) and

(X'(J), J) — E'r, (Xf(J), J). If y c X(t0) r, E for some t0 e J then y
may be considered in X(t) ^ E for each t € J and

Furthermore this relation is valid for the corresponding primed sets.
Thus /-1 (y' | X1 (t0) ^E') y'xJ tEr r, (X! (J), J). Since the aug-
mented homology groups of y' X J are certa-inly trivial the assertion of
the lemma is then a conséquence of the generalized Vietoris theorem,
[Be], [Bol

208



Lemma 3C. Ht{7'nx J) ** H, (Uj (Yrn(t))).
The démonstration is clear from that for Lemma 3B.
We proceed with the argument for the theorem. Let Y(t0, +) be the

half section of Y containing l(t0). Recall the notation of Lemma 2 A.
Let 1Am and 1Sm be chosen in Y(t0, +). Thus if Yn(t0) is transverse
then Am(t0, +) xAm Am^Y(t0,+). Accordingly Bm_x and 8m^
hâve their supports in Yn(t0) and are therefore written Bm_1(t0), Sm_1(t0)
andhencealso .B^-i^o) and S^^Q. Let J be the interval (0=^,^).
We impose a consistency requirement on Am(tx, +). Let Cm\ Z be the
section of the chain Cm consisting of simplexes in Z. Observe X(tl9 +

(X(t0, + - X(tl9 +))- (pX(t0, +) r, X{tl9 +)). We may therefore

define -4W(£1? +) as

Am(h> +) Am(t0, +) | X(tl9 +) + pAm(tOi +) | X(tl9 +) (3.00)

Starting with Am(0, +) we use (3.0) to give the détermination of
Am(t; -{-) at the end points of each sub interval...

We hâve then for any interval J : (£0, ^),

Bm_1{Q-Bm_1{t1) dK (3.01)

where K Am(t0, +) — Am(t1, +) and is symmetric in view of the
consistency condition imposed in (3.0). Hence

K-iVo) - 2&_i(*i) {3K)' d(K') (3.02)

Thus B^^to) and 5^_1(^1)J considered in Xr(J), are homologous over
X'(J).

Let D(x, t) | x | — r(£), a; el(l). We transfer attention to the
space Ynxl. Under the map /-1 restricted to X(tt) we can consider

BmSt) as on X(tt)xtt and then on X"=Uj(X(J), J) UzX{t) xt
under an inclusion map. Similarly jB^_x(^) on Xf(tt)xtt can be sup-
posed mapped by inclusion on X"'= UjXr(t)xt. Application of
Lemma 3B to (3.02) shows that

3L-i(0)~2d(l) (3-03)

over Xm. We can assume D(x,t) defined on X" to R1. Dénote by
F (in X") the point set for which D(x,t) vanishes, i. e.

F UjdSn^frit))*^ X(t)xt. Define a set Ha X" as line symmetric
if x(t) xt e H implies px(t)xt e H. F is line symmetric. We assert F
contains a line symmetric cycle homologous to Bm_1(0) over X'\ Let

U {{x, t) | (x91) e X", D(x, t) < 0}
V {(a:,*) I (x,t)eX",D(x,t) >0}
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Thus F=UrsV=U-l[. Observe || 5^(0) || c X(0) xO c U and
II -Sm-i(l) II c X(l)xl c F. Accordingly || B'^l) || c Z'(l) xl and
F' U' r, V Ul - ZT. £' is the open part of TU where T is defined
on line symmetric sets by T (x (t) X t ^ p x (t) x t x1 (t) x t, x' (t) € X' (t).

We use an argument akin to that involved in (1.0). Consider

', W')-^Hm_2(F') (3.04)

where i, r, s,l are inclusions. Again, [E. S., p. 266], e is an excision iso-
morphism, with X'" - Uf, V - U' F7, J".

We dérive from Brm_x{0) ~ 5^(1) on Zwthat

and therefore jB^(1) /^ 0 mod V. We make thèse remarks more précise

by writing

whence

Since ail our homomorphisms in the square II are either inclusions or
excisions, commutativity holds and we hâve

l {Bm_x (1 )} is in kernel j.
Since Ja is a field, the upper horizontal séquence in (3.04) is exact and

so Z{J5^_1(1)} is in image i, Thus there is a cycle D!m_x in F1 with

If we wish we can carry out the arguments in terms of simplicial
complexes. Thus D(x, t) can be replaced by simplicial approximations and

Uj(X(t)xt) by a séquence of simplicial neighborhoods. Appeal to
compactness gains the final conclusions required (say those arising from
the existence of D^_i). It is more convenient now, however, to interpret
ail the groups as Cech groups.

We again indicate by the context the inclusion space in which Dm_1

and its transforms are considered. Thus 2>^_1~ jB^_1(1) over XM.
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Recalling the interprétation of T and T~x for line symmetric chains we
hâve T^D/m_1 Dm_1cF. Consider, in Tn, Am_x^ gDm_x. We
assert A!m_x is non bounding on Y'n. Suppose this were untrue. Thensince
g-1 is a homeomorphism on Yn onto UT Sn_x (r (t) x t we should infer
Dfm_x~0 on J7i5n_i(r($))x$ and hence on 7^x/. In view of
Lemma 3C, >S^_1(1) is non bounding not only on Ynl (1) and Y' but
also on r^x/. Since D'm_x ~ £^(1) ^^^(1), D^ cannot be

homologous to 0 on r^x/. This contradiction establishes our assertion
about A'm_x. By replacing 4m_! or some sub cycle by its homologueSm_x
in Yn we immediately establish A!m_x is non bounding when considered

on Y'.
The induction hypothesis guarantees the existence of m orthogonal

diameters of some sphère whose termini {at, pa% | i 1,..., m} lie in
ll^m-ill- Wedefinefoby \pat\ \at\ =l+tQ.MoTeoverfg^W Am_1\\ c X.
Thus {xt | /^(a.) xi) satisfy | o?t | | pxt \ r(t0). Let xm+1 L(t0).
Then | xm+1 \ \ pxm+1 \ r(f0) also and the assertion of the theorem
is established.

By a diameter of the symmetric set X we shall mean a segment
bisected by the origin with end points x, px e X.

Corollary 3D. Suppose X is a compact symmetric set exterior to 0 in
Bn+1 with X' a carrier of an m cycle on Y1'. Let F be a continuons map of Y
to the reals, satisfying F(x) ~ F(px). Then there are m + 1 orthogonal
diameters to X, whose end points lie in X and map into a common point
under F.

The non trivial case is that when F(x) ^k 0. One proof consists in the
observation that any non négative fonction can replace the distance
fonction from the origin in the proof of Theorem 3 A and so with s(x)

2 sup | F(x) | + F(x) we hâve the preceeding argument valid in ail
détails. An alternative proof for the case X Sn proceeds by replacing
F(x) by w(x) F{x)/2 sup | F(x) |. Consider the points x € X as
vectors from 0. Replace xeX by the vector x(l + w(x)). This
gives a new symmetric set Xx homeomorphic to X, x h(xx), whence

JchHm(X') JcHm(Xf) ^ 0. Thus Theorem 3A applied to the set Xt
yields the existence of m -f 1 orthogonal diameters with end points
xt (1 + w(xt)), pxt(l + w(pxt)) on a common sphère, i. e. w(xt)
w(xm+1) and this implies the assertion of the corollary.

4. Generalizations of a Borsuk Theorem. The following theorem for
the spécial case Z 8n, j n reduces to a classic resuit of Borsuk's
[B].
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Theorem 4A. Let Z be a compact symmetric set which séparâtes 0 and
oo. Let {ft | i 1,...,/} be j continuons real valued functions on Z and

suppose X {x | ft(x) ft(px), 1 <i <j < n, x çZ}. Then X!
carries a non bounding n — j dimensional cycle over Y'.

The case Z 8n, ]=n— 1 is already new. Let Ft(z)=f^z) — ft{pz).
Suppose, continuing the terminology of Section 2, that Z c Y. Assume

f% and hence Ft extended to Y by Tietze's theorem. Let K2 be the com-
ponent of Y — Z containing 8n(2), and Kx the component of Y — Z
containing Sn(l). Then Fx Y — K2, F2= Y — K1} are closed

symmetric sets with Fx^ F2 Z, F^F^ Y. We proceed with the
analogue of (1.0) and (3.04), viz

m{F[)-UHm{F[,Z')-?-» (4.00)

\r ni |e

By the argument we hâve used earlier it follows that some élément of
Hm(Z') maps by i into the non neutral élément of Hm(F/1). Thus some

cycle, A'm, of Z' is homologous to B'm(l). Let W \\ A'm \\ and as

usual let W T^W. Let Wx {z \ Fx(z) > 0} ^ W. Then BdWx
W1r^pW1= {z\ Fx{z) 0} r, W. (That BdW1^0 is established

incidentally in the course of the proof of Theorem 2B). We use Theorem

2B to guarantee the existence of a symmetric n — 1 cycle
An_x carried by BdW1 with A!n_x ~S'n_x over Y1. If j>\ let W2

{z | F2(z) > 0} rs BdWx. We need only take points in || An_x \\ really.
Again BdW2 {z \ Fx(z) 0, F2(z) 0} ^ Tf ^ 0 and from Theorem

2B follows the existence of a symmetric % — 2 cycle -4W_2 carried

by BdW2 with ^_2^#^_2 over T'. On continuing the process if
necessary we gain the conclusion : X {z | Ft(z) 0, i 1,..., j}
carries a symmetric n — j cycle An_3 where Arn_, ~ Srn_3 on Y'. This is
the assertion of the theorem.

Theorem 4B. Let Z bea compact symmetric set in Y such that Zr carries

an m cycle non bounding in Y'. Let {ft \ i 1,...,?} be continuons
real valued functions. Let X {z \ ft(z) ft(pz), l <\ <j,z eZ}. Then
Xf is the carrier of an m — j dimensional cycle Afm_g which does not bound

in T.
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Replace Zby a compact symmetric subset if necessary which carries
Am a connectée! symmetric m cycle with A'm ~ Sfm in Y'. The latter
half of the proof of Theorem 4 A applies Verbatim.

The proofs of theorems 4A and 4B require merely that the sets

{Fl (z) | z > 0} be closed. Thus thèse theorems remain in force if the requi-
rements of continuity on ft(x) are weakened to, say, upper semi-continuity
on f,(x) — ft{px). This strengthens even the classical Borsuk theorem.

5. The Generalized Dyson Theorem. We gather together some of our
earlier results to give an extension of Dyson's resuit.

Theorem 5A. Suppose Z séparâtes 0 from oo in Rn+1.

with ft(z) — ft(pz) upper semicontinuous, are j real valued functions on Z.
Let f(z) be the point of RJ whose coordinates are fx(z) f2(z),..., /^(z). Then
(hère exist n — j + 1 orthogonal diameters to Z whose termini map into
a single point under

We invoke Theorem 4A to obtain a subset of the set of common zéros

off(z) — f(pz) which satisfies the hypothesis of Theorem 3A and
Corollary 3D with \ fz\ F(z). Similarly using Theorem 4B we get

Theorem 5B. Suppose Z is a commet symmetric set in Y such that Zr
carries an m cycle non bounding in Y', m <n. Let {ft \ <i <j < m},
with f(z) — f(pz) upper semicontinuous, be j real valued functions on Z
and let f(z) be the point of E1 whose coordinates are fx(z).. .ft(z). Then
there exist m — j + 1 orthogonal diameters for Z whose termini map into
a single point under | / |.

Remarks. The arguments require merely that p be a fixed point free
continuous involution such that the identification space is homologically
a projective space. Accordingly the results and démonstrations in
Sections 3, 4, and 5 are formally valid in détail if p is interpreted as the
reflection in an l dimensional hyperplane. Then Y pY and X pX
are sets symmetric with respect to this hyperplane. The identification
space is now Y' pn~l x Il+1 (so the dimension bound on X is now
n — l rather than n).
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