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On the homotopy groups of unions of spaces
By P. J. Hilton

Dedicated to Prof. H. Hopf on his 60th birihday

1. Introduction

A useful technique in calculating the homotopy groups of a space is
to replace the given space by one of the same homotopy type whose
structure lends itself more readily to computation. In particular, Chang
has shown in [2], that an J.*-polyhedron, n > 2, in the sensé of J. H. C.

Whitehead [11], is of the same homotopy type as the union of a (finite)
number of "elementary" cell-complexes with a single common point.
Thus attention is drawn to the question: given two connected spaces
X and Y, what do we know of the homotopy groups oflv Y, the union
of X and Y with a single common point Of course the homology groups
of X v Y are given by the simple relation

>0 (1.1)

but the corresponding relation for homotopy groups is more complicated,
in gênerai. For'good' X,Y, JJ^X^Y) is the free product of /^(X^/T^F).
If n > 1, then certainly IIn(X), IIn(Y) inject into IIn (IvF) as direct
factors, but a third term appears on the right hand side of (1.1). This
term may be called the cross-term and is the isomorphic image, under
the boundary operator, of thegroup IIn+1 (X x Y, XvF), Iv7 being
embedded in X x Y in a natural way. Thus

nn (x>, Y) *nn (X) + nn (Y) + nn+1 (ixr,ivr),oi. (1.2)

The object of this paper is to study the cross-term under certain
restrictions on X, Y (and n). The fîrst non-trivial case considered, that
in which X Sp, Y Sq, n p + q — 1, p > 2, q > 2, was discussed

by J. H. C. Whitehead in [10], the paper in which he introduced the
Whitehead product. In fact, the cross-term is in this case cyclic infinité,
generated by the Whitehead product [ip, iQ], where tp générâtes IIp
($p)> iq générâtes IIq (S9). This resuit has been generalized by G. W.
Whitehead in the form

nn (sp ^ s») * nn (sp) + nn (#9 + nn os*+«-i), (1.3)
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if l<n^p-\-q-\-min (p,q) — 3 (see [9]1). Further generalizations in this
direction are due to the author, J. C. Moore and others (see [6], [7]).

J. H. C. Whitehead showed in [11] that if X is an arcwise-connected
space whose first (p — 1) homotopy groups vanish then

91 <n <P + q-i (i.4)
and Chang in [3] generalized J. H. C. Whitehead's original resuit by
proving that, under the additional assumption that p ^q,
nVM_x (X v s9) np+q^ (X) + np+q^ os«) + \nv (X), nq (#*)] (i. 5)

the group [IIp (X), IIq (SQ)] being generated by Whitehead products
[oc, tj, oc e IIp(X). Our first resuit (in section 2) generalizes (1.4) and
(1.5) by replacing 8q by an arbitrary arcwise-connected space, Y, whose
first (q — 1) homotopy groups vanish. Naturally the restriction p < q
disappears in this generalization. We also characterize the cross-term
as being isomorphic to the tensor product Hp (X) ® Hq Y).

The next five sections ofthe paper are devoted to a study oîFIp+q (Iv Y),
under the further restriction that X, Y are CW-complexes in the
sensé of [10], and p, q > 3. The restriction to CW-complexes (or at any
rate to spaces of the homotopy type of CW-complexes) is implicit in the
method, but the restriction on p, q (i. e., the omission of the cases p

2, q > 2) may be removed at the cost of additional complication in
the results. The method is based on the exact séquence of J. H. C. Whitehead

[14] and we calculate Fp+q+1 (X x 7, I v 7) in section 4. Though
the results are expressed in invariant form, the proofs are frequently
based on spécial choices of X and Y from their homotopy types; in
particular, we often find it convenient to assume that the (p — 1)-
dimensional skeleton of X and the (q — l)-dimensional skeleton of Y
are single points. It would be satisfactory if methods could be devised
which did not dépend on such choices. On the other hand, the methods
used in this paper do indicate the great advantage for computation of
cell-complexes.

It is of interest to note that, in gênerai, the cross-term does not consist
only of sums of Whitehead products. If we take X S3 ^ e4, where e4

is attached by a map of degree 2, and Y a replica of X, then

n6 (Y) + z,,

2) The case n — p + q -f min (p, q) — 3 is omitted in the statement of (1.3) in [9], but
it is shown in [1] (or [6]) that it may be included. The subgroupi7n (S^) + q-1) is embedded
ini7w (Sp\/Sq) by composition with [iv, ig].
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the group Z4 (cyclic group of order 4) is not generated by a Whitehead
product but twice a generator is a Whitehead product. The generator
is eharacterized in section 7.

The last section is devoted to the considération of the union of more
than two spaces ; under certain restrictions the eross-term is the direct
sum of the cross-terms arising from pairs of spaces in the union. The
results, stated for a finite union, are valid also for an infinité union,
provided that the union-space is given the weak topology and the direct
sum is interpreted as the weak direct sum.

The author wishes to thank Professor J. H. C. Whitehead for his
cogent and constructive criticisms of an earlier draft.

2. The Chang-Whitehead theorem

Let X, Y be arcwise-connected and simply-connected topological
spaces such that

IIr(X) 0, r= 1, p- 1

77,(7) 0, *=1,..., q- 1

Let xQy y0 be base-points in X, Y and let X v Y be the subspaee

Xx yo<^ xox Y of X x Y. We describe IvFas the union of X and Y
with a single common point arising from the identification of xQ and

y0. Let
Ql:IIr(X)-+Hr(X)
o2:IIr(Y)-+Hr(Y)
g: nr(X x Y,X^Y)-+Hr(X x 7,Iv7)

be the natural homomorphisms of the homotopy groups into the singular
homology groups, and let A ® J5, Tôt (A, B) stand for the tensor product
and torsion product2) of the abelian groups A, B. Finally let [oc, /?]

€llm+n_1 (Z) stand, as usual, for the Whitehead product of éléments

oc€ÏIm(Z), pelTJZ), for any space Z.
We generalize theorem 3(b) of [13] and theorem 2 of [3] by proving

2) Given two additive abelian groups A, B, the group A (g) B is generated by the pairs
(a, 6), a e A, b c B, with relations

(ax + o2» à) (alt 6) -f K» b)

(a, bx + 6.) (a, bx) + (a, 62).

Let A be represented as the différence group F — Rt where F is free abelian. Then
Tor {A, B) is the kernel of the natural homomorphism 1Ê (g) B-> F (g) B.
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Theorem 2.1. Let ir : I7r(X) -*/7r(X ^ Y), i2 : IIr(Y) -^77r(X ^ F)
be injections. Then t1; t2 are univalent3) and

I7r(X ~ Y) hIIr(X) + hIIr(Y), r <p + q-l,... (2.2)

n^t_x(XvY)=lxnp+t_x(X) + 1,11,+^(Y) + r(Hv(X)®Hq{Y)) (2.3)

where r is univalent and is given by

It is well-known that t1? t2 are univalent and that, for any r > 1,

77r(Xv Y) ^IlriX) + i2nr{Y) + dIIr+1(X xY,XvY),... (2.4)

where d is the homotopy boundary homomorphism

d: I7r+1(X x Y, Xv Y)-+IIr(XvY)
and is univalent.

Since X and Y are simply-connected, IvFis simply-connected and
(2.2) is trivial if r — 1. We assume r > 1, and note that p > 2, g > 2,

^ + # ^ 4. It is also well-known that the singular homology groups
(with integer coefficients) of a topological product X x Y are given in
terms of the singular homology groups of X and Y by the formula4)

HJXxY)^ Z Ht{X)®H0{Y)+ Z Tor(Ht(X), Ho(Y)) (2.5)
i+)=n i+)=n-l

Consider the exact homology séquence

-+Hn{XvY)\Hn(X X Y)s^Hn(X x Y, X^Y)s^Hn_1(X^Y) -+

n() ®0() + 0() ®J), n>l, and
i is univalent.

By the exactness of the séquence, j maps Hn (X x Y) on to Hn (IxF,
X v Y) and Hn(X) ® H0(Y) + H0(X) ®Hn(Y) is the kernel of j.
Thus

Hn(XxY,XvY)^ S Ht(X)®H3(Y)+ Z Tôt (Ht(X), H,(Y)). (2.6)
i+j=n i+?=n—1

Since 77r(Z) 0, r 1, p - 1, and 77,(7) ^0, « 1,

q — 1 it follows that

3) We use the word "univalent" for a (1 — 1) mapping.
4) A nice proof appears in [8],
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Hr(X) 0, r 1, p - 1, and #S(F) 0, s 1, g - 1, and

(2.7)

It now follows from (2.6) that

Hn(X x F, X v F) 0, w=l,...p + g— 1, (2.8)

and #*+«(-£ x 7> Xv 7) «fi,ffl ® Jîjy) • (2.9)

Since JJX (X v F) 0, and /^(X x F) 0 it follows from (2.8)
by the Hurewicz isomorphism theorem (in the relative case) that

nn(X xF,Ivr) 0,n=2 p + î-1, (2.10)

and p.-n^iX X Y, X^Y) ^ Hv+g(X x 7, X v 7) (2.11)

(2.2) now follows immediately from (2.4) and (2.10). To complète the
proof of (2.3), it is only necessary to study the précise nature of the
isomorphism (2.9). Let

f, :I>-+X, U:V ->Y, i->0, j>0
besingular cubes ofX, Y respectively. Let / : I1+7 -> X x Y begivenby

f(a, b) =(fi(a), /•(*)). aeP, b<V (2.12)

ïhen / is a singular (i + j)-cxxhe of X x Y. The mapping

induces a chain mapping (7, (X) ® C^ Y) -> Cî+3 (X x Y) and this
in turn, induces the isomorphic embedding of Ht(X) ® H3(Y) in
JÏ,+J(Z x F, IvJ).

Now let /j : Ip, Ip -> X, x0, f2 : Iq, IQ -> F, y0 be maps representing
a eII9(X), j8 €lJq(Y) respectively, and let the élément of ITv+q(X x F,

*

X v F) represented by / (defined as in (2.12)) be written oc • p We note
that

d(*-j8) [«,fl • (2.13)

Now Qxioc) is the homology class of the cycle (flf Ip) and
the homology class of the cycle (/2, Iq). Then the élément qx((x)

*HV(X) ® Hq(Y) is to be identified in (2.9) with the homology
class of the relative cycle (/, /»+«). In other words,
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when the left and right-hand sides of (2.9) are identified. Now HP(X) ®
Hq(Y) is embedded in Zf^^flvr) by the univalent mapping
dQ~K From(2.7), (2.11), (2.13) and (2.14) it follows that, if SeHp{X),

then

and the theorem is proved.
We may immediately generalize theorem 2.1 to the foliowing

Theorem 2.15. Let Z be the union of the spaces X% with a single common
point, i 1, k, and let

where px ^ p2 ^ • • • ^ Pk- Then

nr(Z) tMxj + + iknr(Xk), r^Pl + Pt-i, (2.
and

l(Xt)<2>HH(Xl)) (2.17)

tl5 ik, r are defined as above and E represents a direct sum.
Let Zt Xt v X2 v v Xt, 1 ^.t ^.k By an obvious induction,

using (2.2), we hâve

nr(Zt) 0, r 0, 1,..., Vl- 1 (2.18)

Now (2.16) is trivial if k 1. Let us assume that

17, (£»_!) ^(Xi) + + ^.^(Z^J r< Pl + p2 - 1 k > 2.

Then, since i7r(Xft) 0, r 0, 1, p2 — 1, it follows from (2.18)
and (2.2) that

' nr(Z) iMXJ + + tl_177r(A\_1) + «*/7r(ZJ and (2.16) is
proved. (2.17) is trivial if k 1 Let us assume that

n^^iz^) ^n^^xj + + i^n^^ix^)
+ r Z (Hn(X.)®HH{X,)).

Then, by (2.18) and (2.3),

nMi_x(Z) in^^z^) + iknPl+P2^(xk)

+ r(HPi(Zk_1) ®HP2(Xk)),

where i :IIr(Zk^ ->IIr(Z) is the (univalent) injection.
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k-1
How HVx(Zk_^ ZHVx(X>) so that (2.17) follows immediately.

Of course, in (2.16) and (2.17), il9 ikix are univalent.
Finally, we give a generalization in a différent direction. Let Z be

a connected CW-complex which is the union of the two CW-complexes
X, 7. Let 77,(X) 0, r 0, 1, p - 1, and 77S(7) 0, « 0,1,

q — 1 Then we hâve

Theorem 2.19. Let X ^7 be contractible over itself. Then

r<P+q-i (2.20)

(2.21)

where j1: IIr(X) ->JJr(Z)i j2: IIr(Y) ~>nr{Z) are univalent injections
and r* is univalent and is given by

{ } 6em<7 ^e Whitehead product taken in Z.
Let x0 e X ^ Y and left ft i X r\ Y -> X r\ y bea homotopy such

that /0 1, f1(X r^ Y) — x0, ft(x0) x0 where 1 stands for an
identity map. By the homotopy extension theorem, ft has extensions

gt : X -> X, ht : Y -> Y such that ^=1,^=1.
Define & : Z-+X ^ Y by <P(a;) (^(a:), ^o), ^^^, #(y) fo,

^i(2/)) > V € Y> where y0 z= x0. 0 is single-valued since /^Jl ^ F) a:0.

Define P:Iv 7 ->Z by W(x,yo)=: x,¥(xo,ij) y. Then 0F|Z x
y0 : X x y0 -^ X x y0 is homotopic to the identity rel (xQ,y0) and
0Ï7 [ o;o x Y : #0 x Y -> a;0 x F is homotopic to the identity rel
(x0, y0). Thus #-1:Iv7->Iv7. Similarly W& \ X : X -> X
is homotopic to the identity and ï7^ \ Y : Y ~> Y is homotopic to
the identity. Since the homotopies agrée on X ^ Y, it follows that
W0 /-^ 1 : Z ->Z. Thus 0 and W are homotopy équivalences.

Now i7r(Xv 7) ^77,(X) + *a77,(7), r<^p + g - 1 and

np+q_x(x^ Y) - c.n^^iX) + i2n^q^(Y) + t(hp(X)®hq(Y))
Letuswrite j\: 77, (X)->77,(Z), ya: 77,(7)->77,(Z), for the injection homo-
morphisms. Since Wis a homotopy équivalence it induces an isomorphism
ï^ :77r(Xv 7) ™IIr(Z), and it is clear that ¥>* maps ^77, (X)
isomorphically onto jxIIr(X) and maps i2TIr(Y) isomorphically onto
j2nr(Y). In fact, lF%t,1 j1, ¥#^ 72» so ^na^ ?i an(l ?2 are
univalent. We hâve shown that

I7r(Z)=jinr(X) + j2IIr(Y), r<p + q-l
5 Commentarii Mathematici Helvetici 65



Let us write {oc, p} for the Whitehead product, in Z, of oceITp(X),
peIIq(Y). Then it is clear that W* [oc, p] {oc, p}
It follows that

where r* is univalent and is given by

This complètes the proof of the theorem.
It should be obsërved that we restrict ourselves to CW-complexes

only in order to hâve available the homotopy extension theorem. Any
restriction on the spaces X, F, Z which ensures the existence of the homo-
topies gt, ht will render the conclusion valid.

3. An exact séquence

Let Ari Cr, r 2, 3, be two Systems of abelian groups5) related by
homomorphisms dr, jr, such that

(i) dr:Cr-»Ar_lt r>2, d,C2^0
(ii) jr :Ar-+Cr
(iii) d;1 (0)' jrAr

Writing àr for jr-idr, we hâve ôr : Cr ->Cr_1 and ôr_1ôr 0. Thus
we hâve a homology theory based on the "chain groups" Cr and we write
Hr H(Cr; ôr). We write i7r Ar - dr+1 Cr+1, Tr j-^O) c Ar.
Then, as shewn in [14] there is an exact séquence

rrXnrXHrX rr_! ->...-* r2 ->n2 -*h2 -> o, (3. i)

where X is the projection Ar->IIr, restricted to Fr

q is induced by jr : Ar -> Cr

and jbt is induced by dr : Cr -> Ar_1

Now let P be a simply-connected CW-complex and Q a simply-connected
subcomplex of P. We identify Cr with IIr(Pr^Q, P'-^Q), r > 3,

that is, we identify Cr with the rth chain group of P mod Q. We identify6)

6) We specialize the situation in [14] by taking Ar — 0, r ¦< 1, Cr 0, r < 1.

•) Note thati72 (P2 w Ç, Q) is abelian because /7i (Q) 0.
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Ar, r>2, with IIr(Pr^Q,Q), and jr9 r > 2, with the injection
homomorphism

jr :nr(PrvQ,Q)-+nr(P'»Q,P'-*~Q)

We identify dr, r ^ 3, with the homotopy boundary homomorphism

Finally we put C2 j2IT2(P2^Q,Q), d2C2 0. Condition (iii) is

immediately verified by référence to the exactness of the homotopy
séquence of the triple (Pr^Q, Pr~1^Q,Q) Let ir be the injection
nr(Pr-1^Q,Q)-^nr(Pr- Q,Q). Then rr J;1 (o) irnT{Pr~x^Q,
Q); since <5r, r ^ 3, is the homology boundary operator of P mod Q,

it follows that Hr Hr(P,Q), r > 3 ; and

77r - 77r(P^ w Q, Q) _ dr+inr+1(P^ ^Q,pr^Q)= nr(P, Q)

Moreover, as may readily be verified, the homomorhism q then becomes,
for r ^ 3, the natural homomorphism o : JJr(P, Q) -> Hr(P, Q).

Let us write rr(P,Q) for jTr ; then we hâve the exact séquence

-+II2(P,Q)->H2-*0 (3.2)

where we leave H2 unidentified7).

Lemma3.3. Let IIr(P, Q) 0, r 2, k - 1. ?%e?i rr(P,Q)
0, r 3, .,&.

It follows immediately from (3.2) and the Hurewicz isomorphism
theorem that Fr(P, Q) 0, r 3, k — 1. However, we will prove
that Fk(P, Q) 0 (this, of course, is ail that is needed to prove the
lemma).

Let Po Pk ^ Q. Then, since k > 3, Po is simply-connected. Also
IIr(P0, Q) 0, r 2, k — 1. Now the isomorphism p : i7fc(P0> 6)
«^ Hk(P0, Q), given by the Hurewicz isomorphism theorem, is a mapping
of IIk(Pk ^ Q,Q) onto the group of relative fc-cycles of P mod $.
This means that jk : IIk(Pk ^ Q,Q) ->^(P* ^ 6, ^fc"x ^ Q) is
univalent, whence JTfc(P, Q) ij.IJ^P1'-1 ^ Q, Q) 0.

7) In our formulation H2 cannot be identified with H2 (P,Q) because C2 was not the
true 2-dimensional chain group of P mod Q. However, the somewhat obscure situation
at the bottom end of the séquence will not concern us as we will be able to apply lemma 3.3.
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From (3.2) we now get

Theorem3.4 Let P be a CW-complex and Q a subcomplex. Let
nx{P) nx(Q) 0 and let 77r(P, Ç) 0, r 2, fc — 1. Then we
hâve an exact séquence

..rn{P,Q)Xnn(P,Q)XHn(P,Q)^rn

In particular, q maps nk+1(P,Q) onto Hk+1(P,Q)
We note that we may replace the condition IIr(P,Q) 0, r 2,

h — 1, by the condition Hr(P, Q) 0, r 2, & — 1.

Now let X and F be simply-connected CW-complexes. We wish to
apply theorem 3.4 with P — X x Y, Q X v Y. However, it is not
necessarily the case that X x Y is a CW-complex if X, Y are CW-
complexes. On the other hand, we are able to use the methods of this
section because X x Y inherits from X and Y the property that a

compact subset is contained in a finite subcomplex.

Lemma3.5. Let X, Y be cell-complexes with the property that a
compact subset is contained in a finite subcomplex. Then X x Y also has

this property.
For let F c X x Y be compact and let F1} F2 be the projections of

F on X, Y. Then Fl9F2 are compact, so that Ft c K,F2 c L, where

K, £ are finite subcomplexes of X, F respectively. Then F c: F1 x F2

c K x £, and if x £ is a finite subcomplex ofl x 7.
It may now readily be verified that the arguments of this section

remain valid when we replace P, Q by X x r,Iv7. The resuit which
we will need in the sequel is then

Theorem 3.6. Let X, Y be connected CW-complexes such that

nr(X) 0, r 1, p - 1, ns(Y) O,s=l,...,q-l.
Then we hâve an exact séquence

...Tn(X x Y,XvY)Xnn(X xr,Iv7)-l Hn(X x Y, X >, Y)

(Xx Y,XvY)X
This foliows from the arguments above and (2.10).
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4. The Calculation oî Fp+q+1

In this section and for the rest of this paper we take p ^ 3, q ^ 3.
If p or q is 2, the problems discussed involve additional points of interest
and the results dépend on an unpublished theorem due to M. G. Barratt
and J.H.C. Whitehead. It is hoped to publish a note later showing the
modifications in the statements of our results which are necessary when

p or q is 2.

Let X, F be connected CW-complexes such that /7r(X) 0, r 1,

...p-l, ns(Y) 0, s=l,..., g-1, p^3, g>3. Write K
X x F, L X v F, ifr ifr ^ L Our object in this section is to

calculate Fp+q+1(K, L).
Now by a standard resuit on CW-complexes, X is of the same homotopy

type as a CW-complex Xo such that X^"1 is a single point; similarly,
F is of the same homotopy type as a CW-complex Fo such that F^"1
is a single point. Then X v F is of the same homotopy type as Xo v Fo

(with the single vertex identified) and X x F is of the same homotopy
type as Xo x Fo. Moreover, the pair (X x Yy Xv Y) are of the same
relative homotopy type as (Xo x Fo, Xo v Fo) so that

F (X y F X v F) (& F (X y Y X ss Y (4 U

We will therefore assume that X^"1 is a single point, x0, and F3"1
is a single point, y0, but thèse assumptions will not appear in our results.

Consider the diagram

_ <i _ ._ * _ ._ }

U h 1*

The horizontal lines are extracts from the exact homotopy séquence
of the triple (Kp+q+1, Kp+Q, L) ; f is induced by a map &+«+ b
-> jp+q+i9 jp+Q+i representing a generator of IIp+Q+2(Ip+q+1,

and tj, 0 are induced by a map IP+Q+1, /^+«+1 -^ /^+«, /^+9 representing
a generator of IJp+q+l(Ip+q, Ip+Q). It is clear that Oi i'^. We prove
that d'Ç rjd. For consider

d i
Kp+q)-> llp+q (Kp+q) —> Up+q (Kp+q, L)

U 1* ïv
d' f
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where d, d' are homotopy boundaries, j> f are injections, and v is induced

by an essential map ji>+«+*->ji+fl+i. dearly d'Ç vd. Also since

p + q> 2, the same homomorphism v is induced by the map Iv+Q+1,
ji>+<z+i _>/*+<*, /*+a (reeallthat E:IIp+q(8P+^1) -+njH.q+1(8*>+*) isonto
if p + q > 2, and, in faet, isomorphic if p + # > 3 ; the homomorphism
yissimply oc->ocoÇ, oc €IIp+q(Kp+q), £ générâtes np+q+1(S*>+<i)) Thus
yV ^ whence d'Ç j'd'Ç jVd rç/d r\d.

Now n^Ky+ç) 0, i 1, 2, min (29 — 1, g — 1). It is thus an
easy conséquence of the Whitehead suspension theorem8) that £ maps
np+q+i (Kv+q+1, KP+q) onto /ZjK-a+a^p+a+i > Kv+q) and simply reduces the
free abelian group II3,+Q+1(Kv+g+1, Kp+q) mod 2. Because of our spécial
choice of X and Y, we hâve Z< Kp+q_1, and a further application of
the suspension theorem shows that r\ is onto llv+q+1(Kv+q, L) and
reduces I7P+q(Kp+q, L) mod 2.

Lemma 4.2. The homomorphism 0 maps IIv+q{Kv+q+l, L) onto

rp+g+1(K,L) and reduces IIp+q(Kp+q+1, L) mod 2.

We note first that IIp+q(Kp+q+1, L) iIIp+q(Kp+q, L). Thus

6inp+q(Kp+q,L)^enp+q(Kp+Q+1,L). Thus 6 maps np+q(Kp+Q+1,L)
onto rp+q+1(K,L).

Since 2IIp+g+1(Kp+q, L) 0, it follows that 2rp+q+1(K, L) 0, so

that 0(2/7^(JT^^^ii)) =0. Assume that 0w= 05 w eIIp+q(Kp+q+1,L).
Then t<; ix, a; €lIp+q(Kp+q, L) and 0 0w 0ia? ^^x. By
the property of exactness, r\x d'y, y €lJp+g+2(Kp+g+1, Kp+g), so that

rjx d'y d'Çz rjdz

for some z € IIP+q+1(Kp+g+1, Kp+q). Since rj is, algebraically, réduction
mod 2, we hâve x — dz c 2TIp+q(Kp+q, L), so that w ix i(a;— ^2;)

€ 2ITp+q(Kp+q+v L). This proves the lemma.

mwnp+q(Kp+g+1,L)=np+g(K,L)=np+g(X x F,Z^r). By (2.9) and
(2.11) IIp+q(X x F, Xx/F)is isomorphic tolfp(Z)0^,(7). In fact the group
IIp+q(X x F, IvT) is generated by éléments of the form a •/?, a eI7p(X),
^ € 77ff F), and the isomorphism 77^ (Ix7Jvr)^ffp (Z) ®Hq{Y)
is achieved by mapping9) oc • (3 on q^ ® ç2j8. We hâve proved

8) Theorem 1 of [13] strengthened as in [6].
•) We will use the notation «• /9 throughout the paper for the product, in JJp+g

(X x F, Xv F), of oc ellp (X), 0ei7g (F) defined as in (2.12).
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Theorem4.3. Let X be a connected CW-complex with ITr(Y) 0,

r l, .,p — 1, and let Y be a connected CW-complex with IJr(Y) 0,

r 1, q — 1, where p, q ^ 3. then

rp+g+1(X x Y,X>,Y)*tH9(X)®HQ{T)®Zt
Let rjr generate IIr(Sr~1), r > 4, and let ^r generate ITr+1(Ir, lr),

r > 4. Then it is easy to see that 10)

["> P\ ° ^+a [*° ^i, « [«, i»o ^,+J (4.4)
and that

d((oc'P)oTj^q) =[«,flo^4 (4.5)

Since d is univalent, we hâve

(*-P)°yM (<*° *i»+i) • P *- (P° y*+i) - (4.6)

Corollary 4.7. The isomorphism rp+q+1(X x F,Iv7)^ 5,(1)
® Hq(Y) ® -Z2 ^ achieved by mapping (oc *j8) o ^2,+a «5 £Ae residue class
mod 2 of

nn(X)^Hn(X)3.rK_t(X) -+... ->hv+2(X)^rv+^,0 (4.9)

Corollary 4.8. TAe subgroup dtrv+g+1(X xY,X^Y) of np+Q (X>, Y)
is generated by éléments expressible in any of the équivalent forms (4.4).
It is, algebraically; a homomorphic image of HP(X) ® Hq{Y) ® Z2.

We recall that, as applications of the exact séquence (3.1) we hâve
the exact séquences

and

++0 (4.10)

Moreover, composition with rfv+1 induces an isomorphism

n,{X)®ztf*H,(X)®zs*>rri.1(X) (4.11)

and composition with f]q+i induces an isomorphism

nt(Y) ®z^ Ha(Y) ® z2 « rï+1(r) (4.12)

We may thus re-express (4.3) as

x Y, Xv Y) ™ rv+1(X) ® HV(Y) ~ HP(X)® rQ+1(Y)

10) Relations (4.4) are spécial cases of (3.59) of [9].
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Relation (4.6) may then be expressed in the form11)

r»t+1 (x x y, xv Y) rv+1 (X) •nq(Y)=nJ>(X) ¦ rQ+1 (r) (4. h)

5. Calculation oï /7j,+g+1 (Kv+g+1, L) and the homomorphism p.

By (2.6) we hâve

Hv+q+x{X x Y,X^Y)^Hv+x(X)®Hg(Y) + Hv{X)®Hg+1{Y)
+ Tor(Hp(X),Hg(Y)) (5.1)

and HP+Q+2(X x Y,XvY)*H]>
+ HJ>(X)®Hq+2(Y) + ToviH^iX), HQ(Y)) + Tov{Hv(X), Hg+1{Y))

(5.2)
By (3.6), we know that IIp+q+1(X x Y, X v Y) is an extension of

rp+g+1(X xY,X^Y)- [*HP+g+2(X xF5Iv7)by HP+Q+1(X x T,
Xv Y). In view of (4.3), (5.1), and (5.2), it remains to express fi and
the extension class in terms of known invariants of homotopy type.
However, we will argue from the spécial choice of complexes X, Y made

in the previous section and we therefore dévote this section to a discussion
of the non-invariant group IIp+q+1(Kp+Q+1, L), under the assumptions
Xp~1 Yq~x x0. Consider the exact séquence

i j
->np+q+1(Kp+q, L) -> np+q+1(Kp+q+1, L) -> np+q+1(Kp+q+1, Kp+q)

X np+q(Kp+q, L) -> (5.3)

Since L iTî)+a_1, d is the homology boundary operator. Thus rf~1(0)

Zp+q+1(K, L), the group of (p + q + l)-dimensional relative cycles of
^ mod i. Thus j maps IIp+q+1(Kp+q+1, L) onto Zp+q+1(K,L) with
kernel iIIp+q+1(Kp+q, L) rp+q+1(K, L). Since Zp+q+1(K,L) is free
abelian we may choose any (univalent) homomorphism © : ZPà.q+1(K, L)
-> IIp+q+1(Kp+q+1, L) such that j© 1 and obtain

np+Q+1(KP+q+li L) rp+q+1(K, L) + 0Zp+q+1(K, L) (5.4)

We now make a spécial choice of 0. To this end, consider the exact

séquences

Xinp+1(x^\x*)%>nP(x>) ->... (s.s)

11 If <*€rp+1 (X) is represented by /:/^+1-> X&, and PeIIq{Y) is represented by
g:Iq-> F«, then the map h: JP + «+i-> X X F, given by fc (a, 6) (/(a), g (6)), oe
JP + 1, 6 € Iq, is of the form h: l» + «+i, jp + s+i _> K^+ç, L. Thus it may be seen that the
product of (2.12) induces a product of éléments in Fp+1 (X) and 77q (Y) with values in
rp+q+1 (X x F, X^Y).
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and

^I7g+1(Y«)^IIg+1(Y^)^ITs+1(Y«+\ 78)^-77,(78) ->... (5.6)

there are (univalent) homomorphisms 0t : ZP+1(X) ->IIP+1(XP+1),
<92 : Zq+1{Y) ->/7a+1(F«+1) such that

(5.7)

(5.8)

and j101 1, ?2<92 1

Lemma 5.9. Zp+1 (X) ®Zq{Y) + Zp(X) (g) Zq+1 (Y) isa direct summ-
and in Zp+q+1(K, L).

Since Cp+q+1(K, L) E Cr(X)®C8(Y), it is clear that
r+s=p+q+l

ZP+1(X) ® Zq(Y) is a subgroup of Z3,+a+1(JÇ, L). Now we may express
Cr(X) as Zr(X) + Dr(X), CS(Y) as Z,(F) + DS(Y). Then

r(Z) ®Cs(Y)=Zr(X) ® Z,(7) + Z)f(X) ® Cs(Y) + Zr(X) ® D,(F)

by a standard theorem on tensor products. Writing Drs(X, Y) for
Dr(X) ® £7,(7) + ^r(-2T) ® DS(Y), we hâve

L) - E Zr(X)®Zs(Y)+ E Drs(X, 7), (5.10)
r+s=p+q+l r-t-s=p+q+l

and, restricting this to Zp+q+1(K, L), we hâve

Zp+q+1(K,L)= E Zr(X)®Zs(Y)+Zp+q+1(K,L)n E Drs(X, Y)

Relation (5.11) establishes the lemma. It should be noted that (5.11) is

quite independent of the spécial choice of Xp~1 and Yq~1, indeed of
any spécial properties of X, Y at ail.

We now define 0 on ZP^(X) (g) Zq(T) + ZP(X) ® Zq+1(Y). Let
oc eZp+1(X), fi €Zq(Y) and let q2 be the natural isomorphism q2 : IIq(Yq)
x* Hq(Yq)=Zq(Y). Let / : /*+1, /*+1 -> X*+\ x0 represent 01oc, let

g : Iq, Iq -> 7», i/o represent p"1/^ Then A : J
given by

represents an élément of FFp+q+1(Kp+q+1, L) which we may designate
0xoc- q-1^. We define

©*(*®j8) ©!*• g"1/? (5.12)
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The map /, regarded as a map of (Ip+l, Ip+1) into (Xp+1, Xp) represents
]x@x&, oc. The map g, regarded as a map of (Iq, Iq) into (Yq, Yq~1)
represents PcZq(Y). Finally, the map h, regarded as a map of
(/P+a+lj jP+q+1) into (^+c+i5 Kp+q) ^présents ?(©!*• ^V) • Thus

y©* (a® j8) a®/S.

Similarly we define 0* on ZP(X) ® ZQ+1(Y) by

y eZp(X), ô eZq+1(Y) and we hâve j0*(y (g) 3) y ® ô

Now let & be an arbitrary isomorphism of ZP+Q+1(K, L) into

such that j&' 1 ; such exists as shewn in obtaining (5.4). Now

Z^Ç+1(K9L) Zv+1(X)®Zq(Y) + ZP(X)®ZQ+1(Y) + R

where R is some free abelian group. We define

© : Zv+q+1{K, L) ->nv+q+1{Kv+g+v L) by

6 | Z^fX) ® Z,(7) + Z,(Z) ® Z4+1(7) 6>*, 0 | R <9'|i?

Since jQ* — 1 and ?'6>' 1, it follows that j© 1. Then 0 is

univalent and will be used in the sequel as a spécifie isomorphism of
Zp+9+1(K,L) into np+q+1(KP+q+1, L) verifying (5.4).

Let / : Iv+2, iv+2 -> X*+2, l'+i
be a characteristic map for a (p + 2) cell, ep+2, in X and let g : Iq, Iq ->
y«, î/0 be a characteristic map for a g-cell, e« in Y. Let A:

!'+*+*-+K^» Kp+q+1 be given by

Then A is a characteristic map for ep+2 x eq. Let / | Ip+2 represent
oc + 9iP, oc€r,p+1(X), peZp+1(X); let g represent ieZq(Y) and
ï €IIQ(Y); let h represent y € np+q+2(Kp+q+2, Kp+q+1) ; and let

d i
2, L)

be an extract of the exact séquence of the triple (Kv+q+2, Kp+q+1, L)
Now it is clear that i is onto and, moreover, that np+q+1(Kp+q+2, L)
is isomorphic with IIp+q+1(K, L) Thus

Hv+q+xiK, L) ^* Hp+q+1(Kp+q+l, L) — d
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Theorem 5.14. dy oc • i + 6{fi ® i).

PutZ0 - X^ - e*+*, Y0 S* g(I*), M Xo x Y0,N=X0^ Fo,
and let h represent y0 eITp+q+2(M, Mp+*+l). Then IIp+g+1(M, N) is
obtained from 77;p+9+1(illf1>+«+1, JV) by adding the relation doyQ 0,
dQ being the boundary homomorphism

d0 : I7P+Q+2(

Let gr represent % eZff(ro)5 70 e77a(F0) We will prove that

and the theorem will follow by embedding M, N in K, L. First let
oc 0, fi 0; then e^+2 is attached inessentially to Xp+1, and the
homomorphism d0 induces the invariant homomorphism

In fact, if y0 is the homology class of the cycle y0, then doyo jLty0.
Now y0 is in XnvJrQ+2{M, N) ; this is easily seen if we replace Xo by
Xv+1 ^ Sp+2, as we may do since X is a homotopy invariant. Thus
doyo juy0 0 and (5.15) is established in this spécial case. We
assume henceforth that at least one of oc, fi is non-zero.

In gênerai, i^x(Xo) is obtained from IIP+1(XV+1) by adding the
relation oc + 9^ 0. Thus, in IIP+Q(N), the relation [i(« + ©1j8),ro]=O
holds, where k is the injection 1TJ)+1(XP+1) ->77:p+1(X0) Now the
boundary homomorphism d : IIv+q+1(M, N) ->ITp+q(N) is univalent
and d(koc'To) [toc, 70], d(k01p • 70) [A:©^, 70] Moreover, in 70,
g-110 70, since 70 FJ. Thus, in np+q+1(M, N), we hâve the relation

The left-hand side is just the injection in nj,+q+1(M, N) of

and 0^^-^0 0(15®^, by (5.12). Moreover, « .7o+©(j8®io) ^ 0
unless a 0, /8 0. Thus there must exist an integer r such that
rdoyo oc • 70 + ©(/8 ® e0). Suppose first that p 0; then » # 0, so
that a -70 ^ 0 and rdoyo ^x «70. Since ^,,+ff+i(-M", iV") is free abelian,
this shows that doyo e rp+Q+1(M, N), so that r is odd and rdoyo d0y0

oc • 70. Now suppose that /? # 0. We then show that r 1 by
studying the homology boundary.
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For consider the diagram

p+q+2(M Jf*+<H-i) LUp+q+2(M, Jf*+<H-i) L

K [d
IIp+q+1(M»+«+\ N) U Zp+q+1(M, N)

Clearly jd0 dç. Now rjdoyo j(oc -ï0 + 0(fi ® *0)) j8 ® *0 On
the other hand dg}>0 is the homology boundary of the cell ep+2 x eq,
which is just p ® i0. Thus /? (g) j0 t(/? ® 60) and r 1 since

fj (g) ^0 ^ 0 and Zp+q+1(M, N) is free abelian. Thus (5.15) holds in ail
cases and the theorem foliows.

Since fi : HP+Q+2(K, L) -> r^^^Z, L) is induced by d:

~^ **p+q+l \^-p+a+l' ¦"/ »

theorem 5.14 tells us how /j, opérâtes on Hp+2 (X) ® Hq (Y) and similarly,
how^u opérâtes12 on HP{X) ® HQ+2(Y) Infact, if ti1:Hp+2{X)-^rp+1{X)
is defined as in (4.9), we hâve the obvious

Corollary5.16 Let k € HP+2(X), Ç eIIQ(Y). Then /*(k
A similar formula holds, of course, for /u \ HP(X) ® Hq+2(Y).

Theorem 5.17 The homomorphism /lc is zéro on HP+1(X) ® Hq+1(Y)
Now any élément of HP+1(X) may be represented by a map /:

jp+1 _>x, x0 ; and any élément of i?a+1(F) may be represented

by a map g: /«+1, /«+1 -> 7, «/0. Thus any élément of JÏ^X) ®£TQ+1(r)

may be represented by a map /: /2)+«+2, /W«+2 _> ^? i. This shows

that ^ | (^+1(Z) ® HQ+1(Y)) 0.

We hâve now13 described ju on ^+2(X) ® HQ(Y) + HP+1(X) (g)

Hq+1(Y) + HP(X) ®Hq+2(Y). We do not describe ju explicitly on
Tor (HP(X), Hq+1(Y)) +Tor(Hp+1(X),Hq(Y)) but calculate it in
a simple but typical case.

Theorem 5.18. Let X Sp ^ e*+\ Y S* ^ S*+1 ^ e«+2, where

is attached to Sp by a map of degree a, and e«+2 is attached to S** ^ Sq+1,

(Sq r^ 8q+1 — y0), by a map which is essential over 8q and of degree r over

12) Starting from a p-cell of X and a (q + 2)-cell of F, the formula corresponding to

(5.14) would be, with the obvious notation, dy t • a + (— l)p@ (i ® fi). See theorem
5.18.

i3) Note that rp+q+1 (K, L) — fi(Hp+2 (X) ® Hq (Y) + Hp+1 (X) ® Hq+1 (Y) +
Hp(X) ® Hq+1(Y)) ^ (rp+1 (X) — iaxHv^(X)) (g) (rq+1 (Y) — fi2Hq+2 (Y)).
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8q+1. Let q (a, r), the h.c.f. of a and r, and let a qg'. Then, if q is
even,

vTor(Hv(X),HQ+1(Y)) 0, a'even, =rp+Q+1(X x Y, Iv7), a'odd. (5.19)

even
Moreover ""'~' " "*' '

\Z-Q,a'odd. (5.20)
Consider the exact séquence

Hp+q+2{XxY,

In our spécial case14 this is

Zç -* Z2 -> np+q+1(X xY, XvY) ->%->0 (5.21)

Now Tor (H9{X), Hq+1(Y)) is generated by r'(ep+1 x ««+1) + -
a'(Sp x eî+2), where t — qt'. For the boundary of this chain is

t'o(8* X S*+1) — o't(Sp x 8**1) 0 and g(r/(e«+1 X /S«+1) + — l)p+1

(T7^ x e«+2)) x(ev^ x >S«+1) + (— l)p+1a(Sp x ee+2), which is the
boundary of (— l)î)-r1(eî>+1 x eQ+2). We study the behaviour of
ep+ixSa+i under d: np+Q+2(Kp+^,Kp+^)-^np+Q+1(Kp+^\ L),
where, as usual, K X x Y, L ~ Iv7. Itis clear, in fact, that
d coincides with the homology boundary on ep'tl x 8q+1 in the sensé that

d(ep+x x S**1) 0a(Sp x S^1)

On the other hand, if rjq+1 générâtes IIq+1(Sq) and ip générâtes ITP(SP)
it follows from (5.14) that

d(8* X eq+*) ip -rjq+, + (- l)p0r(8p x

Recall that ip*r)q+i générâtes Fp+q+l(K,L). Then

d(r'{e*+i X S**1) + (- l)p^af(8p x

and this establishes (5.19).
Let a' be odd. Then A maps to zéro and q : TIp+q+1(X x Y, Zv

Moreover, @ maps ip • tff+1 onto the generator of i/3)+Q+1(X xr,Iv7),
where tQ+1 générâtes IIq+1(8q+1). This establishes part of (5.20) if
or is odd and shows, moreover, that IIp+q+1(X x Y, Iv Y), is generated
by ip'iq+i- Let jp, ^a+1, also stand for the injections of i9, iq+1 in
nv(X),IIq+1(Y) respectively. Then ip générâtes IIP(X) =ZO and iq+1

14) If A, B are finitely generated Abelian groups and A', B' their finite parts, then Tor
{A, B)^A'<g) B'.

77



générâtes15 I7g+1(Y) Z2r. Thus, since (cr, 2%) q, g' being odd, we
have^^OJandtheisomorphism/ir^X) ®/7Q+1(F) ?&IIp+q+1(X xY,X^Y)
is established by the mapping

«, ® *«+i-?', • *«+i • (5-21)

We now take the case of g' even. Then ip • ^a+1^0 and ^ • (î?a+i+ri<i+i)
0, since rjq+1 + rta+1 0 in IIq+1(Y). Thus ep • iq+1 is not of order g.

Since, as before, ip • iqJrl maps onto the generator of Hp+q+1 (X x F, Iv F)
and since the kernel of A is Z2, it follows that ip • ^a+1 is of order 2~q and
générâtes IIp+q+l{X x 7}Iv7). Since (<r, 2t) 2q, (5.20) is veri-
fiedif Gf is even and the isomorphism IIP(X) ®IIq+1(Y) ^ ITp+q+l(X x F,
Iv7) is again achieved by (5.21).

6. The main theorem

Let oc cIJP(X), p e77g(F), where X is any connected CW-complex
such that IIr(X) 0, r 1, 2, p — 1, and F is any connected
CW-complex such that TIS{Y) 0, -s 1, 2, q — 1, p > 3, q > 3

Let <% € jTp+j (X), p e FQ+1( Y) be the images ofoc, p under the isomorphisms
(4.11), (4.12)of np(X)®z2 with rp+1(X),nq(Y)®z2 with rq+1(Y).
Let Al5 A2 mean the same as in (4.9), (4.10) and let G be the group
obtained from

-nP+1(X)®n3(Y)

by identifying oc ® X2p with Xx"ôc ® ^ ail a, /?. Our main theorem is

Theorem 6.1. ^(^(X) ® ^tf+1(F) + ^P+1(X) ® ^,(F)) « 0
Moreover, G is isomorphically embedded in IIp+q+1(X x Y, X v Y) by
the embeddings

oc®y-+oc-y, oc c/7J>(Z), y ci7,+1(F)

Before proving the theorem, we note the foliowing conséquence.
Identifying G with its image in IIP+Q+1(X x Y,XvY), and letting w
stand for the projection Hp+q+1 (X x Y,X^Y) -> Tor (^(X), Jîff F)),
we hâve

Theorem 6.2. IIp+q+1 (Ix7,Iv7) is an extension of G by Tor (HP(X),
HQ(Y)). Precisely, wq is a homomorphism of IIp+q+1(X x Y,Xv Y)
onto Tor(Hp(X),Hq(Y)) with kernel G. We now prove theorem 6.1.

15) This follows easily from the Whitehead suspension theorem. See [2], [5],
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Let Gf be the subgroup of IIp+q+1(X x Y,X^Y) generated by ail
produets *.y,d-p, »€lIp(X), y€llq+1(7), ô eIIp+1(X), p*IIq(7).
Then (i) q mapsG' onto HP{X) ® H9+1{7) + HP+1(X) ® Hq(Y) which
we will write #(X, Y), (ii) (?' contains IT^+^X x r,Iv7), (iii)
<*. A2£ Xjî-p (see 4.6, 4.14). It follows from (i) and (ii) that G'

q~1(H(X, Y)), and from (iii) that the mapping k : G ->(?', given
by k (oc ® y) oc • y, k (ô ® /?) <5 • /? is a homomorphism, k, of G

onto G'. It remains to prove that k is univalent. Let us suppose this
established for ail finite complexes X, Y satisfying the conditions of
the theorem. Then we show that it is true for ail complexes X, Y. It is

certainly sufficient to prove the resuit if X9"1 x0, Yq~1 yQ, so we
assume this. Let | eG(X, Y) and let | be the class containing

ytcllq+1(7), ô, €llp+1, p} €nq(Y) Then *(f) Soct. 7l + Zôrfi9.

If /c(f) o, there exist finite sub-complexes X* c X, 7* c F such
that

(i) <xt 0a*, ce* env(X*), Yt 0y*, y* e/7ï+1(r*),
3, 0è*, à* e np+1(X*), 0, (P/5,*, j?f ci79(F*)

where 0 stands for the relevant injection, and

*Let |* eG(X*, F*) be the class containing Zoc* ® y* + E d* ® fl

and let ** be the homomorphism G{X*, Y*) ->(?7(X*, Y*) Then
#c* (|*) 0 and, by the spécial choice of X, Y, X*, F* satisfy the
conditions of the theorem16, so that, by our hypothesis, k* is univalent.
Thus !* 0. On the other hand, the 'injection' homomorphism

n9(x*) ® nq+1 f*) + np+1 (x*) ® i7a( r*) -> tzp (X) ® /7a+1 F)

induces a homomorphism !P: G(Z*, F*) -> G(X9 Y), and it is clear that
¥*£* f. Thus f 0 and k: is univalent.

We may now assume that X and F are finite complexes. Also, we
continue to assume that X2*-1 xQ, F5"1 y0 It follows from (2.6)

1S) If we take X, F arbitrary, subject only to the hypothèses of the theorem, then we
need to show at this stage that X*, Y* may be embedded m finite subcomplexes of X, Y
whose first p— 1 (resp. #—1) homotopy groups vanish.
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and (4.3)thattheinclusion Z*+2 x F«+2, P+2v7«+2 a X x 7,
induces a homomorphism ofHP+q+2 (X&+2 x F*+2, Z*>+2 vl^) onto
(X X 7, IvF) and isomorphisms of j;+a+1(Z*+2 X F*+2, Z*+2v
HP+Q+1(X*+2 X F*+2, Z*+V F*+2) onto rp+q+1(X x 7, X^Y), Hp+q+1 (XxY
Iv7). It therefore follows from the 'five lemma1 (lemma 4.3, p. 16,

of [4]) that the inclusion Xp+2 x 7*+2, Z*>+2 ^ F«+2 c X x 7, Z v 7
induces an isomorphism of the séquence

x 7«+2,Z3î+2v,7«+2)->i73,+g+1(Xî>+2 x

T^^Z^2 x

onto the séquence

Since, also, it induces an isomorphism of G(ZÎ>+2, 79+2) onto
G(X, 7), it is sufficient to establish (6.1) if Z Zp+2, 7 7«+2.
We assume then that Z Xp+2, Y 7«+2. Finally we choose Zo, 70
of the same homotopy type as Z, 7 and in the Chang normal form
(see [2]). That is to say, Zo is the union of a finite number of elementary
complexes with a single common vertex and 70 is similarly defined. We
refer to [2] or [6], p. 481, for a description of the elementary complexes.
We write XQ UIî5 70 U73, where the Xt, Yo are elementary

complexes. Then

nv(x9) 277,(x,), np+1(X0) zn^xj, nq(Y0) znq<jt) and
% % %

IJq+1(Y0) Z77a+1(7J; and similarly for homology groups. (6.3)
i

We omit the vérification of (6.1) when Z, 7 are elementary complexes ;

this follows readily from (3.6), the only case of any difficulty having been
dealt with in (5.18). Theorem (6.1) will then hâve been proved when
we hâve shown that

G'(X0, Fo) 27<?'(*„ T,). (6.4)
*,*

Now let W%9 : Zo x 70,Z0- 70 ->Xt x F,, Xt ^ Yj be the
projection and let 0t} : Z, X Yjf Xt v Ts -> Zo x 70, Zo v 70 be the
inclusion map. Then it is clear that, under the induced homomorphism
(w,x : /Wi<*. x F,, x0 v r0) -> /7JH.rt.1 (z, xr),i,vrJ)>(?' (z0> r.)
is mapped into G' (Zî? F,) and that, under the induced homomorphism
(*„), :np+q+1(XtxY3,Xtv Y3) ->/7p+g+1(Z0xF0, lov^e'^, F,)
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is mapped into G'(Xo, Yo). Now V7^ <pti 1, and, writing (/*„)* for
(*.,)• TO* ™ hâve

(/O* (/*m )* (iO* if * *, Z,

0 otherwise.

It is now a standard algebraic resuit that, under thèse eircumstances,
the (&t3)* are univalent and, identifying éléments of G'(XZ, Y3) with
their images under (#„)* we hâve

G'(X0,7Q)= £Q'{X%,7,) + R,

where R is the intersection of Gr (XOi Yo) and the kernels of the (,ut3)%.

Formula (6.4) follows if we show that any élément of G'(XOi Yo) is
expressible as S y%v y%3 eGr(Xz, Y3) Let k13 be the isomorphism

G(Xt, 7,) ->G'(Xt, Y3). Then if y c^(X0, 70), y Ky, y€G(XOi Fo),

y= E ylv yl3eG(Xt, 7,), and y jcy 27 *„ ytr This proves (6.4)
*,? *»?

and hence complètes the proof of the theorem.
Geometrically, the subgroup, G! of np+q+1(X x Y, Iv7) consists

of those éléments expressible as 'Whitehead' products. More precisely,
if d:np+q+1(X x Y,X^Y) ->I7p+q(XvY) is the (univalent) bound-

ary, then <LG' is generated by those éléments expressible as Whitehead
products [oc, /?], oc eIIr(X), (} eIIs(Y), where r p, s q + 1 or
r 2> -f- I55=:g. We hâve shewn the algebraic structure of this group
and of the différence group IIv+q+1{X X 7,Iv7)- Gf. In the next
section we will discuss the nature of the group extension. Meanwhile we
note, summing up,

Theorem 6.5. nv+q (X >, Y) h 77^ (X) + i2llp+q 7) + dnp+g+1(X x F,

IvT); if X, Y are connectée CW-complexes such that TIr(X) 0, r 1,

p - 1, 77,(7) 0, a 1, g - 1, p > 3, g > 3,

contains a subgroup dG' generated by ail Whitehead products [oc, y],
ocçnp(X),y€nq+1(Y), and [d, jS], ô eIIp+1(X), p cIIq(Y); and G1 is
isomorphic to the group obtained from IIP(X) ® IIq+1(Y)-\-IIV+1(X)
® IIq(Y) by identifying oc ® A2/3 with Xx "oc ® p, where X2fï is the image
of ^ in the homomorphism TIq{Y) ->77a+1(7) induced by composition
with rjq+1, ^= 0, e IIq+1(Sq) and À1'ôc is similarly defined. Calling this

group G, the isomorphism k : G & Gf is induced by

K{oc ® y) oc • y, k(ô ® 0) ô - fi
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The factor group of dIJp+q+1(X x Y,X^Y) by dG' is isomorphic to

Tor(H,(X), Hq(Y))

7. Calculationoî^-^Tor^CZ), Hq(Y))
We discuss in this section the nature of the group extension of G' by

Tot(Hp(X), Hq(Y)), and we give another interprétation of those
éléments of ITp+q+1(X x 7,lvF) which are mapped by q onto
Tor(Hp(X), Hq(Y)). However, we limit the discussion to the simple
yet typical case in which

X 8» w ep+1, Y fifff w e«+x,

ep+i being attached by a map of degree <r, and ee+1 being attached by
a map of degree r. Let Je — (a, t), the h.c.f. of a, t. Then, if iis odd,

rp+m(Ixr,Iv7) 0 and Tor(Jîp(Z),flrfl(r))=Zfc, sothat
IIp+q+1(X x r,Iv7)=Zifc. Let us suppose k even. Then

and Up+q+1(X x Y, XvY) is an extension of Z2 by 2fc.

M. G. Barratt has shewn17 that, if k is even,

(7.1)

Z2 + Z&5 otherwise. (7.2).

We will give hère a proof of (7.2) which is independent of Barratt's
work but which does not give the resuit (7.1). Let us assume without
loss of generality that a is divisible by 4. Let a 2af and let k' (o', r).
Let X' Sp ^ ev+1, where ep+1 is attached by a map of degree af.

A map Sp ~> Sp of degree 2 may be extended to a map of X' into X
and thence to a map /: X' x Y, X'V7 -> X X Y, Iv7. Consider
the diagram

' x y,xfv Y)^np+q+1(X' x y,xvY)^hm+1{X' x r,xvr)=z

where f, ri, d are induced by /. Then 6q' qï] and rjkf ?X ', %

and Xf are univalent. Moreover ÇJTlH.a+1(-3r/ X Y, Iv7) 0. For
Fp+q+1(Xf x F, I'v7) is generated by rjp^1. tqi in the usual notation,
and

17) This resuit is to appear in a fortheoming paper.
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We now distinguish two cases

Case 1: k=kr._ Put af aQk, r=rok. Then Hp+q+1(Xf x F,
is generated by y' ro(ep+1 X e9) + (— l)p+1a0(ep x e«+1) and

X e^1)) T0(ep+1 x

which is a generator of Hp+q+1(X x F,Iv7). Let /S' generate

let <x; e ^/~1y/ and let a € Q~xy Then we hâve shewn that 6y' — y.
Thus grç#' 0gV 0yr y so that oc — r/^r e ^~1(0) Z2 and
koc — k - r\oJ since & is even. Now fc%' i'a' 0 or A'j8'. Since

A'0' Af/î' 0 we have rjkoc' 0 and koc 0 This shows that
x f5 z^r) - z2 + zfc.

Case 2: i 2Jfc'. Put a/ cr04/, T 2Tofc'. Then^^^X' x F,Z'V7)
is generated by y' 2ro(ep+1 x c«) + (— l)p+1 aQ(ep x e«+1) and

(ep^ x c«) + (- l)p+1a0(e» x

+ (- l)p+1 2<ro(e2) x

where y is a generator of Hp+g+1(X x Y, X^Y) Define (}',oc',oc as
before. Then 6y' 2y so that grça' flç'a' fly' 2y 2qoc and
2a: — rjoc' c ^^(O) — Z2. Multiplying by kr, which is even, we have
koc rjk'oc' and, as before k'oc' 0 or k'fi' so that tjk'oc' 0. We
have koc 0, so that, again, II9+q+1(X X F, IvF) Z2 + Zfc

We now give a différent interprétation ofan élément y e IIJ>+q+1(X X F,
IvF) which is mapped by q onto a generator of HV+Q+1(X x F, X^F).
Hère we make no assumptions on the parities of a, r, but we assume,
without real loss of generality, that p < q. We write k (cr, r).
Consider the exact homotopy séquence

Let gr : /Zrr(/«+1, Iq+1) ->IIr (Iv F, X^S*) be the homomorphism
induced by the characteristic map for eq+1 c F. Then/Zp+<l(JvF,Jvi8*)
contains a subgroup (actually a direct summand) generated by the
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generalized Whitehead product18 [gq+1oc, ip] where oc générâtes
nq+1(IQ+1,iq+1) and ip générâtes I7P(X). Moreover d[gQ+1oc, cp]

±t[^, iq], where ja générâtes ITq(Sq). It may beshownthat [gQ+1oc,iP]

is of order a, whereas d[gq+1<x, ip] is of order a0 y. Thus aQ[gq+1oc, ip]

is of order Je and is mapped by d to zéro. Then if d' is the univalent
homomorphism dr : ITp+q+1 (X x 7, Iv 7) ->ITp+q(Xv Y), we may
suppose that, for some rj eI7v+q(X),pcIIp+q(7)}]/e^+m(Ix7,Iv7),

HhV + hP + d'y) o0[gg+1oc, ip] w say.

Clearly jiiIIp+q(X) 0, sothat JihP + d'y) w. Considerthediagram

where j, f, i2, i% are injections and //2, /i* are homomorphisms induced

by the projection Iv7-»r. Then [jl*w — 0, so that

?>2M + d'y) tfj(ij + d'y) - 0 ;

but fad' 0, /v2 1, sothat f£ 0. Thus ji2j8 t*j'p 0, and

y
Now ^ is of order k; thus md'y $ iIIp+Q(X^Sq) if 0 < m < & ; it

follows immediately, using (4.8), that my $ ûrp+q+1(X x Y, XvY) if
0 < m < k, so that, as required, y is mapped by q onto a generator of

^(IxFJvF).
8. A generalization

We consider in this section a CW-complex 1/ which is the union of
afinitenumberofCW-complexes X^ i — 1, k, with a single common
point, and we assume for simplicity that19

/7r(X<) 0,r 0, 1, ...,p-l, (8.1)

18) It may be shown that 77^+^ (X>/ F, X^Sq)^IIpq p
where the first factor is embedded by gp+q and the second by p -> [gq+i<x, f$],f$ çIJp

We give hère an alternative formulation, due to M. G. Barratt, of the generalized
Whitehead product (originally due to W. S. Massey). Let Q €JJp+q {E& + 1 v SQ, S& v Sq)
be the élément whose boundary is [ip, efl]. Eléments £ €ÏIp+\ {Z> Zo), ri ellq {Zo) de-
termine a class of maps / : E& + 1 v Sq, S# v JSq-+ Z, ZQ. Then [£, r]] € IJp+q (Z, Zo) is
the image of g under the homomorphism induced by /.

19) We adopt the convention that '770(X) 0' means CX is arewise-connected'.
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for ail i 1, k. We write K for ^x^x... X Xk, Kl3 for
Xt X X3, L%3 for Xt vX,. We identify L with. X1^X2s,. ^Xk in the
natural way and embed Ktv Lt3 in K, L as subcomplexes. Thus, for
example, if &t3 : Ktv L%3 -* K, L is the embedding map, then

where o;t c Xî? x} eX3 and ic0 is the common point of Xl9 X2, Xk.
Suppose p > 1 and consider the exact séquences

A f3 : Hzv-i{Kiji Lio) "* r^v_^{KtvLl3) -> n3j)_2(Kl3, Lt3)

^? H^{Ktv LJ ->...-> #2p(i^, Lt,) -> 0 (8.2)

A * : H^K^^r^iK, L)XlT2p_2(K, L)Xh2p_2(K, L) ->

^H2p(K,L)-*0 (8.3)

Then 0^ induces a homomorphism of A?? into Ap in the sensé of
[4, Ch. 1]. We call the homomorphism {^>t3)^ and allow the same symbol
to stand for the induced homomorphisms of the constituent groups of
A^ into those of Ap. We prove

Theorem 8.4. Av 2 (0t,)+ A%9 and each {&t3)* is univalent.
We prove first l<*

Lemma 8.5. Hr(K, L) £ (#„)* Hr(Ktv Ll3) and each (&„)* is
univalent, if r <3p. ^?

We make the foliowing inductive hypothesis. We assume that, for a

particular value of k, and for r < 3p,

Hr(K)^ Z S Ht(Xt)®Hm(X,)+ E
K9^k l+m=r l i-m=r—1

Hr(K,L) + Hr(L)

where Hr(L) is embedded isomorphically in Hr(K) by injection, and

Hr(Kt),LJ,= Z Hl{X,)®Hm{Xj)+ E Tar(Ht{Xt), Hm(X,))
l-\-m—r l+m=r—l

is imbedded isomorphically in Hr(K, L) by injection. This assumption
is trivial if k 1, and follows from (2.5) and (2.6) if k 2. For con-
venience let us actuallyidentify Hr(Ktv Lt3) with (&l3)* Hr(Ktv Ll3). Let
IIr(XkJhl) 0, r=0,1,..., p—1, and let Kf=KxXk+liL'=LvXk+1. Then

Hr{K')= S H,(K)®Ht(XM)+ Z Tor(Hs(K),Ht(Xk+1)). (8.6)
8+t=r 8+t=r-l
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We may identify Hr(L), (r > 0), and its injection in Hr(K), with
k k+l
E Hr(X%) and Hr(Lf) with E Hr(Xt). Also, since each Xt, i 1?

fc + 1, is connected,

H0(K) H0(L) JÏ0(X,) H0(LJ H0(KJ Z.
We apply the inductive hypothesis to (8.6). Then, if r < 3^,

1W)= i1 ^ Hl(Xl)®Hm(X3)®Hn(Xk+1)+ I Tm(Ht{Xt),
l-\-m+n=r l+m+n=r—l

Hm{X,)) ® Hn(Xk+1) + S Tor(Ht(Xt) ® £Tm(Z,

;zfO A;

(Zi)],J5r,,(Xw.1)))+ S

Jffm(Zfc+1)))+Jffr(X;fc+1)r (8.7)
l+m=r—l

This formula reduces to the trivial equality H0(Kf) £T0(X^+.1) if
r 0. Assume r > 0.

We now apply the hypothesis (8.1) to the right hand side of (8.7).
Since /7r(Zt) 0, r < p, i 1, k + 1, it follows that i5Tr(Jt) 0,

0 < r < p. Thus we get non-zero terms from the first direct summand
on the right of (8.7) only when n 0. A similar remark applies to the
second direct summand. The third and fourth summands provide no
non-zero terms. Since r > 0, the fifth summand may be written

î=1 l+m=r
J;zfO,m;zfO

This combines with the sixth summand and Hr(Xk+1) to give

Ail thèse remarks lead to the conclusion that

Hr{K')= Z E Hl(Xt)®Hm(Xj)+ E

+ J5Tr(L') 27 Hr(Ktj, LJ + Hr(L')

and Hr(L') is embedded in Hr(K') by (univalent) injection. Since the
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injection is univalent, the natural homomorphism Hr(K') -> Hr(Kr, L')
is onto Hr(K',L') and its kernel is Hr(L'). Thus

Hr(Kr,L')^ Z Hr(Kt,,Lt9)

and it is clear that Hr(K%v Lt3) is embedded in Hr(K',Lr) by injection.
The full inductive hypothesis is thus verified, and the lemma is proved.

Lemma 8.8. ITr(K, L) Z (&l3)* IIr{Klv Lt3) and each (&„)* is
univalent, if r < Sp — 1 l<j

Let Wl3 : K, L -> Ktv Ll3 be the obvious projection. Since we are
taking KIV Ll3 to be embedded in K, L (by &l3), we may talk of the
iterated projection WK l Wt r Then Wh lWt 3K a L if (h, l) ^ (i, j).
It is a conséquence of a standard theorem on abelian groups20 that

nr(K, L) S (<Z>J* nr(Kn, Ltl) + R
Kl

and each (@l3)* is univalent. The group R is the intersection of the
kernels of the (S*,,)* and we will show that R 0, if r < 3p -— 1. In
fact we will show that every oc eIIr(K, L) is expressible as

Z <%„, ocl3 c (&J* nr(Kt3, Ll3)

To prove this it is convenient to assume, as we may, that X%~1 xQ,

i=l,...,k. Then L K™-1 - L, Ll3 E*'1 ^ L%9 Use (0J+ for
the homomorphism

(*„)* : /7r(Z« w Lti9 Lt3) ->/7r(JC» - i, L)

induced by the embedding, K?f ^ Ll3, Ll3 -> Kn ^ L,L.
We will show that (&l3)* is univalent and

nr(K» ^ L,L)= Z (&l3)* n, {Kl - Lti) (8.9)

if r < 3p — 1 and 2p ^ n. The lemma will then be proved by taking
n 32? — 1. Now (8.9) holds if w 2p. For let Q be the union of
a set of 2p-elements in (1 — 1) correspondence with the 2p-cells of K
mod L, and having a single point on the boundary of each élément in
common. Let P be the boundary of Q, let Qtj be the subset of Q corre-
sponding to the 2^>-cells of Kl3 mod Ltj and let PtJ be the boundary of
Qtr Since 2p <3p,Q UQtj, P UPt3. Let us use &t3 for the embedding

Qt:fJ Ptj -> Q, P, and consider the diagram

20) Note that 772 (K, L),II2 (Kl9, L%1) are abehan because nx(L) IIX {L%j) 0.
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t} i (#„)* i g

LwLtl) ^nr(K*» - L,L)
where grM, y are induced by the characteristie maps for the 2p-célls in
Ktj, K. Then £„, g are isomorphisms21, (<£„)* #„ g (#„)# and certainly

nr(Q, P) S nr(Qt], PJ, since r < 4p - 2

(8.9), with n 2p, is now an immédiate conséquence. Notice that
($>„)* is univalent. Suppose (8.9) true for n m < Bp — 1 and con-
sider the diagram

i,iT'"^)4-Er{Km^L,L)^ Sr{Km+^L,L)^>Zr(KL KL)
#1 I ^2 4-^3

Xzr_x(R™~ L,L)

Xnr_x{K™~ L,L)

Hère ZS{K-~L,K-^L) 27/7.(Z?, «£„ K^^LJ,
ZMn" L, L) ZIIs{Kl .£„, Lî3) ;

0X is defined by 01\IIr+1
are similarly defined, the lower horizontal line is the exact séquence
of the triple (Km+1 ^ L, Km ^ L, L) and the upper horizontal line is
the direct sumofthe exact séquences of the triples (K™+1 ^ L%VK^ ^ Lt3,
LtJ) The upper horizontal line is exact, commutativity holds round
each square, &2 and &5 are isomorphisms (onto) by our inductive hypo-
thesis and &t and <2>4 are isomorphisms (onto) by an argument similar
to that used to prove (8.9) in the case n 2p. Thus, by the 'lemma of
five homomorphisms'22, 03 is an isomorphism onto, and this proves
(8.9) in the case n m + 1. Thus (8.9) is proved for n < Zp — 1, and
hence, since r < 3p — 1, for ail n ^ 2p.

To complète the proof of 8.4, we require

21 The Whitehead suspension theorem may be used because L K2**-1 ^ L, Liy

••) Lemma 4.3, p. 16 of [4],
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Lemma 8.10. Fr(K, L) Z (<PtJ)* Pr{Klv Lt3) and (&l})* is univalent

if2p^r<Sp — 1. l<}
This is trivial if r=2p, since both sides are then zéro; so we assume

r > 2p. We again assume that Xv% ~1
#0, i 1, k ; the lemma is

then an easy conséquence of the properties of the diagram above with
m r - 1, since rr{K, L) Œr{KT^ - L, L), 27 (<?J* r, (Ztl, LJ

0,i Zr{K'-* - L, L) and (0,,),, - <2>31 iZMi^-1 - £„, LJ
Thus theorem 8.4 is completely proved. It enables problems about

the homotopy groups of unions of spaces to be referred back, under
stated conditions, to problems about the homotopy groups of the union
of two spaces. In particular, lemma 8.8 may be applied to extending
theorem 6.5 in the case p q > 3, to the union of more than two spaces.
Theorem 8.4 is best possible in the sensé that, in gênerai, IISp_1(K, L)

ZIJ3p_1(Ktv Lt3) + R where R is non-zero. For example, if p 2,

K SixS22x81 L 8îvSl>,8l, then R ZQO+ZQOi corresponding
to the triple Whitehead products ([il9 i2], i3), ([i2, £3], ix) in /74(i). Also,
of course, H6(K,L) is, in this case, cyclic infinité whereas H6(Kt3,LtJ)=0.
The univalence of the (<?„)* does not, of course, dépend on dimensions
nor on spécial properties of the Xt.

Suppose that nr(Xt) 0, r 1, pt — 1, i 1, k, where

Pi ^ P2 ^ • • • ^Pk' Then it is clear that, by formai changes in the
arguments of this section we may show that the séquence beginning
H2Pi+J>2 _ (K, L) is the direct sum of the séquences beginning
H2jti+P2_1(KÎJ, Ll3) However, it is also clear, modifying slightly the
argument of 8.5, that

KO
if r < px + p2 + pz. We are thus led to attempt to extend theorem
8.4 back to HJ)i+P2+n_1(K, L). We will not prove the full resuit hère
but will content ourselves with the following preliminary resuit.23

Theorem 8.11. ITn(Sp x flf« x Sr, Sp^S^s,Sr) IIn(Sp x S«, SP

+ IIn(S*> x &, Sp^Sr) + nn(S* X Sr, &*>,&), if n<p + q + r -1
The asserted equality is, of course, to beunderstood in the sensé of

univalent injection.
Now njs^s^sn nn(sp)+nn(s<t)+nn(sr)+dnn+1(s» xs*xsr,

Sp >• 8q v 8r), where d is univalent. It will thus be sufScient to show
that, if n<p + q + r — 2,

23) I hâve not found theorem 8.11 in the hterature, but I beheve it to be well-known.
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dnn+1(sp
+ dITn+1 (S9 x Sr, 8p^Sr) + dnn+1 (S« x Sr, S* x 8r) (8.12)

where, for example, d : IIn+1(Sp x8q,Sp^Sq) -> ITn(Sp^8^Sr) is the
univalent homomorphism consisting of the homotopy boundary followed
by the injection IIn(8pvS*) -> TIn(Sp^8q^8r) Note that (8.12) is true
for ail n if, to the right hand side, we add the term dE, where

+ pvS^sr)=nn+1(sp x s«, spss+1
+ I7n+1(SQ xSr, S*vSr) + B (8.13)

Let us assume, without loss of generality, that p ^ q ^r. Then

It is therefore sufficient to show that

p^S^) xSr, 8p^S^^Sr) dIIn+1(Sp xSr,8pv8r)
+ dnn+l (S* xSr,8*s, Sr) (8.14)

+1((/SVS«) x Sr, Sp^S^Sr)=nn+1(Sp^S^Sr^ep+r^e^r, 8p^S^8)r.

Put L Sp>sSqv 8r and consider the séquence

ITn+1 (L ^ ep+r,L)^>IIn+1 (L ^ ep+r ^ e*+r,L)-^Un+1 {L ^ ep+r ^ e<*+r, L ^ ep+r).

It follows from Theorem 1 of [1], since II8(L, SpvSr) O,s<q, that the
injection

nn+l(sp xsr, s*v sn -+nn+1(L - **', L)

is onto, if n<p + q + r~ 2. From the same theorem, or by the
Whitehead suspension theorem, it follows that the injection

Hn+1(8* x8r, 8«vSr) ~>nn+1(L w ep+r ^ e*+ri L ^ ep+r)

is onto, if n<p-\-q + r — 2.
We note from the remark leading to (8.13) that we may easily prove

that the right hand side of (8.14) appears as a direct factor in the left
hand side. It is thus sufficient to show that, if x € dITn+1 (L ^ ep+r ^eq+r,L),
then there exist y e dITn+1 (Sp x 8rf 8P v Sr), z € dlJn+1 (S* x 8r, 8* ^ 8r),
such that

x= y + z

We will be more explicit about the relevant injections; let ipr be the
injection ivr:IIn(8pv8r) -> IIn(L) and let iq r be the injection
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iQ r : TIn (Sqv 8r) -> IIn (L) Then we must show that y, z exist such that

x ^,rV + iQ,r* • (8.15)
Consider the diagram

I7n+1(Spx8r, SpvSr)^nv+1(L^ep+r,L)^nn+1(L^ep+r^e(*+r, L)-^IJn+1(L^ep+

d

lp,r

\CQ,r

nn(s*

The homomorphisms marked cd' are homotopy boundaries, the rest
injections, and ail commutativity relations hold. Recall that, since

n<p + q-\-r — 2, X and (j, are onto. Let x dx'', x' e IIn+1 (L ^ ep+r

^ eq+r, L). Then hx Jcdxf djx' ^2:' say, &ee>r da;' kiq r z,

zednn+1(8q x8r,Sq^Sr). Thus x - iqrz e k-1(0) dlîn+1(L^ ev+^,L)

=dkIIn+1(Sp x Sr,Spv8r) i^rdnn+1{8p x /Sr, ^ v/S*1) so that x — iqr z

— lptry> y ^dITn+1(Sp xSr, Sp\sSr) and the theorem is proved.

Pembroke Collège, Cambridge
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