The associated form of a variety over a field of prime characteristic p.

Autor(en): Hedge, S.V. Keshava
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 30 (1956)

PDF erstellt am: $\quad 11.07 .2024$
Persistenter Link: https://doi.org/10.5169/seals-23906

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

The associated form of a variety over a field of prime characteristic p

by S. V. Keshava Hegde, Bangalore (India)

Introduction

Wei-Liang Chow and van der Waerden in a publication [1] have introduced the associated form of an irreducible variety V. If d is the dimension of V, the associated form $F(u)$ is defined as an irreducible form in $u_{0}, u_{1}, \ldots, u_{n}$, depending on d generic hyperplanes $u^{(1)}, \ldots, u^{(d)}$, such that $F(u)$ becomes zero as soon as the hyperplane u is specialised so as to contain one of the points of intersection of $u^{(1)}, \ldots, u^{(d)}$ with V. The form $F(u)$ is symmetric or antisymmetric in the $d+1$ sets of variables $u, u^{(1)}, \ldots, u^{(d)}$.

André Weil in his "Foundations of Algebraic ('eometry" [2] gave new definitions of the fundamental notions of algebraic geometry. In particular, he introduced the notions of algebraically disjoint and of linearly disjoint fields and he proved the theorem ([2], Th. 5, p. 18) : An extension $k(x)$ of a field k and the algebraic closure \bar{k} of k are linearly disjoint if and only if k is algebraically closed in $k(x)$, and $k(x)$ separably generated over k.
W.-L. Chow used the characteristic form in his investigation of "Algebraic systems of positive cycles in an algebraic variety" [3]. In the introduction of his paper he mentioned, without prof, the following property of the characteristic form : If the variety is separably generated then the associated form has no multiple factors.

We shall investigate quite generally, how the characteristic form, which is irreducible in K, factorises in an extension field L of K, and how this factorisation is related to the splitting of V into varieties V_{1}, V_{2}, \ldots irreducible over L. In particular Chow's assertion mentioned above will be proved.

1. Definitions and notations

Let us take an arbitrary field k as ground field. We shall assume k to be of characteristic p. The universal extension field Ω is obtained from k by
adjunction of a countable number of indeterminates and algebraic closure. All coordinates of points and all coefficients of equations are always taken from Ω.

Let K, L, \ldots stand for intermediate fields which contain k and are contained in Ω. These intermediate fields are always supposed to be generated by the adjunction of a finite number of elements to k.

An intermediate field L is said to be separably generated over K, if L is generated from K by adjunction of algebraically independent elements and separable algebraic functions of these elements.

A series of n coordinates $p_{1}, p_{2}, \ldots, p_{n}$ from Ω is called a point of the affine space R_{n}, and a point of the projective space S_{n} is a ray of the affine space R_{n+1} consisting of all points $\left(\omega p_{0}, \omega p_{1}, \ldots, \omega p_{n}\right)$, where $\left(p_{0}, \ldots, p_{n}\right) \neq(0,0, \ldots, 0)$ is a fixed point of R_{n+1} and ω runs over all the elements of Ω.

A variety is the set of all points of R_{n} or S_{n} which satisfy a finite system of algebraic equations,

$$
f_{k}\left(p_{1}, p_{2}, \ldots, p_{n}\right)=0 \quad \text { or } \quad f_{k}\left(p_{0}, p_{1}, \ldots, p_{n}\right)=0
$$

where f_{k} shall be polynomials in the first case, forms in the second case with coefficients from Ω. We shall suppose that the set is non-empty.

If a variety can be represented as a union of two proper parts (subvarieties), it is said to be divisible. The variety is indivisible if such a representation is not possible.

If the equations that define the variety have their coefficients in K, the variety is called a variety over K. It is irreducible over K if it does not split into proper parts which are again varieties over K. By definition an indivisible variety remains irreducible over any extension field, i. e., it is absolutely irreducible.

A point P is said to be a specialisation of a point X with respect to a field K, if all equations $f\left(x_{1}, \ldots, x_{n}\right)=0$ with coefficients from K, or in the projective case all homogenous equations $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)=0$, which are valid for the point X, remain valid if X is replaced by P.

An irreducible variety V over K has always a generic point X such that all points of V can be obtained by specialisation (with respect to K) of X. The generic point is uniquely determined by V except for isomorphisms. That is, in the affine case the coordinates x_{1}, \ldots, x_{n} are uniquely determined except for a field isomorphism applied to all x_{k}, which leaves the elements of K unaltered. In the projective case the x_{k} are uniquely determined only up to a common factor ω. We may number the coordinates so that $x_{0} \neq 0$ and then normalise ω so that $x_{0}=1$. The non-
homogeneous coordinates x_{1}, \ldots, x_{n} of the point X are then uniquely determined but for an isomorphism. The number of the algebraically independent coordinates among the so normalised x_{k} is called the dimension of V.

The above terminology is in accordance with the suggestions of van der Waerden in one of his recent papers [4].

If $V=V_{1}+V_{2}+\cdots+V_{r}$, and all the imbedded V_{i} are left out and the rest have the same dimension then the variety is aid to be unmixed or pure.

We shall call with André Weil [2] an extension $K(X)$ of a field K regular over K or a regular extension of K if \bar{K} (the algebraic closure of K) and $K(X)$ are linearly disjoint over K.

2. The associated form of a variety

Let V be an irreducible variety of dimension d over a field K in the projective space S_{n}.

Let $u^{(1)}, \ldots, u^{(d)}$ be hyperplanes with indeterminate coordinates $u_{k}^{(\nu)}$. The indeterminates $u_{k}^{(\nu)}$ shall be algebraically independent over K. The hyperplanes intersect V in a finite number of points $X^{(1)}, \ldots, X^{(g)}$, conjugate over K.

Now we take in addition a further series of indeterminates,

$$
u_{k}(k=0,1, \ldots, n) .
$$

The product,

$$
\begin{equation*}
P=\prod_{1}^{g}\left(u_{0} x_{0}^{(\nu)}+u_{1} x_{1}^{(\nu)}+\cdots+u_{n} x_{n}^{(\nu)}\right) \tag{1}
\end{equation*}
$$

is a symmetric function in $X^{(1)}, \ldots, X^{(g)}$.
In case of characteristic zero the product is rational in

$$
K\left(u, u^{(1)}, \ldots, u^{(d)}\right):
$$

In this case we write $P=Q\left(u, u^{(1)}, \ldots, u^{(d)}\right)$.
In case of characteristic p a p^{e} th power of the product P is rational and we write, taking e to be the lowest possible exponent,

$$
\begin{equation*}
P^{q}=Q\left(u, u^{(1)}, \ldots, u^{(d)}\right), \quad\left(q=p^{e}\right) \tag{2}
\end{equation*}
$$

Q is integral in u and rational in $u^{(1)}, \ldots, u^{(d)}$. We can, therefore, write

$$
\begin{equation*}
Q=\frac{A}{B} F\left(u, u^{(1)}, \ldots, u^{(d)}\right) \tag{3}
\end{equation*}
$$

where A and B depend only on $u^{(1)}, \ldots, u^{(d)}$, while F is integral in $u, u^{(1)}, \ldots, u^{(d)}$, and contains no more factors depending only on $u^{(1)}, \ldots, u^{(d)}$.
Q is irreducible in $K\left(u^{(1)}, \ldots, u^{(d)}\right)[u]$ and hence F is irreducible in $K\left[u^{(1)}, \ldots, u^{(d)}, u\right]$.

For, if F is reducible in $K\left[u^{(1)}, \ldots, u^{(d)}, u\right]$, let $F=G H$, where G and H both contain u. Consequently, $Q=\frac{A}{B} G H=\left(\frac{A}{B} G\right) H$, contrary
to hypothesis.

The irreducible form F is called the associated form of V.
We shall now show that a permutation of the variable series $u, u^{(1)}, u^{(2)}, \ldots, u^{(d)}$ leaves F unaltered up to a factor ± 1.
The condition,

$$
F\left(v, v^{(1)}, \ldots, v^{(d)}\right)=0
$$

is necessary and sufficient in order that the hyperplanes $v, v^{(1)}, \ldots, v^{(d)}$ have a point in common with V ([5] § 36, p. 157).

In the same way the condition,

$$
F\left(v^{(1)}, v, \ldots, v^{(d)}\right)=0
$$

(with v and $v^{(1)}$ interchanged) is necessary and sufficient in order that $v, v^{(1)}, \ldots, v^{(d)}$ have a point in common with V. The two conditions being equivalent, and both forms $F\left(u, u^{(1)}, \ldots, u^{(d)}\right)$ and

$$
F\left(u^{(1)}, u, u^{(2)}, \ldots, u^{(d)}\right)
$$

being irreducible, they must be proportional :

$$
F\left(u^{(1)}, u, \ldots, u^{(d)}\right)=\gamma F\left(u, u^{(1)}, \ldots, u^{(d)}\right)
$$

where γ is a constant. The square of a transposition being identity, γ^{2} must be equal to 1 , so γ can only be +1 or -1 . The same is true for all transpositions of two of the $d+1$ series $u, u^{(1)}, \ldots, u^{(d)}$.

Since every permutation is a product of two transpositions, it follows that every permutation leaves \boldsymbol{F} invariant but for a factor ± 1.

In the following we shall be concerned only with the associated forms of varieties over a field K of characteristic p, where p is a prime number.

3. The behaviour of the associated form over an extended field

Let V be irreducible over a field K and d be the dimension of V. Then over any extension L of K, V is an unmixed variety of dimension d.

This theorem, which is proved by Hodge and Pedoe ([6], § 11, Th. 1,
p. 69) for the case of a field of characteristic zero, is also true for the case of a field of characteristic $p>0$, since the conditions mentioned in the proof of the above theorem are independent of the characteristic of the field.

Let the field K be of characteristic p. The associated form F defined in $\S 1$ is irreducible over K.

Let $L=K\left(t_{1}, \ldots, t_{s}\right)$ be a purely transcendental extension. That is, let t_{1}, \ldots, t_{s} be algebraically independent over K. Now we shall prove

Theorem 1. A purely transcendental extension $L=K\left(t_{1}, \ldots, t_{s}\right)$ leaves F and V irreducible.

Proof: Suppose F could be factorised in $K(t)[u]$, e. g.

$$
F(u)=g(t, u) \cdot h(t, u) .
$$

By a well known theorem of Gauss ([7] I, § 23) this factorisation would imply a factorisation in $K[t, u]=K[t][u]$, say

$$
F(u)=G(t, u) \cdot H(t, u)
$$

where G and H are polynomials in t and u. Putting all $t_{i}=0$, we would obtain a factorisation of $F(u)$ in K, which is impossible, i. e. $F(u)$ cannot be factorised in $K\left(t_{1}, \ldots, t_{s}\right)=L$.

If V were reducible, the points of intersection $X^{(\nu)}$ would split up into the generic points of V_{1}, generic points of V_{2} and so on. This implies a factorisation of $F(u)$, as will be shown in the proof of theorem 4.

Theorem 2. A transcendental extension L of K, in which the form F can be factorised into h factors,

$$
F(u)=G_{1}(u) G_{2}(u) \ldots G_{h}(u), \quad(\text { in } L[u])
$$

always contains an algebraic extension A, in which $F(u)$ can be factorised in the same way:

$$
F(u)=C F_{1}(u) F_{2}(u) \ldots F_{h}(u), \quad(\text { in } A[u])
$$

so that the factors F_{j} are not essentially different from G_{j}.
Proof: For the sake of convenience, the u_{j} and $u_{j}^{(i)}$ of our earlier notation will be replaced by $u_{j}^{(0)}$ and $u_{j}^{(i)}$. Let F be of order g and let k be any integer greater than g which we can choose once and for all. Let us fix $(d+1)(n+1)$ integers $r_{i j}$ such that

$$
0 \leqq r_{00}<r_{01}<\cdots<r_{0 n}<r_{10}<\cdots<r_{1 n}<\cdots<r_{d 0}<\cdots<r_{d n} .
$$

Let $\Phi\left(u_{j}^{(i)}\right)$ be any polynomial in the $u_{j}^{(i)}$ such that no $u_{j}^{(i)}$ appears to a power greater than g and let $\varphi(t)$ be the polynomial in t obtained by replacing $u_{j}^{(i)}$ in $\Phi\left(u_{j}^{(i)}\right)$ by t to the power $k^{r_{i j}}(i=0, \ldots, d ; j=0, \ldots, n)$. Consider now a term in $\Phi\left(u_{j}^{(i)}\right)$ in which $u_{j}^{(i)}$ has exponent $\varrho_{i j}$. From this we get a term in $\varphi(t)$ with the exponent $\Sigma \varrho_{i j} k^{r i j}$. Another term in $\Phi\left(u_{j}^{(i)}\right)$ in which $u_{j}^{(i)}$ has exponent $\sigma_{i j}$ leads to a term in t with exponent $\Sigma \sigma_{i j} k^{r i j}$ and since $\varrho_{i j} \leqq g<k, \quad \sigma_{i j} \leqq g<k$ we have $\Sigma \varrho_{i j} k^{r_{i j}}=$ $\Sigma \sigma_{i j} k^{r_{i j}}$ if and only if $\sigma_{i j}=\varrho_{i j}$ for $i=0, \ldots, d ; j=0,1, \ldots, n$. Therefore, the set of coefficients of $\Phi\left(u_{j}^{(i)}\right)$ must exactly be the same as the set of coefficients of $\varphi(t)$.

Now let L be any extension of K over which the associated form $F(u)$ becomes reducible,

$$
F(u)=F\left(u^{(0)}, u^{(1)}, \ldots, u^{(d)}\right)=\prod_{j=1}^{h} G_{j}\left(u^{(0)}, u^{(1)}, \ldots, u^{(d)}\right)=\prod_{j=1}^{h} G_{j}(u) .
$$

Let the corresponding polynomials in t be

$$
f(t)=\prod_{j=1}^{h} g_{j}(t)
$$

If C_{j} is the leading coefficient of $g_{j}(t)$, i. e., the coefficient of the highest power of t, we may write $g_{j}(t)=C_{j} f_{j}(t)$, where $f_{j}(t)$ have leading coefficient 1 . Hence $f(t)=\prod_{j=1}^{h} C_{j} f_{j}(t)$. The set of coefficients of $g_{j}(t)$ is the same as the set of coefficients of $G_{j}(u)$. Hence we can write $G_{j}(u)=C_{j} F_{j}(u)$ and $F(u)=\prod_{j=1}^{h} C_{j} F_{j}(u)$ corresponding to the above
equation in t.

Now each coefficient of $f_{j}(t)$ is a symmetric function of the roots and hence lies in the root field B of the polynomial $f(t)$ over K. The coefficients of $f_{j}(t)$ also lie in L, because they are quotients of coefficients of $g_{j}(t)$. Hence they lie in the intersection field A of B and L. Thus the theorem is proved.

Theorem 3. F can be split into absolutely irreducible factors $F=C F_{1}^{q} \cdot F_{2}^{q} \ldots F_{h}^{q}$ with coefficients in an algebraic extension field of K.

Proof: If F can be factorised, let us write $F=F_{1} \cdot F_{2}$. If F_{1} or F_{2} can be factorised we shall continue the factorisation until we arrive at absolutely irreducible factors : $F=G_{1} G_{2} \ldots G_{h}$.

By theorem 2, the G_{j} may be replaced by F_{j} with coefficients from an algebraic extension A. Thus we get:

$$
F=C F_{1} F_{2} \ldots F_{h} .
$$

The F_{j} are absolutely irreducible, because they are proportional to the G_{j}.

Some of the factors may be repeated. In this case we shall write

$$
F=C F_{\mathbf{1}}^{q_{1}} \cdot F_{2}^{q_{2}} \ldots F_{h}^{q_{h}}
$$

Later on we shall see that F can have repeated factors only if F is the q th power of a form F_{0} without repeated factors, q being a power of the characteristic p. So the decomposition of F into absolutely irreducible factors must have the form,

$$
F=C F_{1}^{q} F_{2}^{q} \ldots F_{h}^{q}
$$

Theorem 4. Let L be any extension of K. Let $V=V_{1}+V_{2}+\ldots+V_{h}$ be the decomposition of V in L. Let F_{1}, \ldots, F_{h} be the associated forms of V_{1}, \ldots, V_{h}. Then the decomposition of F in $L[u]$ is

$$
F=C F_{1}^{a_{1}} \cdot F_{2}^{a_{2}} \ldots F_{h}^{a_{h}}
$$

Proof: We have, $V=V_{1}+V_{2}+\cdots+V_{h}$, where $V_{1}, V_{2}, \ldots, V_{h}$ are irreducible over L and they are of the same dimension. The points of intersection $X^{(\nu)}(\nu=1,2, \ldots, g)$ are split up into generic points of V_{1}, generic points of V_{2} and so on.

So if F_{1} and F_{2} are the associated forms of V_{1} and V_{2} the linear factors of F are partly contained in F_{1} and partly in F_{2} and so on.

Hence F can only be

$$
F=C F_{1}^{a_{1}} \cdot F_{2}^{a_{2}} \ldots F_{h}^{a_{h}}
$$

Corollary 1. If V is absolutely irreducible then F is a power of a prime form.

Proof: Suppose F can be expressed in some extension L of K as a product of different factors, say, $F=F_{1} \cdot F_{2}$ having no prime factor in common. If F_{1} is factorised into linear factors as in (1), it must contain with every factor all conjugate linear factors as well. Now all points of intersection of V with the hyperplanes $u^{(1)}, \ldots, u^{(d)}$ are conjugate, because V is irreducible over L. Hence F_{1} contains all prime factors of (1), each once at least. The same holds for F_{2}. Hence F_{1} and F_{2} have factors in common, against hypothesis. Thus, F can only be a power of a prime form in L.

In the special case when F has no multiple factors, $F=F_{1} \cdot F_{2} \ldots F_{h}$. By Theorem 4, each of the prime factors F_{1}, \ldots, F_{h} defines a separate variety. These sub-varieties cannot be further subdivided, since the associated forms are irreducible.

Conversely, to every irreducible part of V corresponds a prime factor of F. For, if to an irreducible part of V corresponds a factor of F which is again factorisable into separate factors we arrive at a contradiction.

To each factor of F corresponds exactly one irreducible part of V. Hence the number of factors is the same. Therefore, we have :

Corollary 2. If F has no repeated factors, the decomposition of \boldsymbol{F} is $\boldsymbol{F}=\boldsymbol{F}_{1} \cdot \boldsymbol{F}_{2} \ldots \boldsymbol{F}_{h}$. In this case to every prime factor of \boldsymbol{F} corresponds an irreducible part of V and conversely. The number of factors is equal to the number of irreducible parts.

Corollary 3. If V is absolutely irreducible and F has no repeated factors, F is absolutely irreducible.

Corollary 4. If F is absolutely irreducible or a power of an absolutely irreducible factor, then V is absolutely irreducible.

Proof: Suppose V is reducible over some extension L of K, say into V_{1} and V_{2}.
Let F_{1}, F_{2} be the corresponding associated forms ; then by Theorem 4,

$$
F=F_{1}^{a_{1}} \cdot F_{2}^{a_{2}} \quad \text { contrary to hypothesis. }
$$

Theorem 5. If $L=\Omega$ is chosen so that F factors into absolutely irreducible factors $F=F_{1}^{a_{1}} \ldots F_{h}^{a_{h}}$, then V decomposes into absolutely irreducible varieties in Ω.

Proof: To each absolutely irreducible factor F_{j} or to a power of an absolutely irreducible factor F_{j}^{q} corresponds a part V_{j} of V according to Theorem 4.

Now, by corollary 4 these V_{j} are indivisible (i. e., absolutely irreducible) parts of V.

This concludes the proof of theorem 5.

4. The case of a purely inseparable extension field

Now we shall consider the case of a purely inseparable extension of a field K. A purely inseparable extension of K of characteristic p is defined as an extension L in which every element is a p^{e} th root of an element of K.

Theorem 6. The variety V remains irreducible in a purely inseparable extension of K.

Proof: Let p be the characteristic of K and let the algebraic extension
L be purely inseparable. Then L consists only of p^{e} th roots (which are unique) of elements of K.

If V were reducible over L, there would be a product of forms G and H with coefficients in L, such that $G H$ contains V but neither G nor H contains V. Now $q=p^{e}$ can be so chosen as a power of p such that the q th powers of all coefficients of G and H are in L. By the well known rule, $(a+b+\ldots)^{q}=a^{q}+b^{q}+\ldots$ it follows that G^{q} and H^{q} are forms with coefficients in K. Now the form

$$
(G H)^{q}=G^{q} H^{q}
$$

contains V, but neither G^{q} nor H^{q} contains V. This is impossible since V is irreducible over K.
Now let $q=p^{e}$ have the same meaning as in formula (2), § 1 . We shall prove

Theorem 7. In a suitable, purely inseparable extension K_{0} of K the form \boldsymbol{F} becomes equal to F_{0}^{q}, where $\boldsymbol{F}_{\mathbf{0}}$ has no multiple factors any more.

Proof: The formula (2) in $\S 2$ implies that Q contains the indeterminates u_{0}, \ldots, u_{n} only in the q th power.

The same holds good for F on account of (3) § 1. Now on account of the possibility of interchanging it follows, that F also contains the $u_{k}^{(\nu)}$ only in the q th power.

Therefore, F is a q th power of a form in u_{k} and $u_{k}^{(\nu)}$ with coefficients from a field K_{0}, which arises out of K by the adjunction of the q th roots of all coefficients of F. Thus we have

$$
\begin{equation*}
F=F_{0}^{q} . \tag{4}
\end{equation*}
$$

Formula (3) now becomes

$$
\begin{equation*}
P^{q}=\frac{A}{B} F_{0}^{q} \tag{5}
\end{equation*}
$$

By (1), § 1, the product P has no multiple factors. Hence the left side of (5) and therefore, also the right side contains every factor exactly q times ; it follows that F_{0} contains every linear factor of P only once, i. e., $\boldsymbol{F}_{\mathbf{0}}$ does not contain multiple factors. This concludes the proof of Theorem 7.

Theorem 8. If $q=1$, the variety V is separably generated, i. e., all X are separable algebraic functions of d independent elements.

In the proof 2 cases will be distinguished.

Case 1. We suppose K to be an infinite field. In the case of a field of characteristic p an irreducible polynomial $f(t)$ of one variable t is inseparable if and only if it may be written as a polynomial in t^{p}.
Suppose $e=0$, i. e., $q=p^{e}=1$. By (1) $\S 1$ and (5), F_{0} is a product of different linear factors :

$$
u_{0} x_{0}^{(\nu)}+u_{1} x_{1}^{(\nu)}+\cdots+u_{n} x_{n}^{(\nu)} .
$$

Now if we normalise $x_{0}=1$, we obtain

$$
u_{0}+u_{1} x_{1}^{(\nu)}+u_{2} x_{2}^{(\nu)}+\cdots+u_{n} x_{n}^{(\nu)} \quad \text { as factors. }
$$

Now consider F_{0} as a polynomial in one variable u_{0}. This polynomial is a product of linear factors

$$
\left(u_{0}-\vartheta\right)\left(u_{0}-\vartheta^{\prime}\right) \ldots
$$

all different. Consequently $\vartheta=-\left(u_{1} x_{1}^{(\nu)}+u_{2} x_{2}^{(\nu)}+\cdots+u_{n} x_{n}^{(\nu)}\right)$ is separable with respect to the field, $K\left(u_{1}, \ldots, u_{n} ; u^{(1)}, \ldots, u^{(d)}\right)$.

Let V be defined over a field K. We shall enlarge the field K by the adjunction of n^{2} indeterminates $t_{i k}$, where i and k take all values from 1 to n. Let the enlarged field $K\left(t_{i k}\right)$ be denoted by K^{\prime}. By Theorem 1, V is still irreducible with respect to K^{\prime}. We shall first prove our theorem with respect to K^{\prime}.

We have proved that

$$
-\vartheta=u_{1} x_{1}^{(\nu)}+u_{2} x_{2}^{(\nu)}+\cdots+u_{n} x_{n}^{(\nu)}
$$

is separable with respect to the field $K\left(u_{1}, \ldots, u_{n} ; u^{(1)}, \ldots, u^{(d)}\right)$. In this enunciation, the indeterminates u_{k} and $u_{k}^{(i)}$ may be replaced by any other set of indeterminates. Now replace,

$$
\begin{aligned}
& u_{k} \text { by } t_{e k}(k=1, \ldots, n ; \quad e=d+1), \\
& u_{k}^{(i)} \text { by } t_{i k}(k=1, \ldots, n), \\
& u_{0}^{(i)} \text { by new indeterminates } z_{i}(i=1, \ldots, d) .
\end{aligned}
$$

It follows that,

$$
\begin{equation*}
-\vartheta_{e}=t_{e 1} x_{1}+t_{e 2} x_{2}+\cdots+t_{e n} x_{n} \tag{6}
\end{equation*}
$$

is separable with respect to the field $K^{\prime}\left(z_{1}, \ldots, z_{d}\right)$, where X is any one of the points of intersection of V with the hyperplanes

$$
\begin{equation*}
z_{i}+t_{i 1} x_{1}+t_{i 2} x_{2}+\cdots+t_{i n} x_{n}=0 . \tag{7}
\end{equation*}
$$

Now the problem may be simplified by a linear transformation of the coordinates x_{1}, \ldots, x_{n} :

$$
\begin{equation*}
y_{i}=\Sigma t_{i k} x_{k} ; \quad(i=1, \ldots, n) \tag{8}
\end{equation*}
$$

Equations (6) and (7) now simplify to

$$
\begin{gathered}
z_{i}+y_{i}=0 . \\
-\vartheta_{e}=y_{e} .
\end{gathered}
$$

Hence y_{1}, \ldots, y_{d} are equal to $-z_{1}, \ldots,-z_{d}$, and $y_{d+1}=y_{e}=-\vartheta_{e}$ is a separable function of the indeterminates z_{1}, \ldots, z_{d}.

The same holds, if $d+1$ is replaced by any one of the numbers $d+2, d+3, \ldots, n$. Hence y_{d+1}, \ldots, y_{n} are separable functions of z_{1}, \ldots, z_{d}. Also y_{1}, \ldots, y_{d} are separable functions of z_{1}, \ldots, z_{d}, for they are equal to $-z_{1}, \ldots,-z_{d}$. So all y_{i} are separable functions of z_{1}, \ldots, z_{d}. Solving (8) with respect to the x_{k}, it is seen that also x_{1}, \ldots, x_{n} are separable functions of the indeterminates z_{1}, \ldots, z_{d}.

Thus the theorem 8 is true provided K^{\prime} [equal to $\left.K\left(t_{i k}\right)\right]$ is taken as a field of constants instead of K. Now we have to pass from K^{\prime} to K.

Let e be anyone of the numbers, $d+1, \ldots, n$. We have an algebraic equation defining y_{e} as an algebraic function of y_{1}, \ldots, y_{d} :

$$
\begin{equation*}
f_{e}\left(y_{1}, \ldots, y_{d}, y_{e}\right)=0 \tag{9}
\end{equation*}
$$

The coefficients of this equation are rational functions of the $t_{i k}$, but they may be made integral rational. To express this, we shall write

$$
\begin{equation*}
f_{e}\left(t_{i k}, y_{1}, \ldots, y_{d}, y_{e}\right)=0 \tag{10}
\end{equation*}
$$

Now we can show that X is a generic point of V over $K\left(t_{i k}\right)$:
y_{1}, \ldots, y_{d} are algebraically dependent on x_{1}, \ldots, x_{n} by (8); and y_{1}, \ldots, y_{n} are algebraically dependent on y_{1}, \ldots, y_{d} by (10). By solving (8) we see that x_{1}, \ldots, x_{n} are dependent on y_{1}, \ldots, y_{n}. Hence x_{1}, \ldots, x_{n} are algebraically dependent on y_{1}, \ldots, y_{d}. Therefore $x_{1}, x_{2}, \ldots, x_{n}$ are equivalent to y_{1}, \ldots, y_{d}.

That is, the degree of transcendency of X over $K\left(t_{i k}\right)$ is d. Hence X is a generic point of V over $K\left(t_{i k}\right)$.

The equations (8) and (9) or (10) may be interpreted in another way. We have considered z_{1}, \ldots, z_{d} as indeterminates and x_{1}, \ldots, x_{n} as algebraic functions of z_{1}, \ldots, z_{d}. We may also start with a generic point X of V, define y_{1}, \ldots, y_{n} by (8) and define z_{1}, \ldots, z_{d} by $z_{i}=-y_{i}$. The equations (9) remain valid in this interpretation, because all algebraic equations, valid for one generic point of V, remain valid for any other generic point. This means: if y_{1}, \ldots, y_{d} and y_{e} are substituted from equation (8) into (10), we get an identity in the $t_{i k}$:

$$
\begin{equation*}
f_{\theta}\left(t_{i k}, \Sigma t_{i k} x_{k}\right)=0 . \tag{11}
\end{equation*}
$$

Such an identity remains valid, if the $t_{i k}$ are specialised to $t_{i k}^{\prime}$, and the y_{i} accordingly to $y_{i}^{\prime}=\Sigma t^{\prime}{ }_{i k} x_{k}$.

Thus we get,

$$
\begin{equation*}
f_{e}\left(t_{i k}^{\prime}, y_{1}^{\prime}, \ldots, y_{d}^{\prime}, y_{e}^{\prime}\right)=0 . \tag{12}
\end{equation*}
$$

Let A_{e} be the coefficient of the highest power of y_{e} in (10) and D_{e} the discriminant of (10), considered as an equation for $y_{e} . A_{e}$ does not vanish, nor does D_{e}, because the equation is separable. A_{e} and D_{e} are polynomials in $t_{i k}$ and y_{1}, \ldots, y_{d}, and upon substitution of (8) they become polynomials in $t_{i k}$ and x_{1}, \ldots, x_{n}. Further, let D be the determinant of the $t_{i k}(i=1, \ldots, n ; k=1, \ldots, n)$.

Now specialise $t_{i k}$ into $t_{i k}^{\prime}$ so that $D \stackrel{n}{\Pi} A_{\theta} D_{e}$ remains $\neq 0$, where $t_{i k}^{\prime}$ are elements of K. Equation (12) now shows that all y_{e}^{\prime} and hence all x_{1}, \ldots, x_{n} are separable algebraic functions of $y_{1}^{\prime}, \ldots, y_{d}^{\prime}$. This completes the proof of theorem 8 for case 1 .

Case 2. Now, let K be a finite field and hence perfect. In this case the theorem follows from the following ${ }^{1}$)

Lemma: x_{1}, \ldots, x_{d} can be numbered in such a way that x_{d+1}, \ldots, x_{n} are separable algebraic functions of x_{1}, \ldots, x_{d}.

Theorem 9. If V is separably generated then $q=p^{e}=1$ (i.e., $e=0$, where e is the exponent).

Proof: By Kronecker's substitution, $F(u)$ is replaced by $f(t)$, where $f(t)=t^{n}+a_{1} t^{n-1}+a_{2} t^{n-2}+\cdots+a_{n}$.

Suppose it contains only t^{q}. Then we can write,

$$
\begin{gathered}
f(t)=t^{m q}+a_{1} t^{(m-1) q}+\cdots+a_{n}=g\left(t^{q}\right) ; \\
g(v)=v^{m}+a_{1} v^{(m-1)}+\cdots+a_{n} .
\end{gathered}
$$

Now $g(v)$ is separable, otherwise it could be written as a polynomial in t^{p}.

Hence there is a separable extension L in which $g(v)$ is a product of different linear factors:

$$
g(v)=\left(v-v_{1}\right)\left(v-v_{2}\right) \ldots\left(v-v_{m}\right) .
$$

In L let the variety be $V=V_{1}+V_{2}+\cdots+V_{h}$ where $V_{1}, V_{2}, \ldots, V_{h}$

[^0]are irreducible. Then,
$$
F(u)=F_{1} \cdot F_{2} \ldots F_{h} .
$$

By Kronecker's substitution this is replaced by

$$
\begin{aligned}
f(t) & =f_{1}(t) \cdot f_{2}(t) \ldots f_{h}(t) \\
\text { i. e., } \quad f(t) & =g\left(t^{q}\right)=\Pi_{v}\left(t^{q}-v_{\nu}\right)
\end{aligned}
$$

In L every $f_{k}(t)$ is a product of some factors $\left(t^{q}-v_{\nu}\right)$. Hence in $L^{1 / q}$ every $f_{k}(t)$ is a product of some factors $\left(t-w_{\nu}\right)^{q}$ where $v_{\nu}=w_{\nu}^{q}$. That is, in $L^{1 / q}$, we have $f_{k}(t)=\left\{f_{k}^{\prime}(t)\right\}^{q}$, where $f_{k}^{\prime}(t)$ is a product of different linear factors.

Now suppose V_{k} were reducible in a larger field L^{*},

$$
V_{k}=V_{k 1}^{*}+V_{k 2}^{*} .
$$

Then, $F_{k}=F_{k 1}^{*} \cdot F_{k 2}^{*}$, where $F_{k 1}^{*}$ and $F_{k 2}^{*}$ have no factors in common. That is
$f_{k}=f_{k 1}^{*} \cdot f_{k 2}^{*}$, where $f_{k 1}^{*}$ and $f_{k 2}^{*}$ have no factors in common. We have then
$f_{k 1}^{*}$ is a product of some factors $\left(t^{q}-v_{\nu}\right)$, where v_{v} is in L and $f_{k 1}^{*}$ is in L. Similarly, $f_{k 2}^{*}$ is also in L contrary to hypothesis.

Hence $V_{1}, V_{2}, \ldots, V_{h}$ are absolutely irreducible over L.
Now we shall prove the
Lemma: If V is absolutely irreducible and separably generated over L, then L is algebraically closed in $L(X)$.

Proof ${ }^{2}$): Suppose there were an element α in $L(X)$, algebraic over L and not in $L . \alpha$ being separable over L, the conjugate elements $\alpha, \alpha^{\prime}, \ldots \ldots \ldots$ are all different. That is $\alpha \neq \alpha^{\prime}$ and

$$
\begin{equation*}
L(\alpha) \cong L\left(\alpha^{\prime}\right) \tag{i}
\end{equation*}
$$

Now extend the isomorphism of $L(\alpha)$ to $L(X)$, so as to obtain an isomorphism $L(X) \cong L\left(X^{\prime}\right)$ as follows:

Let x_{1}, \ldots, x_{a} be algebraically independent and let x_{d+1}, \ldots, x_{n} be algebraic functions of x_{1}, \ldots, x_{d}. Define the isomorphism as follows :

$$
\begin{gathered}
x_{1} \longrightarrow x_{1} \\
\cdots \cdots \cdots \\
x_{d} \longrightarrow x_{d} \\
L\left(\alpha, x_{1}, \ldots, x_{d}\right) \cong L\left(\alpha^{\prime}, x_{1}, \ldots, x_{d}\right) .
\end{gathered}
$$

[^1]$L(X)$ is algebraic over $L\left(\alpha, x_{1}, \ldots, x_{d}\right)$, hence this isomorphism can be extended to
\[

$$
\begin{equation*}
L(X) \cong L\left(X^{\prime}\right)-(\text { Proof in [7], I, § 35) } \tag{ii}
\end{equation*}
$$

\]

X is a point of V and of degree of transcendency $d . V$ remains irreducible over $L(\alpha)$. Hence X is a generic point of V with respect to $L(\alpha)$.

Because of the isomorphism (ii), X^{\prime} too is a generic point of V. As before, we conclude : X^{\prime} is a generic point with respect to $L(\alpha)$.

That is, X and X^{\prime} are generic points of V with respect to $L(\alpha)$. Hence there is an isomorphism :

$$
\begin{equation*}
L(\alpha)(X) \longrightarrow L(\alpha)\left(X^{\prime}\right) . \tag{iii}
\end{equation*}
$$

The elements of $L(\alpha)$ remain fixed

$$
\alpha \longrightarrow \alpha
$$

and

$$
X \longrightarrow X^{\prime}
$$

α is in $L(X)$. Hence $\alpha=f(X)$. Applying (ii) we get $\alpha^{\prime}=f\left(X^{\prime}\right)$.
Applying (iii) we have,

$$
\alpha=f\left(X^{\prime}\right)
$$

Hence $\alpha=\alpha^{\prime}$ contrary to hypothesis.
Now we can complete the proof of theorem 9 that was interrupted by this Lemma.

It is given that V is separably generated over K, i. e., the coordinates of X are separable algebraic functions of d independent elements. They are also independent over the algebraic closure \bar{K} of K, and hence independent over L. It follows that V_{1}, the absolutely irreducible part of V is also separably generated over L.

Now by the theorem ([2], Th. 5, p. 18) :

- An extension $L(X)$ of a field L is regular over L, if and only if L is algebraically closed in $L(X)$ and $L(X)$ is separably generated over L, - we have that $L(X)=L\left(x_{0}, \ldots, x_{n}\right)$ is regular over L, i. e., $L(X)$ and \bar{L} are linearly disjoint over L. That is, every set of linearly independent elements in $L(X)$ over L is still linearly independent over \bar{L}. Hence also $L\left(t_{i k}, X\right)$ and $\bar{L}\left(t_{i k}\right)$ are linearly disjoint over $L\left(t_{i k}\right)$, where $t_{i k}$ are defined as in the proof of theorem 8.

Now it can be proved that F_{1} corresponding to V_{1} is a product of different linear factors and hence q is equal to 1 .

For, if not suppose,
$\boldsymbol{F}_{1}=\boldsymbol{F}_{0}^{p}$. Then also, $f_{1}=f_{0}^{p}$ and we should have,
$f_{0}\left(y_{1}, \ldots, y_{d}, y_{d+1}\right)^{p}=0, \quad$ i. e., $\quad f_{0}\left(y_{1}, \ldots, y_{d}, y_{d+1}\right)=0$.
Putting $g^{\prime}=g / p$, where $g^{\prime}=$ degree of f_{0} and $g=$ degree of f_{1}, this would mean a linear dependence between,

$$
1, y_{1}, \ldots, y_{d+1}, y_{1} y_{2}, \ldots, y_{1}^{g}, y_{1}^{g-1} y_{2}, \ldots, y_{d+1}^{g^{\prime}}
$$

with respect to $\bar{L}\left(t_{i k}\right)$. Hence there is also a linear dependence with coefficients from $L\left(t_{i k}\right)$. This means y_{d+1} has degree $g^{\prime}(<g)$ at most with respect to $L\left(t_{i k}, y_{1}, \ldots, y_{d}\right)$, contrary to hypothesis.

Lastly, we shall show that $p^{e}=1$ with respect to L leads to the result $p^{e}=1$ with respect to K also. We have,

$$
F=F_{1} \cdot F_{2} \ldots F_{h} \text { in } L(F \text { irreducible in } K)
$$

F_{1} cannot be written as $f\left(u^{p}, \ldots\right)$; hence F_{1} is a product of different linear factors:

$$
\begin{aligned}
& F_{1}=\Pi\left(u_{0} x_{0}+\cdots+u_{n} x_{n}\right) \\
& F_{2}=\Pi(---) \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& F_{h}=\Pi(---)
\end{aligned}
$$

Hence F is a product of different linear factors. Hence $p^{e}=1$ with respect to K.

I am deeply indebted to Prof. Dr. B. L. van der Waerden for his kind guidance and helpful advice throughout the course of this work.

REFERENCES

[1] Wei-Liang Chow and B.L.van der Waerden. Zur algebraischen Geometrie. IX. Über zugeordnete Formen und algebraische Systeme von algebraischen Mannigfaltig. keiten, Math. Ann., 113 (1937), pp. 692-704.
[2] A.Weil, Foundations of algebraic geometry, New York, 1946.
[3] Wei-Liang Chow. Algebraic systems of positive cycles in an algebraic variety. Amer. J. of Math., LXXII, No. 2 (1950), pp. 247-282.
[4] B.L.van der Waerden. Zur algebraischen Geometrie. XVI. Vielfältigkeiten von abstrakten Ketten, Math. Ann., 125 (1953), pp. 314-324.
[5] B.L.van der Waerden. Einführung in die Algebraische Geometrie, Berlin, 1939.
[6] W.V.D.Hodge and D.Pedoe. Methods of algebraic geometry, Vol. II. Cambridge, 1952.
[7] B.L.van derWaerden, Modern Algebra, Vol.I (English translation), New York, 1949.
[8] B.L.van derWaerden, Zur algebraischen Geometrie. XIV, Math. Ann. 115 (1938), pp. 619-644.
(Received november 3, 1954)

[^0]: ${ }^{1}$) For a proof see [8], p. 620, § 1

[^1]: ${ }^{2}$) I owe the proof of this Lemma to Prof. B. L. van der Waerden.

