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A generalization of Tauber's theorem and
sonie Tauberian constants (III)

by C. T. Rajagopal, Madras (India)

1. Introduction. In a previous paper [6] in this journal, I extended in
a particular direction Tauber's well-known conditional converses of
Abel's theorem for power séries, following H. Hadwiger and R. P.
Agnew. My extensions concern transformations of the kind

00

0(t) $ K(ut)d{A(u)} t>0 (1)
o

with suitable K (u), applied to functions A (u) which are assumed to
be of bounded variation in every finite interval ofu^O and (for sim-
plicity) subject to the condition A (0) 0. The results obtained by me
include inequalities of the type :

ÏÏm \A{ôjt) -0(t)\ ô>0

A(iï) —A(u)\T(ô)]im bound

vr*Sxd{A{x)}\
U->oo 0

where the upper limits are supposed to be finite, and T(ô), T*(ô) are
functions of the parameter ô, involving K(u) but not A(u). My results
thus overlap in part certain theorems of Delange ([2], Théorèmes 3, 5),
a fact of which I was unfortunately unaware when I wrote my paper [6].
However, in two later papers bearing the same title as the présent one,
I discuss results which supplément the theorems of Delange. In the first
of thèse papers [7], I treat a gênerai method of obtaining the Tauberian
constants T(ô) for Riesz, Laplace-Abel, Lambert and Stieltjes trans-
forms of A (u), simultaneously with a similar absolute constant for the
Borel transform of a séquence ; while, in the second paper [8], I intro-
duce a constant analogous to T(ô) useful in dealing with A(u) which
are Aw-step functions defined in relation to a séquence

->oo
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with "wide steps", i. e. with Km inf (An+1/AJ > 1. In the présent note
I modify slightly a lemma of Agnew's ([1], § 4) and reach with ease

Delange's T*(ô) in Theorem A and the more gênerai constant T*(<5, A)

in Theorem B for the spécial K(u) of (17), revealing thèse constants at
the same time as the best possible in the context of our inquiry1).

On the lines of my last-mentioned paper [8], the kernel K (u) of the
transform (1) is defined in terms of a fonction N(x) which is bounded in
every finite interval of x > 0 and such that

N(x) eL(0, oo) N(x)logX€L(0, oo)

K(u) JN(x)dx K(0) jN(x)dx 1
(2)

o

Thus the q>(u), ip(u) of my previous paper [6] in this journal are re-
placed by the more gênerai K(u), N(u) respectively. Otherwise the
notation of that paper is retained.

2. Lemmas. Two modifications of Agnew's lemma already referred to,
required for the purpose of this note, will now be established.

Lemma 1. // f(x,t) is a real function of x>0, t>0, integrable in
every finite x-interval and such that

JI f(x, t) | dx«x> ïkn J| f(xy t)\dx M (3)
0 t-++Q 0

lim f(x,t) 0 uniformly with respect to x in (0, X) (4)

for any fixed X>x0>0, then each real bounded function g(x) of x>0,
for which

limg(x) — L ]img(x) L 0 < L<oc (5)

has plainly a transform

F(t) Jf{u,t)g(u)du (6)
o

And this transform is such that, for any given ô > 0

- (M + 1) L < ïta [JF(t) + g(ô/t)] < {M + 1) L (7)

The above conclusion is the best possible in the sensé that there are two
real functions g(x) satisfying (5) and such that each of the signs ^ in (7)
is in turn reduced to by one of the functions.

x) My procédure simplifies Delange's treatment of T*(ô) in [2], §§ 3.6-3.63, and so

dispenses with the separate discussions of Hadwiger [4] and Hartman [5] which deal with
case ô l, N(u) e~u.



Proof. (5) implies that we can choose X>x0>0, corresponding to
any small e>0, so that | g(x) \<L + e for x>X. Hence (6) gives

>S I f(x.t) \-\g(x) \dx-(L + e)S\ f(x,t) | dx
0 X

The first part of the lemma follows at once from the above step when we
let t -> + 0 and use (4), (5).

To prove the second part of the lemma we argue with M >0 and
L > 0, say L 1, the case of either M 0 or L 0 being trivial.
By (3) we can choose t tx and then a;1>max (x0, ôfa) so that

J| f(x, h) \dx>M -e f | f(x, tt) | dx<e
0 X!

In fact, we can détermine inductively a null séquence {tr} and a divergent

séquence {xr}. r= 1,2,3...., as follows. After tr_x and xr_x
hâve been chosen. fr<min (tr_1, ô/x^^) is chosen subject to the condi-
«on

$ | /(*, tr) \dx<e' J | /(x, tr) | rfx>ilf - er (8')
0 0

and then #r>max (xr_ly ôjtr) is chosen so that

]\f(x,tr)\dx«f (8")
xr

the choices of tr and o;r in (8') and (8") being possible by (4) and (3).
Now let

g(x) sgnf(x,tr) xr^<x ^ ôjtr<xr A
\ r= 1,2,..., (9)

flr(^r) 1 g(xr) - 1 |

where as usual sgn / 0 when / 0 and sgn f \ f \/f when / ^ 0.
Then g(x) satisfies (5) with L 1, and we obtain from (6) :

F(tr) =Tf(x, tr)g(x)dx + J... + f...
0 xr_i xr

Tî J

> - 2*}|/(af, «,) | d* + f | /(*, *r) | d* — 2 J 1 /(*, tr) | dx
0 0 a;r

> — 2er + ilf — sr — 2 er M — 5er
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by (8') and (8"). Therefore, for the g(x) in (9),

Ihn [F(tr) + g(ôltr)] ^M+1 (M
r->oo

while, by the first part of the lemma, the above relation is also true
with < instead of >. Hence, for the g(x) defined by (9),

+ g(ô/tr)] (M
r->-oo

For the g(x) which is the négative of the g(x) in (9), we hâve

Km \F{tr) + g(ôltr)] - (M + \)L
r->oo

and so the proof is complète.

Lemma 2. This is a restatement of Lemma 1 for complex-valued g(x)
with

(5) replaced by : lim \g(x)\ L (5a)

(7) replaced by : ïîîn | F(t) + g(à/t) \ < (M + l)L (7a)

irAere fAe equality signs cannot be omitted.

3. Theorems. The theorems which follow are imphcit in Lemmas 1,2.
Theorem À. In (1), let A(u) be real- or complex-valued, in the latter case

the real and the imaginary parts of A (u) satisfying the condition already
imposed on real A (u). Also let

ïïïn

Then, for any à > 0,

=îïm\A(u) - w1 $A(x)dx | <oo (10)

-0(t)\ < T*(d)\îm\ u~1B{u)\ (11)

where the equality sign is indispensable and

1 - K(x) N(x) K(x)
x

N(x) dx .*) (12)

2) Hypothèses (2) ensvire the existence of the intégrais composing T* (ô) since it can
be proved that they ensure the existence of

$ x * x
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Proof. It is easy to show that (10) ensures first

bound \A(iï) ~ A(u)\ 0(1)[1 + log X] u ->oo

and thence A (u) 0(log u). The last relation, in conjunction with the
manner of our defining K(u) in (2), gives us, as u-^-oo,

K(ut)A(u) K(ut)0(logu)
for every t>0. Hence we get, by an intégration of (1) by parts,

0(t) ÏK{ut)d{A(u)} tfN(ut)A(u)du W{t)
0 0

(10) also ensures the existence of

j^^^^du t>0 A fU

through the existence of ^(t). In the above step we can express first
A1(u) and then W^t) as follows :

t JN(ut)du j-^
0 0 X^P, (14)

justifying the inversion of intégration by an appeal to Fubini's theorem
with the help of (10). Hence the identity

yields, when we use (13) and (14) in the last term [• • • ] of the right-hand
member, and put u ô/t, the following relations :

+
Ojt

3) To avoid useless complications we may suppose that A(u) O(u) as w-> +0 and
thus ensure the existence of the intégral in (13).
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Now, in Lemma 2, we can choose

g(x) B(x)lx

[1 - K(xt)]/x - tN(xt) for 0<x<ô/t (16)

\ - K(xt)jx - tN(xt) for x > ôjt

The above choice of g(x) is justified by the fact that (5a) holds in the
form (10). And the choice of f(x, t) is justified by the following facts.
(a) If t ^ 1 (such a restriction on t being permissible as we are going
to let t ->¦ + 0), and x is in any finite interval (0, X) where X > x0 ô,
then xt

l t\] N(u)du\/xt + t\N(xt)\<C1t + C2t (0<xt<ô)
^\t\K(xt)\/xt + t\N(xt)\ <C3t + Cj (d^xt^X).

where the C's are constants depending only on ô and X, and therefore (4)
holds. (b) Furthermore (3) holds since, defining T*(ô) by (12), we hâve

oo 8/t oo

o o 8/t

Thus, finally, an appeal to Lemma 2, with the choices of / and g in (16),
enables us to pass from (15) to the conclusion (11). That the equality
sign in (11) is indispensable is established by choosing the particular
g(x) of (16), in terms of the particular f(x, t) of (16), exactly as in the
gênerai case where we establish the indispensability of the equality sign
in (7a). Of course the spécification of g involves the following spécification

of A (u) in conséquence of (13) :

iWEjW + r'i,!.) \

9^)=—y--
0

A generalization of the proof of Theorem A brings to light a constant
jF|((3) which is featured in the corollary that follows.

Corollary A. In the intégral transform defined by

¥k(t) t$ N(ut)ak(u)du t>0, Je > 0
o

where
y U

ar(u) — J [n — x)r~1A(x)dx r>0 ao{u) A(u)

let

lim | u~k~1Bk(u) | lim (Je -f 1) | &k(u) — ak+i(u) I <°° •
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The?), for any à > 0,

ïim | ak(ô/t) - Wk{t) | < T*(<5)lïm | u~k-x Bk(u) | 4)

is obtained from T*(ô) by changing N(x) to N(x)/(k + 1)
in the two intégrais composing T*(ô) in (12).

The proof of Corollary A is like that of Theorem A but makes use of
the foliowing easily proved relations in place of (13) and (14) :

Next follows a theorem which suppléments Theorem A in the following
cases of K(u) considered in my previous paper [6].

(i) K(u) (1 — u)k, k^l, for u < 1 ; K(u) 0 for u>l.
(ii) K(u) e-U. (îii) K(u) (1 + u)~*, q<0.
(iv) K{u) u/(eu — 1) for u ^ 0. Z(O) 1.

(17)

Theorem B. Suppose that, in Theorem A, A(u) is real and N(u) is
additionally assumed to be positive and monotonie decreasing for u>0.
Suppose further that the hypothesis (10) is replaced by

Km u^Biu) — L/p lïmV1^) Lfq

q>0
conclusion (11) ^ZZ 6e replaced by

p)^m.[A (ô/t) -
where the equality signs are indispensable and

4) On condition that (i) &(t) m (1) exists as a Lebesgue-Stieltjes intégral (and not
mereh as a Riemann Stieltjes intégral which sufficies for the results of this note), (n) N(u)
is positive and monotonie decreasmg, as m the cases of the K(u) of (17), ît can be shown
that Wk{t) exists for t >0 and

lim inf 0(t) < \™ S^ Wk (t) < lim sup 0 (t) * -> + 0

pro\ided that the extrême members of the above mequahties are finite. Thus, assuming
(i), (n) and the last-stated proviso, we can connect ok{djt) with &(t) as well as with
}ff)f as, for instance, in the spécial relations (29), (30) of my paper [6].
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Proof. Theorem B is easily dedueed from Lemma 1, exactly as Theorem
A from Lemma 2, with the same choice of f(x, t) as in (16) but with

In the partieular cases of the K(u) of (17), there is a resuit which
includes Theorem A and may be proved like that theorem. This resuit.
stated below as Theorem C, is similar to Agnew's ([1], Theorem 3.1)
where the Tauberian condition on A (u), instead of being in the Kro-
necker form (10), is in the simpler Hardy form5).

Theorem C. Suppose that, in Theorem A, the T*{ô) of (12), considérée

as a function of ô > 0, has a unique minimum which is necessarily the least

T*(d), a condition which is satisfied in the cases of the K{u) of (17). Then
we hâve, in addition to (11),

ïïm| A{u) - 0(t) | <max {T*(<x), T*(P)}Vim\ u

where the equality sign is indispensable and u in the left-hand member is
such that

O<oc lim ut ^ lim ut — /?<oo
«-M-0 «-M-0

The various spécial types of elementary Tauberian theorems dedu-
cible from Theorems A, B, by known methods ([6], pp. 222-223) are
collected hère for convenience.

(I) In Theorem A, the additional condition lim <P(t) =co as t -> + 0

implies lim-4 (m) oo as u->oo.
(II) In the spécial case of Theorem A where the upper limit in (10) is 0,

the limit points of &(t) and A(u) are identical.

(III) In Theorem A, whenever T*(d) has an absolute minimum r* as in
the cases of the K(u) of (17), each limit point z' of A(u) corresponds to a

limit point z" of &(t), and conversely, such that

| z> __ z" | <- T* iï^"| u-xB{u) | .6) (18)
M->00

5) Theorems A and B, like Theorem C, hâve analogues, suggested by my earlier work
([6], § 2), in which the Tauberian condition is of the Hardy form and involves ua(n)

u
instead of ^^^(w), a{u) being such that A(u) S a{x)dx. The treatment of thèse

o

analogues is of course similar to, but simpler than, that of Theoreins A, B.
6) As Garten has shown ([3], Satz 2), t* in the particular case of the K{u) of 17(i) is

also the constant figuring in the analogue of (18) which connects a limit point z' of a

séquence sn and a limit point z" of the séquence of &th Cesàro means of sfl (k 1, 2, 3...).
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It is not known whether t* is the best (or least) constant in the above
inequality7).

(IV) In the spécial case of Theorem B in which q -> 1 (or p -> oo), we
hâve the following resuit (which is best-possible since Theorem B is so) :

if
Km wxB(u) 0 lim^~1jB(w)<oo

then

lim A (u) lim &(t) lim A (u) < lim <P(t) -f Km u~x B(u)
t—>-fO M—X« <—>-fO u—>oo

4. Corrigenda. Vol. 24 (1950), pp. 219~231. I take this opportunity to
list the corrections which should be made in my paper [6] :

P. 219. In relation (2), read '<p(u) ...' for cy>(u) /
P. 220. At the end of relation (9), replace *) by 4).

P. 223. In line 10, read

'ÏÏm£(te) ïïmF(ty for lim 8{u) îîîn F(t) /
W->oo t—>4-0 U—>oo «—>-J-0

P. 223. In the Note, read '£> 1' for 'jfc > 1J.

jA()d' f eLP. 227. In line 2, read >(r+l)jjAr(u)du' for e—L-J
o r~r 1 o

P. 229. In line 7, read Jfc+1(*)' for Vfc+i(

P. 231. In line 5 read 0 < m<^ for l0

7) ^.grwe^ ([1], § 4) has partially answered the corresponding question for the absolute
minimum of T(ô) defined in the Introduction, in certain cases which include the K(u)
of (17).
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