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On Combinatorial Submanifolds of Differentiable Manifolds®)

by Morris W. HirscH, California (USA)

§ 1. Introduction

The purpose of this work is to prove the following results relating combina-
torial and differentiable manifolds.

(A) A combinatorial submanifold V of a differentiable manifold M of the
same dimension possesses a compatible differentiable structure.

(B) Every compact and contractible combinatorial manifold V possesses a
compatible differentiable structure.2)

(A differentiable structure on a combinatorial manifold M is called compatible
if M has a rectilinear subdivision, each simplex of which is differentiably
imbedded.)

A. M. GLEAsON has announced (unpublished) that a contractible unbounded
combinatorial manifold has a compatible differentiable structure. Theorem (B)
follows easily from this and Theorem (A). The proof of (B) given here is derived
from JonN StarLINGS’ proof [11] of the generalized PorNcARE conjecture.

(C) The sequence
RN AL AN O LI, LN Ao D (1)

18 well defined and exact.

This result was announced in [3]. Here I'™ is the group of differentiable
structures on S compatible with the usual combinatorial structure; @" is
the group of differentiable homotopy n-spheres modulo J-equivalence, and
A™ the combinatorial analogue of Qn. Using powerful intrinsic methods,
STEPHEN SMALE has shown [9, 10] that for #n > 8 or n =25, themap j: "> 6"
is an isomorphism, and using (B) (but not (C)) that A®» =0, for n > 8 or
n =6,

In [8] SmaLE proves that I®= 0, (this was proved independently by
J. Mu~nkrEs, and J. H. C. WaITEEEAD.) The fact that every combinatorial
3-manifold possess a unique (up to a diffeomorphism) compatible differentiable
structure [6] implies that k: &3> A3 is an isomorphism. Thus only the

1) Presented at the International Colloquium on Differential Geometry and Topology, Ziirich,
June 1960,

*) Added in proof; The hypothesis of compactness is unnecessary.
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subsequences 0—>I7—>@"—>A"—>1%>0 and 0-—> A5 > Q4> A4>0
remain. In proving (C), SMALE’s results are not used.

§ 2. Proof ot (A)

In order to prove (A) it suffices to establish the stronger result 2.5 below.

If K is a subcomplex of complex N, the nth simplicial neighborhood of K
is the union of the closed simplexes of the n’th barycentric subdivision of N
that meet K.

Lemma 2.1. Let K be the boundary of a combinatorial manifold M. The
second simplicial neighborhood A of K i3 combinatorially equivalentto K X I,
where I 1is the unit interval.

Proof. This is a well known result. It follows e. g. from theorems 22 and 23
of [14], which state that any two ‘‘regular neighborhoods” of M (in the sense
of [14]) in the same manifold are combinatorially equivalent and that A is
a regular neighborhood of K in M. If K is identified with K x 0, then
M = M v K x I is a manifold, andin M’ both A and K X I are regular
neighborhoods of K.

Now let ¥V be a bounded combinatorial n-manifold imbedded as a sub-
complex of an unbounded combinatorial n-manifold M. Assume M has a

metric d(z, y).

Lemma 2.2. Let U be a neighborhood of V in M, and e a positive continu-
ous function on M. There 18 a semi-linear homeomorphism h: M — M with
the following properties:

a) h(V) is the second simplicial neighborhood of V in a subdivision of M ;

b)R(V) c U,;

c)h(x) =z iof x e M — U;

d)d(z,k(x)) < e(x) forall z eM.

Proof. By 2.1, the boundary of K of ¥V has a neighborhood combinatorially
equivalent to K X I in V, and another in ¢l(M — V). The union B, of
these two neighborhoods is again equivalent to K X I. Moreover, we can
take B, to be the second simplicial neighborhood of K in a subdivision of
M ; if this subdivision is sufficiently fine, the second simplicial neighborhood
B of B, will bein U. It will be clear that if the subdivision is sufficiently
fine, d) will be satisfied. There is a combinatorial equivalence »: B— K X I
such that u(By) = K X [}, 34] and %(K) = K X Y. We may assume that
h(By~nV)=K X [0,V%]. Let f:I—1 be a semi-linear homeomorphism
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such that f(z) = « for z in a neighborhood of 0 and 1, and f(14) = 3/4.
Define g: K X I—->K X I by g(z,t) = (x,f()). Now defineh: M—>M
xz if xeM — B

by h(z) = {u—lgu(x) if z eB.
Then » is the desired homeomorphism.

Now let M be a differentiable manifold. A combinatorial manifold 4 which
is a subcomplex of a smooth triangulation of M is called a combinatorial sub-
manifold of M. A vector field @ on A in M is transverse if it is transverse to A

in every coordinate system, in the sense of [13]. The following lemma is well
known.

Lemma 2.3. Let A be the boundary of the second simplicial neighborhood B
of @ subcomplex K of M. Then there 18 a transverse field on A.

Proof. Each simplex o of the first simplicial neighborhood B’ of K is
the join o*7 of unique simplices ¢ ¢ K and v ¢ M — K. Each closed
simplex « of A lies in such a join o*7, disjoint form ¢ and ¢, and each
Zeox lies on a unique line p*q with peco, ger. It is easily seen that the unit
tangent @(x) to p*q, directed from p to ¢, is transverse to « at z, and
that @ is continuous. Thus @ is a transverse field on 4.

Lemma 2.4. Let M be an unbounded differentiable n-manifold, and V < M
a combinatorial submanifold, also of dimension n. Let U be a neighborhood of
the boundary A of V,d a metricon M, and e a positive continuous function
on M. There is a homeomorphism h: M — M such that

a) b 18 a diffeomorphism on each closed simplex of a subdivision of M ;
b) h(4) has a transverse field;

c)h(x) =z if xeM — U;

d)d(xz,h(x)) < e(x) forall zeM.

Proof. Apply 2.2 and 2.3.

Let ¥V be a combinatorial submanifold of a differentiable unbounded
n-manifold M. Assume either

1. V has dimension n; or

2. V has dimension n — 1, is unbounded, and admits a transverse field.

Let U be a neighborhood of bdV and ¢ a positive continuous function
on M.

Theorem 2.5. There ts a homeomorphism h: M — M such that:
a) (V) 18 a differentiable submanifold of M, combinatorially equivalentio V ;
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b) M has a smooth triangulation in which V 1is a subcomplex, every closed
simplex of which is mapped diffeomorphically by h;
¢) and d) as in 2.4.

Proof. Case 1) follows from 2.1 and case 2); Thus we assume 2).

By standard approximation methods, it may be assume that there is a
differentiable non-zero vector field @ on a neighborhood W of ¥ contained
in U, such that ®|V is transverse field. A generalization of the CAIRNs-
WHITEHEAD theory of transverse fields [1, 13] shows that there is a submanifold
C of dimension n — 1 differentiably imbedded in an arbitrary neighborhood
of V, such that ®|C is transverse. (The CAIRNS-WHITEHEAD theory applies
to a g-dimensional submanifold of EvucLipean (¢ + p)-space endowed with
a transverse p-plane field. The present case follows, e. g., by imbedding M
in Rn+k  and assigning to each point x ¢V the k 4 1 plane generated by
@ (x) and the k-plane normal to M at x. Alternatively, the methods of [13]
simplify considerably in the special case where the submanifold has codimension
1, if transverse lines are replaced by the integral curves of a transverse vector
field.?) We can assume that each integral curve of @ meets ¥V in a unique point
and C in a unique point. This establishes a map f: V— C which is a diffeo-
morphism on each closed simplex of V. Thus C is combinatorially equi-
valent to V. Let 4 be the region bounded by ¥V and C which is fibered by
the integral curves of @. Define G: V X I+ A by G(x,0) = z,G(z, 1) =
= f(z) and G(x,t) is the point dividing the length of the integral curve
joining z and f(x) in the ratio ¢| (1 —¢), for 0<t< 1. Then if 4 is
a closed simplex of V,Q@| 4 X I is a diffeomorphism. Hence G: K X I - M
is a non-degenerate C® subcomplex of M in the sense of [15]. By [15, p. 822,
addendum] this triangulation of 4 can be extended to a smooth triangulation
of M, after possible subdivision. An easy application of 2.1 (cf. proof of 2.2)
establishes the desired extension A: M —M of f: V- C. This completes
the proof.

Remark. It can be shown that if a neighborhood in ¥V of a closed subset
X ¢ V is a differentiable submanifold of M, 2 can be chosen so that for some
neighborhood Y of X in M,h(z) =z if z €Y.

The following theorem was announced by S. S. Cairns [16].

Theorem 2.6 (Cairns). If M is a combinatorial manifold and if for some p,
M x R? has a compatible differentiable structure, then so has M .

Proof. By induction on p. The case p = 0 is trivial. Let F? < R* be a
closed half-space. First assume M is unbounded. If p > 0 and if M X R?

%) Cf. [18].
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has a compatible differentiable structure, then so has M x F», by (4). So
therefore does its boundary M x R?-1, completing the induction. The case
where M is bounded follows easily now from (4).

§ 3. Proot of (B)

Let V be an n-dimensional compact combinatorial manifold which is
contractible. Let V' be the double of ¥V, obtained by identifying two disjoint

copies of V along their boundary. Then V is a closed combinatorial #n-mani-
fold of the same homotopy type as S, and V is a submanifold. J. STaLLINGS
proves in [11] that if x is any point of ff, then V — z is combinatorially
equivalent to EUCLIDEAN n-space, provided = > 7, and states that E.C.
ZEEMAN has extended the result to the case n > 5. (If n < 4, theorem (B)
is a consequence of well known results of CATRNS [1, 2].) Thus we can assume
that V is a submanifold of the differentiable manifold R». (Alternatively,
V — & is an unbounded contractible manifold, and one can apply GLEASON’s

theorem that ¥V — z has a compatible differentiable structure). Theorem (B)
now follows from (A). Actually, this proves the following stronger result.

Theorem 3.1. A compact, contractible, combinatorial n-manifold is combi-
natorially equivalent to a differentiable submanifold of R™.

GLEASON’s theorem is proved by showing that an unbounded combinatorial
contractible n-manifold can be immersed in R™. This follows from the mere
existence of a compatible differentiable structure by observing that such a
structure is necessarily parallelizable, and applying a theorem of [4].4)

A plausible conjecture along these lines is that any combinatorial manifold
all of whose cohomology groups vanish has a compatible differentiable structure
J. MuNkrES [7] has proved this except for compatibility.

§ 4. Proot ot ()

We must show that the sequence
SLINY L N, LI L LA o SR (1)
is well defined and exact.

The group @» is defined as follows. An element of @ is an equivalence
class [ M] of oriented, closed differentiable manifolds M which have the homo-

!) GLEASON’s theorem follows from 2.6 and [17], in which it is proved tho.lt if M ”' is a con-
tractible combinatorial unbounded manifold, then M? X RP is combinatorially equivalent to
R"+P for gome p.
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topy type of the nm-sphere 8", under the relation of J-equivalence. Two
oriented differentiable manifolds M,, M, are J-equivalent if there is an
oriented differentiable manifold N whose boundary is (diffeomorphic to) the
disjoint union of M, and — M, (where — M, means M, with the opposite
orientation), and such that both M, and M, are deformation retracts of
N. Addition in @ is defined by [4] + [B]=[4 3 B] where A 3 B is
the connected sum of A and B. This is defined by removing the interior of
an n-ball from each of 4 and B and joining the two boundary (n — 1)-
spheres by an orientation reversing diffeomorphism which is extendable to
the whole n-ball, and then smoothing the resulting corner. It can be shown
that the diffeomorphism class of 4 # B is independent of the choices made,
and the J-equivalence class [A 3 B] is independent of the representatives
of [A] and [B] that are-chosen. See [5] for details. Define —[A] =[ — A],
and ©@" becomes an abelian group, with [S*] as identity element.

Using combinatorial instead of differentiable manifolds, J-equivalence and
connected sum are analogously defined, and A” is the group of J-equivalence
classes (M) of oriented combinatorial closed m-manifolds M which are
homotopy spheres.

The elements of I™ are (diffeomorphism classes of) oriented differentiable
manifolds which are combinatorially equivalent to the boundary ofan (n + 1)-
simplex. Addition is defined using 3, and the inverse of Mel™ is — M.
Using these definitions, I™ is an abelian group, with S* for 0, although this
is not obvious. It is a consequence of the following result.

Theorem 4.1. (MUNKRES-THOM). There ts at most one compatible differentiable
structure on a contractible combinatorial n-manifold, up to a diffeomorphism.

Proof. See [6,12]
The only difficulty about proving that I™ is a group is showing

M 4 (— M) = S».

We can obtain M 3 (— M) by removing the interior £ of an n-ball from
M, and taking the boundary V of (M — E) X I and smoothing the corner.
But (M — E) X I isthen a differentiable manifold combinatorially equivalent
to 4* X I, where A" is an n-simplex, and by 4.1 its boundary V = M3:(— M)
is diffeomorphic to S*, which is the zero element of I™.

The map k: @ — A" is defined as follows. If M is a differentiable manifold,
let kM be the corresponding combinatorial manifold, i. e., kM is a simplicial
complex L such that there is a homeomorphism #: L — M which is a smooth
triangulation of M. Such an L exists and is unique up to combinatorial
equivalence [15].
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Now define k: @™ — A* by k[M] = (kM) . Ttis obvious that % preserves
sums and J-equivalence, so k is a well defined homomorphism.

The map j: I'™— @ is defined by j M = [M].

To define d: A"— I'"1, let M represent an element of A*, and let E
be the interior of an n-simplex of M. Then M — E is contractible, and by
(B) possesses a compatible differentiable structure, which is unique by 4.1,
up to diffeomorphism. The combinatorial structure of M — E is independent
of B, and dM is defined to be the boundary of M — E. We shall see shortly
that if 4 and B are J-equivalent, then d4 = dB.

Lemma 4.2. a) d(M 3+ N) =dM + dN
b)d(— M) = —dM.

Proof. Let C and D be closed n-simplices in M and N respectively. In
forming M # N, remove the interiors of n-simplices disjoint from C and D.
Now M-int ¢ and N-int D have unique compatible differentiable structures
by (B)and 4.1, and then (M 4= N) — (int C v int D) = (M-int C) F (N-int D)
has a compatible differentiable structure. Now join ¢ to D in M # N bya
simple differentiable arc, meeting C and D only at its end points. A tubular
neighborhood @ of this are can be chosen so that C v D v @ is a combina-
torial n-cell in M 4+ N. Then M-int (CvD v @) has d(M # N) for its
boundary (after smoothing). On the other hand, this boundary is diffeomorphic
to 9(M-int C) 3 0 (N-int D) = d(M) # d(M), which proves a). The proof
of b) is obvious.

Lemma 4.3. Let M be a closed orienied combinatorial homotopy n-sphere. If
M has a compatible differentiable structure, dM = 0.

Proof. If E is the interior of an n-simplex 4 of M, and B the interior of
an n-ball differentiably imbedded in E, then M — K and M — B are
combinatorially equivalent. Assuming M has a compatible differentiable
structure, take 4 to be a simplex of a smooth triangulation of M. Then
M — B is a differentiable submanifold of M and hence d(M — B) = 0B =
= 8"1 = QelI™!. By 4.1, compatible differentiable structures on M — E
and M — B are diffeomorphic; hence (M — E) = d(M) = 0.

Corollary 4.4. If M bounds a contractible manifold, d(M) = 0.

Proof. By (A), M has a compatible differentiable structure and 4.3 applies.

Theorem 4.5. d: A»— I'"! defined by d {M> =dM 1is a well defined
homomorphism.

Proof. We must show first that if (M) = (N>, then dM =dN. If M
is J-equivalent to N, then M 3 (— N) is J-equivalent to 24n+. Since
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4™ bounds A"+, M H# (— N) bounds a contractible manifold. By 4.4
d(M # (— N)) =0, and by 4.2, d(M $ (— N)) =d(M) — d(N). Thus
d(M) —d(N) =0, so d: A*— I'*! is well defined, and 4.4 proves d to be
homomorphism.

Now we prove that the sequence (1) is exact. We leave the proof that
jd = kj = dk = O to the reader as an exercise; the last equality, for example,
follows from 4.3.

Let M be an element of I™ such that §(M) = O. This means M bounds
a contractible differentiable manifold V. Since 0V = M is combinatorially
equivalent to 947+, ¥V v A"+ is a combinatorial homotopy sphere and hence
represents an element A of A7+, Itisobviousthat d(4) = d(V-int 47+)= M.
This establishes the exactness of the sequence jd.

Let <M eA™ be such that d{(M> = O. This means for some n-simplex 4
in M, M-int A has a compatible differentiable structure making o (M-int 4)
diffeomorphic to 8"!. Choosing such a diffeomorphism, attach the n-ball
D" to M-int A to obtain a differentiable manifold N which is combinatorially
equivalent to M. Thus k[M]= <N) and dk is exact.

Finally let M represent an element of @" annihilated by %. This means
M is J-equivalent to 947+ in the combinatorial sense. Let ¥ be a combina-
torial (n 4+ 1)-manifold realizing this J-equivalence. Let 7' be a «tube»
joining M to dA*t in V, i.e., T is a equivalent to I X A" with
OX A" c M and 1 X A* c 94"+, and no other pointsof 7' in V. (Such
a T can easily be constructed by first putting a compatible differentiable
structure on the contractible manifold V v An+.) Then V-int 7' is contractible
if T is “unknotted”, which is always true if » 4+ 1> 3 and which is the case
for n + 1= 3 provided 7 is chosen properly. (In fact, ©2 = O, so this
case is unnecessary.) Thus V-int 7' has a compatible differentiable structure,
by (B). By 2.5, we can assume that M-int (O X 4") is a differentiable submani-
fold A of the boundary of V-int 7'. The closure of the complement of 4 is
combinatorially equivalent to 947+, and hence is diffeomorphic to D=,
while A is combinatorially equivalent, and hence diffeomorphic to M — K,
where E is the interior of an n-ball, E differentiably imbedded in M. Thus
there is a diffeomorphism f:d(M — E)— 8! such that d(V-int T') is
diffeomorphic to (M — E)v ,D*. Let P be the manifold E v ,D*. Then
P is an element of I'*, and 9(V-int T) is the same as M 3 (— P). Since
V-int T is contractible, [M — P]= 0, and so [M]=[P]=4jP. This
establishes the exactness of the sequence (1).

The University of California
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