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1. Introduction

In a recent note [6] we classified the RIEMANNian homogeneous manifolds
of constant sectional curvature; this paper extends the techniques of that note
to the classifications (up to global isometry) of the homogeneous pseudo-
RremaNNian (indefinite metric) manifolds of constant nonzero curvature, the
symmetric pseudo-RiEmMaNNian manifolds of constant curvature, the isotropic
pseudo-RIEMANNian manifolds of constant curvature, the strongly isotropic
pseudo-RIEMANNian manifolds, and the complete pseudo-RIEMANNian mani-
folds in which parallel translation is independent of path.

ChapterI begins with a review of the necessary material on pseudo- RIE-
MANNian manifolds. Just as an n-dimensional Riemanwian manifold M is
denoted by M™, so an n-dimensional pseudo-RiEMaxwian manifold M,

h n
with metric everywhere of signature — X273 4 X'2?, is denoted by Mj.

1 h+1
We then give euclidean space the structure of a pseudo-RrEManNian manifold
h n+41
R: of constant zero curvature, and give the quadric — X 7+ Zal=1 in
1 h+1

R™ both the structure of a pseudo-RiEMANNian manifold S} of constant
positive curvature and that of a manifold Hj_, of constant negative curvature.
For S}, this is essentially due to S. HeLcason ([2] and private communi-

cations). We then define .S:;,: and ﬁ,’: to be the respective connected, simply
connected manifolds corresponding to S; and Hj, and prove that a connected
complete pseudo RiemMannian manifold M} of constant curvature admits

R, Sm 5 Or H,, as universal metric covering manifold. Together with our
criterion of homogeneity for manifolds covered by a homogeneous manifold
(Theorem 2. 5), this is the basis of our investigations.

Chapter IT is the classification of homogeneous pseudo-RIEMANNian mani-
folds of constant nonzero curvature. We define 14 families of homogeneous
manifolds covered by S} (§ 7 and § 9), prove that every homogeneous manifold
covered by S} lies in one of those families (§ 10), and thgn take care of the
signature h = n — 1, where S is quite different from S; (§ 11). The basic
new technique is consideration of the behavior of a quadric under field exten-
sion. We also rely on the elementary theory of associative algebras and on the
version of ScHur’s Lemma which says that, if &(V) is the algebra of linear
endomorphisms of a vectorspace V over a field F, and if @ < &(V) acts
irreducibly on V, then the centralizer of @ in &(V) is a division algebra
over F.

Chapter IIT consists of classifications which are easy or which follow easily
from Chapter II, and is best described by the table of contents.
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References are as follows: Lemma 8. 3 refers to the lemma in § 8.3, Theorem 5
refers to the theorem in § 5, etec.

I wish to thank Professors S. HELgAsoN and A. BoreL for several helpful
discussions. HELGASON suggested that I work on these classification problems;
he proved Lemma 4.3 for A =1 and A =n — 1 [2], and the proof given
here is essentially the same; he communicated the proof of Lemma 4.2, as
well as another proof of Lemma 4.3, to me. BorEL suggested that I look at the
group f(GL(s, R)) of Lemma 8.4 to find a reducible linear subgroup of 0*(2s)
transitive on the manifold $¥*-! in R®.

Chapter I. The covering theorem for space forms

2. Pseudo-Riemannian manifolds

2.1. We recall a few basic definitions and theorems on pseudo-RIEmaNNian
manifolds, primarily in order to establish notation and terminology.

A pseudo-RIEMANNian metric on a differentiable manifold M is a differen-
tiable field @ of nonsingular real-valued symmetric bilinear forms @, on the
tangentspaces M, of M; (M, Q) is then a pseudo-RiEMANNian manifold. The
pseudo-RiEMaNNian metric § on M defines a unique linear connection, the
LEvI-CIviTA conmection on the tangentbundle of M, with torsion zero and
such that parallel translation preserves the inner products ¢, on tangentspaces.
(M, Q) is complete if its LEVI-CIVITA connection is complete, i. e., if geodesics
can be extended to arbitrary values of the affine parameter.

2.2. If X,Y ¢ M, span a nonsingular 2-plane S < M, (¢, is nondegenerate
on 8), then the sectional curvature of (M, Q) along S is defined to bed)

K@) =—@,(R(X,Y)X,Y)/{Q,(X, X)-Q,(Y,Y) — @,(X, Y)*}

where R is the curvature tensor of the LEvi-CiviTA connection. (M, Q) is
said to have constant curvature K if K(S)= K for every nonsingular
2-dimensional subspace S of a tangentspace of M. Let z— (2,,..., z,) be
a local coordinate system valid in an open subset U of M ; the coefficients
of SR are given by

%(a a) 0 d

. = ¢
ox,’ 0x) Ox; ?R' * 9z,
0 0

—a;‘— ’ a—x,) a:nd Ri’kl=fq3mRimkl'

and we make the usual definitions ¢,,(p)=@, (

3) This was brought to my attention by S. HELGASON,
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Then (M,Q) has constant curvature K if and only if*)
B (p) = K (951 (P) 90 () — 242 (D) 25:(D))

for every p ¢ U and every (¢,4,k,1), as U runs through a covering of M
by coordinate neighborhoods.

2.3. Anisometry f: (M, Q)— (M', Q') is a diffeomorphism f: M —- M’ such
that @, (X,Y) = Q;(p)(f*X, f«Y) for every peM and all X,Y eM,),
where f, denotes the induced maps on tangentspaces. The collection of all
isometries of (M, ) onto itselfis a L1k group /(M , Q); (M, Q) is homogeneous
if I1(M, Q) is transitive on the points of M.

2.4. We will now consider only those pseudo-RiEmaNnian manifolds where
the metric has the same signature at every point. If each @, has signature
h n
— X o} + X «f, then (M,Q) will be denoted M.
1 h+1
2.5. A pseudo-RIEMANNian covering is a covering z: Ny— My of connected
pseudo-RiEmMaNNian manifolds where =z is a local isometry. A deck trans-
formation of the covering (homeomorphism d: Ny — N3 such that #n-d = =)
is an isometry of Nj. Our main tool is:

Theorem. Let n: N3 — M} be a pseudo-RIEMANNian covering, let D be the
group of deck transformations of the covering, and let G be the centralizer of D
wm I(N3). If My is homogeneous, then Q istransitiveon Ny . If G istransitive
on N3 and the covering is normal, then My is homogeneous.

The proof is identical to the proof of the RrEman~ian case [6, Th. 1].

2.6. Our definitions agree with the usual ones in the RIEMANNian case,
where each @, is positive definite.

3. The model spaces R}
Given integers 0 < h < n, we have a pseudo-RIEMANNian metric @) on
)
the n-dimensional real number space R", given by @M(X,Y) = — Za,y, +
1

n

+ X' x,y, where X,Y ¢(R™), correspond respectively to (zy,...,%z,),
h+1

(¥1,...,¥,) € R* under the identification of (R"), with R™ by parallel

translation. (R", Q™)) is denoted Rj}.
Let 0*(n) denote the orthogonal group of the bilinear from @Q® on R";
let NO"(n) be the corresponding inhomogeneous group, semidirect product

4) This was brought to my attention by S. HELGASON.

8 CMH vol. 386
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O*(n)-R™, consisting of all pairs (4,a) with 4 ¢ O*(n) and a ¢ R*, and
actingon R™ by (4,a): x—> Az + a. Itiseasy tosee /(R}) = NO*(n).

The geodesics of R} are just the straight lines. R} has constant curvature
zero, by a result of K. Nomizu [4, formula 9.6], because it is a reductive
homogeneous coset space of an abelian group R™, with an R™ — invariant
affine connection.

4. The model spaces S; and Hj.

h n+1
4.1. Given integers 0 < h < n, let Q} denote the quadric — X'a} + X 2} =
1 h+1
=1 in R™*, Q} is homeomorphic to R" X §"~* (§m = m-sphere). The ortho-
n+1
gonal group of the bilinear form — Z’ Y, —|— 2 x,y,, denoted O(n 4+ 1),
is transitive on Q3. The isotropy subgroup at po = (0,...,0,1) is O(n).
We will regard Qj as a symmetric coset space O*(n + ) / O" (n) the symmetry
at p, being given by (zy,...,2,, %, 1) > (— 2y, ...,— &, T,,4).

4.2. Lemma. Let O%(n + 1) and O*(n) be the L1k algebras of O*(n + 1)
and O"(n), and let E,; bethe (n + 1) X (n 4+ 1) matrixz whose only nonzero
entry 18 1 in the (¢,1)-place. Then O"(n + 1) has basis consisting of all
Xy,=E,;,—E,; for h<i<j=n+1,al Y,,=E,,—E,, for 1 Zu<
<v=h,andal Z,,=E,+ E;, for 1 Su=<h<j=n-4+1. On+ 1)
has KiLLING form

B(X’ Y) = - 2('"’ - 1){“’ Zwiiyi:f - quvyuv + quiyui }
where X = “:xiiXH + z wuquv + Zwufzuj and Y = ZyiiXii + Zyuquv“I"
+ 2 Yu;Zy;. Ot(n) has basis {X;;,Y,,, Z,}i<. ond is the eigenspace of
+ 1 for the symmetry at p,; the eigenspace P of — 1 for that symmetry has
basis consisting of all X, =2,y for 1 Su =<h and oll X;=X; ., for
h<j =n.

Proof. The symmetry at p, acts on O*(n 4+ 1) as conjugation by

<-— L, 1) ; now the statements on eigenspaces and bases are clear. The proof

of the statement on the Kmrinag form is essentially due to S. HELgAsON [2,
Lemma 6, p. 256], but is given here for the convenience of the reader. Let & be
the complexification of O*(n + 1); we have an isomorphism f of ® onto
the Lie algebra O(n 4+ 1, C) of the complex orthogonal group given by
X,>X,,Y,>Y,, and Z,,~ V-1 (E,,-E,). O(n+ 1, C) has Kmrine
form B'(X, Y) (n — 1) trace (XY), and trace (XY) = trace (f(X)f(Y)),
whence ® has Kmring form B, (X, Y)= (n — 1) trace (XY). As B is the
restriction of B,, our assertion follows. Q. E. D.
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4.3. Identify P7 with the tangentspace to Q% at po, this glves an
ad (O"(n))-invariant bilinear form K-'Q, (X,Y) = K-1(— Z‘ Tyl + Z.' x,y,)

on that tangentspace, where 0 £ K e¢R, and X — Z‘ x, X, and Y = Z' Y X,
1 1

are elements of P3. The invariance follows from the fact (Lemma 4.2) that
K-1Q,, is proportional to the restriction of the Kmring form of O*(n 4 1).
Thus K@, defines an O*(n 4 1l)-invariant pseudo-RIEMANNian metric
K@ on Q5.

Lemma. T'he pseudo-RIEMANNIAN mantfold (Q}, KQ) has constant curvature
K #0.

Proof. The manifold is homogeneous, so we need only prove our statement
at p,. According to K. Nomizu [4, Th. 15.6], the Levi-CiviTA connection is
the canonical affine connection on Q; induced by its structure as a symmetric
coset space, whence [4, Th. 10.3 and 15.1] the curvature tensor is given by

RX,Y)Z=—[X,Y],Z] for X,Y,Z «Pj3. We choose local coordinates

{u,} at p, such that —a—g— = X,,1 £b <n. In these coordinates,
b P

00 (p) = K1Q,, (X,, X,) = — K-18,, if b <h, K-8,, if b>h, where

d,. is the KroNECKER symbol. Also, R, =1= — R,%, for ¢ #b>h,

RC,=1= — RS°, for ¢ b < h, and all other RS, are zero, at p,. Thus

Ry, =K'= — R, for ¢c<h<b andfor b <h<c, and R,,, =

=—K?'=—R,,, if b #c andeither b,c>h or b,c <h, and all other

Ry are zero. This gives Ry,p.(P,) = K {9,6(P0)ac(Po) — 226 (Po)lec (Do)}
whence (Q%, K@) has constant curvature K. Q. E.D.

4.4. We define S = (Q3,€Q) and H,_, = (Qs, — @). Note that the signa-
tures of metric are correct. S} has constant curvature - 1; itis the indefinite
metric analogue of the sphere S§" = §}. Hj; has constant curvature — 1;
it is the indefinite metric analogue of the hyperbolic space H"® = H}. We will
sometimes speak loosely and refer to (Q3, K'Q) as S§; if K>0 or Hj,_,
if K<Oo.

S},‘ and H" _p are the connected, simply connected pseudo RIEMANNian
manifolds correspondmg to S and Hj_,. s 3 =83 and H,,, = Hy_, if
h<n—1; S" _y and H1 are the respectlve universal pseudo-RIEMANNian

covering manifolds of S;_; and HY; S" and H" are the respective components
of p, in §; and HJ.
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4.5. Lemma. /(S3) = O"(n + 1) = I(Hh_,).

Proof. The isotropy subgroup at p, is maximal for conservation of the
metric. Q. E.D.

4.6. We mention an alternative description of S3 and H}. The alternative
description is more direct, but the description in §4.1 to §4.3 simplifies
the proofs of Lemmas 4.3 and 4.5.

One can prove that the manifold S} of curvature K > 0 is isometric to

h n+1
the metric submanifold of R}*! given by — 2 o+ Xaf =K~ % and that the
h+1
manifold H} of curvature — K < 0 is 1sometne to the metric submanifold of
h+1 n+1
Rt given by — Za? 4+ Xa? = — (K1),
1 h+2

5. The universal covering theorem

Theorem. Let M3 be a complete connected pseudo-RIEMANNian manifold of
constant curvature K. Then, assuming the metric normalized such that K 1is
— 1,0 or + 1, the universal pseudo-RIEMANNian covering manifold of M}y

is H* if K<0, R* if K=0, and S" if K> 0.

Proof. The universal pseudo-RiEMaNNian covering manifold N3 of M}
1s complete connected and simply connected we must show N} is isometric to

i Ry or .S" Let A} be the one of H S,, of constant curvature K.

Let aeAp,beN; and let f,:( (N”) be a linear isometry of
tangentspaces; f, exists because the metncs have the same signature. Given
a broken geodesic &« of A} emanating from @, let § be the broken geodesic
on N% emanating from b which corresponds (see[3]) to « under f,. Let S
be a 2-dimensional subspace of (4}),; the curvature tensors, hence the curva-
ture forms, take the same values on corresponding parallel translates of § and
f«S along « and B, as they are determined by the sectional curvatures.
‘The torsion forms are identically zero because we are dealing with LEvI-CiviTa
connections. It follows from a theorem of N. Hicks [3, Th. 1] that f, extends
to a connection-preserving diffeomorphism g: A3 — N;. Let a' e 4}, let s
be an arc in 4} from a' to a, and let s, be the parallel translation along
8 from a' to a; let t, be the parallel translation along g(s) from b to
b’ = g(a'). The tangential map (g9y),., equals ¢, -f,-8, because g is connec-
tion-preserving; as 7, -f,-8, is a linear isometry of tangentspaces; it follows
that g is an isometry of pseudo-RiEMANNian manifolds. Q.E.D.
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Chapter II. Homogeneous manifolds of nonzero curvature

The goal of this Chapter is the global classification of the homogeneous
pseudo-RIEMANNian manifolds of constant nonzero curvature. The main tools
are SCHUR’S Lemma, real division algebras, bilinear invariants of group
representations, and the technique of changing the basefield of a quadric.

To a manifold M3 of constant curvature %k, there corresponds a manifold
N, _, of constant curvature — %, obtained from M% onreplacing the metric
by its negative. For complete manifolds, this correspondence is given by

g’},‘/DH ﬁ:_,, /D. It suffices, then, to do our classification for the case of
positive curvature.

6. The real division algebras

We assemble some facts on real division algebras, for the most part well
known, which will be useful in the sequel. All algebras will be finite dimensional.

6.1. A real division algebra F is one of the fields R (real), C (complex)
or K (quaternion). Let x— z denote the conjugation of F over R, let F*
denote the multiplicative group of nonzero elements of F, and let F’' denote
the subgroup of unimodular (zz = 1) elements of F. dim. F is understood
to be the dimension of F over R. A standard R-basis of F is an R-basis
{@,...,84m »} such that a,=1= —a} for i>1,a,a;,= — a,a, for
1 #4,t>1,7>1 and + a,a; e{a,} foreach ¢,j. Given z ¢ F,| x| is the
positive square root of zz.

6.2. F' is a compact topological group, so any discrete subgroup is finite.
The finite subgroups of R’ are 1 and {4 1}. The finite subgroups of C’
are the cyclic groups Z, of any finite order ¢ > 0; Z, is generated by

exp (2 xlV — 1/g). The finite subgroups of K’ are cyclic or binary polyhedral.

We recall the binary polyhedral groups. The polyhedral groups are the
dihedral groups D,,, the tetrahedral group T, the octahedral group O and
the icosahedral group § — the respective groups of symmetries of the regular
m-gon, the regular tetrahedron, the regular octahedron and the regular icosahe-
dron. Each polyhedral group has a natural imbedding in SO(3). Let
7n: K'— S0O(3) be the universal covering; the binary polyhedral groups are the
binary dihedral groups D = a~1(D,,), the binary tetrahedral group T* =
= x-1(Z), the binary octahedral group O* =n1(O), and the binary
icosahedral group S* = n-1(). We exclude Df because it is cyclic. Note
that isomorphic finite subgroups of K’ are conjugate.
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6.3. Lemma. Let D be a subgroup of F* and set D' =D~ F'. Then D isa
discrete subgroup of F* if and only if D' is finite and D = {D',d} for some
deD with |d| = 1.

Proof. Suppose D discrete. If D = D', set d = 1. Otherwise, note that
D, = {{g|:9 eD} is a discrete subgroup of R*, for D cannot have an
infinite number of elements in a compact neighborhood of F’. It easily follows
that D, is generated by an element |d| which minimizes |d| — 1> 0. Tosee

= {D’,d}, wenote that every g ¢ D satisfies | g| = | d |™ for some integer
m; thus gd—™ ¢ D', so g ¢ {D',d}.
The converse is trivial. Q.E.D.

7. The 6 classical families of space forms

7.1. Let 0=<s < m be integers, choose a basis {z;} in a left m-dimensional
vectorspace V over F, and consider the hermitian form @Qg(u,v)=

8 m

= — Zuv; + X u;v; where u = Xu;z, and v= Z‘v,zi The real part
1 s+1

Qu,v) =R, (Qr(u,v)) is given by Q(u,v) = — Z' x;9; + > x,4; where

sr41
r = dim. F, {a,} is a standard R-basis of F, {w,} is the ;orrespondmg
R-basis of V, given by a,2; = w, ;4% =22;w; and v=2Zyw,.
As Qr(w,u) is real, this allows us to identify Q™! with the hermitian
quadric of equation @Qg(u,w) = 1. Under this identification, both F’ and
the unitary group U*(m, F) of Qr becomes subgroups of the orthogonal
group O (mr) of Q. The actions of F' and U*(m, F) commute because
Ut(m, F) is F-linear, U*(m, F) is transitive on Q™1 and F' acts freely
on Q1. If D is a finite subgroup of F’, it follows that S™~1/D is a homo-
geneous pseudo-RIEMANNIAN manifold M;',‘,"‘i of constant curvature - 1.
We will refer to these manifolds as the classical space forms; special cases are

studied in [5] and [6].

7.2. Let o/ denote the family of connected classical space forms for F = R.
More precisely, to every triple (k,n,t) ofintegerswith 0 <h =<n,1 <t < 2,
and ¢ =2 if h =mn, there corresponds precisely one element S?/Z, of /.
Note that S?/Z, isisometric to a component of S*. The elements of -/ are the
spherical and eliptic spaces of indefinite metric.

Let &Z denote the family of classical space forms for F = C which are
not in /. To every triple (h,n,?) of integers with 0 <h <mn,t>2,h
even and n 4+ 1 even, there corresponds precisely one element Si/Z, of
&Z. The elements of ¥ are the cyclic spaces of indefinite metric; they corres-
pond to the Linsenrdume of THRELFALL and SEIFERT [5].
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Let (/) denote the family of classical space forms for F = K and D binary
dihedral. To every triple (&, n,t) of integers with 0 < h < n,t>1, and
both A and n + 1 divisible by 4, there corresponds exactly one element
S?/D; of (). The elements of (J are the dihedral spaces of indefinite metric;
they correspond to the Prismardume of THRELFALL and SEIFERT [5].

Let J, (© and & denote the families of classical space forms for F = K,
with D respectively binary tetrahedral, binary octahedral and binary icosa-
hedral. To every pair (h,n) of integers with 0 <k <n and both % and
n -+ 1 divisible by 4, there corresponds precisely one element S%/T* of £,
one element S*/O* of (©), and one element §7/J* of &J. These are the tetrahedral
octahedral and icosahedral spaces of indefinite metric; they correspond to
the Tetraederraum, Oktaederraum and Dodekaederraum of THRELFALL and
SEIFERT [5].

8. Behavior of quadric under field extension

We will consider material converse to that of § 7.1 and discuss reducible

groups which are transitive on quadrics.
n41

8.1. Lemma. Let @ be the bilinear form @Q(u,v) = —-Zu,v,—l—Z' U0y

on V =R, so QF isgivenby Q(u,u) =1, and OF(n + 1) zs the orthogonal
group of Q. Let @ < O*(n + 1) be transitive on Q, let F be a real division
subalgebra of &(V) which centralizes G, and let r = dim. F. Then
FFc O'n-+1),8s="~/r and m = (n+ 1)/r are tntegers, and there is a
Q-orthonormal R-basis {w;,} of V and a standard R-basis {a;} of F such that
Wyjpg = aiw,,_H, {w,, w,H, oy Wrim—n 41} 8 an F-basis of V, and Q(u,v) =

= R (— Z’x,yj -} Zx,y,) where 4 = X ;W51 and v = Z YW, 1

with x;,y; € F.

Proof. Let a e F'. Given u,v ¢Q} we have some g ¢eG@ with g(u) =,
so Q(av,av) = Q(agu, agu) = Q(gau, gau) = Q(au,au); thus f(a)=
Q(av,av) for any v eQy is well defined. Let w eV with Q(w,w)> 0.
There is a real >0 with zw ¢Q}, so Q(aw, aw) = 272Q (azw, azw) =
z2f(a) = f(a)@(w, w). Note that f(a) > 0: this is clear for F=R; F' is
connected if F % R, so we need only check that f(a) #0. As f(a) =0
would imply that a is a homeomorphism of the open (n 4 1)-dimensional
set P={weV:Q(w,w)>0} into the lower dimensional set L =
= {weV:Q(w,w)=0}, this is clear. Now let a,b ¢ F', and note that
(v €Q}) f(ab) = Q(abv, abv) = f(a)@(bv, bv) = f(a)f(b); thus f is a homo-
morphism of the compact group F’ into the multiplicative group of positive
real numbers; it follows that f(F') = 1.
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We now have Q(w, w) = Q(aw, aw) for a ¢ F/ and w ¢ P. By continuity
of Q(aw, aw) — Q(w, w), this also holds if w is in the boundary L of P.
Polarization shows Q(au,av)=Q(u,v) if w,v and v 4+ v liein Pv L.
Now let {v;} be a @-orthonormal R-basis of V, set uw,=v, for j>h,
and set u; = v, + Voo, 41 for § £ h. One easily checks that {u,} is a basis
of V such that u,, %, and %, + u, e PvL for every (¢,4); it follows that
Qau,av) =Q(u,v) for a e FF and u,v ¢ V. Thus F c O*(n + 1).

Let {a,} be any standard R-basis of F, and choose w, e ¥V such that
Qw,w,)=—11if h>0,Q(w,,w,) =1 if h=0, set w, =a,w,, and let
V, be the @-orthogonal complement of {w,,...,w,}. Choose w, ., ¢ V,; such
that Q(w,,, W) = — 1 if h>7, Q(w,y, w,y) =1 if h=r, set w, ;=
= a;W,,,, and let V, be the @-orthogonal complement of {w,,..., w,}.
Continuing this process, we obtain the desired basis and see that s and m
are integers. Q. E.D.

8.2. In the following, we will not always mention @ explicitly. However,
a totally isotropic subspace will mean a totally @-isotropic subspace (one on
which @ vanishes identically), orthonormal will mean @-orthonormal, and
orthogonal «complements» will be taken relative to @ unless we state otherwise.

Lemma. Let G c O%(n + 1) be transitive on Qy, let U be a proper G-
wnvariant subspace of V=R, set W =U~ U+, andlet k=n+1—h.
Then 2h > n, W is a G-invariant maximal totally isotropic subspace of V, G
acts irreducibly on W, and V has an orthonormal basis {w;} such that
(¢ =wpyy +w; for 1 =7 =k){e,...,e,} 8 a basis of W and
{Wis1s- o> Wy, €,... €} 18 a basis of WL. Finally, if F i3 a real division
subalgebra of & (V) which centralizes G and preserves U, then W and W+
are F-invariant and we may take {w;} to satisfy the conclusion of Lemma 8.1.

Proof. If F is not given,set F= R. As U and U+‘ are proper G-invari-
ant subspaces of ¥V , and as Q} contains a basis of V, it follows that @
is negative semi-definite on U and on U+. Were  nondegenerate on U,
we would have V = U @ U+ with @ negative definite on each summand,
so @ would be negative definite on V. Thus @ is degenerate on U, so
W # 0. Now W is a proper G-invariant totally isotropic subspace of V,
F-invariant because F' ¢ O*(n + 1) (by Lemma 8.1) implies that U and
Ut are F-invariant. Thus we may assume W =U. W and V are left
vectorspaces over F. Set Q(v) =Q(v,v) for v e V.

Lemma 8.1 gives an F-invariant orthogonal decomposition V =V, @ V,
with @ negative definite on V, and positive definite on ¥,. Choosing an
F-basis {b,,...,b,} of W, we have b,=1r,+ s, with r, eV,,s; e V,.
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Set e =p, + ¢, =Q(s)"¥b, with p, eV,,q ¢V,. We construct e, =
=7p,+q, with p,eV,,q,eV, from {e,...,e,,,b,} Dby setting
2y =00, —2Q(q,8,)e;,=2,+y, with z,eV,,y,eV,, and by e, =
j<u
e Q(yu)“gzu. Now {p;,...,Ps; %54, is linearly independent over F,
Q(ps, 9;) =0, and Q(g;,9;) = 5 = — Q(p;, p;). By Lemma 8.1, we can
complete it to an orthonormal F-basis {p;,. .. ;24,61 -+ €03 @1se o« 5@ty Byye o 1y}
of V. W< then has F-basis {e;, ..., €;,¢,...,C4,d,...,d,} and @ is
negative semi-definite on W+, so b = 0. Nowlet r = dim. F and let {a,}
be a standard R-basis of F. Set w,; ., = p; for 1 < j < ¢, Wepps_ny1 = 4
for 1 <7 <@, Wgpapjppn = ¢ for 1 <5 <¢, and w,,y,; = a;w,,,. The
Lemma is now easily verified. Q. E.D.

8.3. Lemma. Let G c O%n + 1) be transitive on Q}, let U and W be
proper Q-invariant subspaces of V = R**, and suppose U~ W = 0. Then
2h=n+1,U and W are maximal totally isotropic subspaces of V, and
V=Uo@W.

Proof. let k=n+1—h, U =U~U*+ and W =W~ WL+. By
Lemma 8.2, both U’ and W' are maximal totally isotropic and are k-dimen-
sional, so we need only show V =U" @ W'. Were Q(U', W)=0,U" @ W'
would be totally isotropic, contradicting the fact that U’ is maximal totally
isotropic. It follows that U’ @® W' has an element » with @(v,v) =1, so
Qrc U @ W' because G is transitive on Q3 and preserves U’ @ W'.
Thus U' @ W' =V. Q. E.D.

We will now consider the existence of a @ < O*(n 4+ 1) which is transitive
on Q% and preserves two linearly disjoint proper subspaces of V.

8.4. Given integers 0 < s < m, we consider the hermitian form Qr(u, v) =
8 m

= — X u,v; + Zuw; on a left m-dimensional vectorspace V over F. As
1 s+1

before, r = dim. F,Q(u,v) = R. (@r(w,v)), and Q™! is given by

Qr(u,u) =1.

Let U be an F-subspace of V. If U is totally @p-isotropic, it clearly is
totally @Q-isotropic. Suppose, conversely, that U is totally @-isotropic, let
u,v ¢ U, and choose a standard R-basis {a,} of F. Qr(u,v) = Za,2; with
z,eR; 0=0@Q(a,u,v) = — x; shows Qr(u,v)=0; thus U is totally
@ r-isotropic.

The unitary group U*(m, F) of Qp is the centralizer of F' in O (mr).
One inclusion is obvious and has already been noted, so we need only show
that an element ¢ ¢ O"(mr) which centralizes F' lies in U*(m, F). Central-
izing F', g is F-linear. Let u,v ¢ ¥V and note &R, (Qr(a,u,v)) = Q(a,u,v)=
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= Q(ga,u, gv) = Q(a;gu,gv) = R.(@Qr(a;9u, gv)). It follows that
Qr(u,v) = Qr(gu, gv), so g e« U*(m, F).

Combining these two facts with Lemma 8.3, we see the usefulness of :
28

Lemma. Consider the hermitian form Qr(u,?v) = — ).'.' u;v; + X u;v; on a
8+1

left 2s-dimensional vectorspace V over F, let U and W be totally @ p-isotropic
F-subspaces of V such that V= U @ W. Then there are F-bases {e;} of U

and {f;} of W with Qrle;, ;) = 28,;. Let [ represent the general linear
group GL(s, F) on V by f(x) — (0 ,91) in the basis {e,,f,} of V, and
let G= {gelUs(28,F): Ug=U,Wg= W}. Then G s the tmage of f,
and G 18 transitive on Qp(u,u) = 1 if and only if F = R.

Proof. The bases {e;} and {f;} are easily constructed by the method of
Lemma 8.2. It is easy to check that G is the image of f, and the last state-
ment is obvious for s = 1. Now assume s> 1, and we’ll prove the last
assertion. For 1 <j <s, set w,=14(e; —f;) and w,. ;= }(e; + f;), so
{w;} is a Qp-orthonormal basis of V over F. As @Qr(w,,,, w,,,) =1, we see
that @ is transitive if and only if, given « ¢ V with Qr(x, ) = 1, there
isan « e GL(s, F) with f(x): w,,— . Let = = X z;w,; it is easy to check
that f(x):w,,— « if and only if

oooooooooooooooooooooooooooooooooooooooooo

+ 2 Tyysors "‘ 2 (2; xs+5 Teys Tg). 1 = Qr(z, ) = — 2 z;%; + 2 S R
then gives Z':c, oy = Z’x,H_,x,, 80 Z'x,x,_,_, eR c F. If F # R we can
always find a,n xeV Wlth Qr(z,2) =1 and Z'x, sty ¢ R, 80 G will not
be transitive on Qr(u,u) = 1.

We now assume F = R, write Q@ = Qp, identify Q*~! with Qr(u,u) =1,
and willshow @ transitiveon Q¥*~'. Weset 2 = z,,, + %,y = 2,y — &, 7=

= (Toyn + gy .., Xy + 2,), and = (2,43 — X3,..., Ty — Z,). We wish

to find « = (t: r ) GL(s,R) with &= (Z ;) . If y+#0, we set

o« = (_ yfl-‘t ;) and have &1 = (?‘It I : z:) . If 20, we setb
—zl.r 2 r

a1 = (?‘/t I ) and have « = (__ ot I — ‘t~r) . Now suppose

1 r-B
I ~1 —
x = z = 0, note that a solution would give «« ( A% o+ A B)
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put the usual euclidean inner product (@, ) on the space R*! ofreal (s —1)-
tuples, and observe that r,¢,u,v e R*1. Let X be an (8 — 3)-dimensional
subspace of r+~¢+, | taken relative to ( , ), and let {y,,...,%,}
be an orthonormal base of X. (r,?) =@Q(x, ) = 1, so we can extend {y,}
to bases {e,¥;,...,¥Y,41} Of ¢+ and {d,y;,...,¥y,} of r+ with (d,e)=1
and (d,y;) =0 = (e,y;). Now pick u,;,v; e R with w, v, + uyu, = 1. We
set B = (u'd,ud,%,,...,%,,) and !4 = (vle,vyile, ty,,...,,,), so
r-B=0 and 4-% = 0 by construction. Set % = (uy, — %,,0,...,0) ¢ R*1
and v = (v3, — 4;,0,...,0) eRL; 1 =wuv, + uyv, gives u-v+ A-B=1,
so the desired o« and «—! in GL(s, R) are constructed. Q. E.D.

8.6. We end § 8 with two more lemmas, placed here for lack of a better
location.

Lemma. Let G c O"(2h) be transitive on Q**~1, let U and W be proper
G-invariant subspaces of V = R with U~ W = 0, and let Gy be the restric-
tion of G to U. Then there 18 no nonzero Gy-invariant bilinear form on U .

Proof. Let B(u,v) be a @u-invariant bilinear form. If B is not skew, we
may replace it with B'(u,v) = B(u,v) + B(v, %), which is symmetric.
But the proof of Lemma 8.4 and the irreducibility of Gy shows that Gy
has no nonzero symmetric bilinear invariant; we conclude that B is skew.
Assume B # 0, so B is nondegenerate by the irreducibility of Gy. Lemma
8.4 gives us an orthonormal basis {v,} of V such that (¢; =v,,;, + v, and
fi=vp; —v; for 1 <¢ <h) {e,} is a basis of U and {f;} a basis of W,

and every g €@ is of the form ¢ = (gl ‘3 _1) in the basis {e;,f;} of V.
1

0
We replace G by @' = {(31 ‘(g) —1) :g, Ppreserves B} which, containing
1

@, is transitive on Q2*~!. Let Q" be the subgroup of @' given by taking g,
1 0....0

to be of the form ¢, = 0 / . One checks dim. @ = }h(h + 1) and

: 91
0
dim. @” = 3h(h — 1) — 1; observing that G’ is the isotropy subgroup of G' at

Vpia € Q1 itfollowsthat A — 1 = dim. @' — dim. " = dim.Q?*~! =24 — 1,
80 h = 0. This contradicts B £ 0. Q.E.D.
8.6. Lemma. Let D be a subgroup of O*(n+ 1), let @ be the centralizer

of D im O*n + 1), suppose G transitive Q, and let U be a maximal
totally isotropic Q-invariant subspace of V = R™'. Then U 1is D-invariant.

Proof. Let d e D. Then dU is G-invariant and, as @ is irreducible on U,
either dU =U or dU~ U = 0. In the latter case, 2h=n 4+ 1 and
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V=U®dU by Lemma 8.3; B(u,v) = @(u,dv) is a Gy-invariant bilinear
form on U, so B=0 by Lemma 8.5. Thus Q(U,dU)=0 so @ =0,
contradicting dU ~ U = 0. Thus dU = U. Q. E.D.

9. The 8 exceptional families of space forms
9.1. In an orthonormal basis {v,} of ¥V = R®, we have

cosh (8)I, sinh ()1,
TH(8) = (sinh (8)I, cosh (s)I ,,) « 0*(2h),

where s > 0 is a real number and I, is the A X % identity matrix. To check
this, we set ¢; = v,,;, + v, and f, =v,,;, —v; for 1 <j <h, observe that
the hyperbolic rotation ry(s) = (exp (O— )1 expo(s) Ih) in the basis
{fi,e;} of V, and refer to the first part of Lemma 8.4. Lemma 8.4 also
tells us that the centralizer G' of ry(s) in O"(2h) is transitive on Q3*~'.
Note that rg(s) is conjugate to 7y (¢) if and only if 8 = ¢, ¢ also being taken
positive, and that for a given s the subgroups $(s, +) = {ru(8)}, H(s, —) =
= {—rg@®)} and 9H(s, +)= {— I,;,ru(s)} are discrete subgroups of
O"(2h). It follows that these groups are free and properly discontinuous on

h—1 and that the quotients S2*~1/§(s, +), S~ 1/H(s, —) and SP~1/$(s, +)
are homogeneous manifolds of constant positive curvature. The class &ff, of
these hyperbolic-rotation spaces is our first class of exceptional space forms. To
every triple (k,8, + or — or 4) where A >1 is an integer and s> 0
is real, there corresponds exactly one element S§2-1/§(s, + or — or +)
of ¢f., and distinct elements of ¢/, are not isometric. Note that
$(s, +) LZ L H(s, —) and Hls, ) LZ X Z,.

9.2. In an orthonormal basis {v;} of V = R"? with 2h>n and
k=mn 4+ 1 — h even, we choose a skew nonsingular % X %k matrix d and have

Ik —""d 0 ""‘d
tu(d) = ( 0 I, . O) € O*(n 4 1). This is best seen by setting
d 0 I,+d

e ="p;+v; and f,=wv,,,;,—v,; for 1=<j=<k and observing

I, 0 2d

that tg(d)=(0 I & O) in the basis B = {fi,...,fx; Vqrse++>Vs;
0 0 I,

€, .., of V.

If a linear transformation of ¥ commutes with ¢z (d), it must preserve the
subspace U of basis {e;}. Thus the centralizer G of tg(d) in O*(n + 1)
preserves both U and U+, and consequently is in upper triangular block

91 9= 9. :
form g= (0 Js g:) relative to 8. For a matrix of that form, g-tg(d)=tg(d)-g

0 0 g,
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is expressed by dgs=¢,d, and g € O*(n+ 1) isgiven by gs="19,1, 9, e O(h— k)

ordinary orthogonal group, 2<(g,);, (95);> + 2<(9s):» (91)s> = <(9a)s; (92);> and
24(91)s> (95)5> = <(92)s> (94);> where (g,), denotes the v®* row of g, and

{ , > is the ordinary euclidean pairing of m-tuples.

We first note that, if d’ is another skew nonsingular k¥ X k¥ matrix, then
tu(d') is conjugate to ¢x(d) by an element of O*(n 4 1) which preserves U.

—I10
so there is a nonsingular % X k¥ matrix g, with g¢,dig, =d'. Now set

For the associated skew bilinear forms on R* are each equivalent to ( 0 I) ,

. 0 O

i == (Ol I o ) and notice g-ta(d)g! = tu(d’), so the subgroups
0 0 ‘g

T(+) = {a@)}, T(—) = {—ta(d)} and T(L)= {—IL,,tu(d)} of

O"(n + 1) are defined up to conjugacy without reference to any particular d.

These subgroups are free and properly discontinuous on Q}; we will see that

the corresponding quotients of S} are homogeneous.
h—%k

We must show @ transitive on Q;. We take any » = Z‘ a;v; + Z' 0,5, +
+ Z’ C;Vsys €Q%, and wish to find g G with g(v, +1) = &. Calcula/omg

g(v,m) we see that this is equivalent to ¢ — a = (¢,);, ¢ + @ = (95), + (G
and 2b=(g,),, where a=(a,...,a;),b=1(b,...,b, ;) and c=
= (¢,. .., ¢;), and weadd coordinatewise. As H = {g, ¢« GL(k, R) : g,dg, =d}
is the real sympletic group, transitive on the nonzero elements of R¥, we
may choose ¢, e H with ¢ — a = (¢,);. 9¢ = ¢9,"* is then determined, and
(92, and (g,), are given by gv,,, = x. We must fill out g, and g,, and
then construct g, and g;. Suppose we have the first « — 1 rows of g, and
95,2 =w =k, and 2{(gy);, (%)) + 2<(95)s, (90);> = {(g2)i> (92)> for 4, j <w,
with (g,); =0 for 1<i<wu. Set (g,), = 0; the conditions on (g;), are
then <(gy)is (9)u> + <@)i» @)u> = 0 for 1 =i <u, so we have linear
forms p; on R* and constants ¢, such that these conditions are p; ((g5)u) +
+¢q;=0 for 1 <¢ <wu. The rows of g,, hence the p,, are independent;
thus we have a solution (g;),. Thus g, and g, are constructed. Set g, = I, .,
and the existence of g, follows, as above, from the independence of the rows of
g, Thus G is transitive on Q}, so S3/T(+), Si/T(—) and S3/IT(L) are
homogeneous manifolds of constant positive curvature. The class Cf, of these
hyperbolic-translation spaces is our second class of exceptional space forms. To
every triple (b, n, + or — or 4), where % and n areintegers with 24 > n >1
and k=n+1—~rh even, there corresponds exactly one element
SHE(+or —or +) of ¢ff,. Notice that I(+)«Z L I(—) and
I(+)Z x Z,.
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9.3. Assume 2hA>n>1 and that k== + 1 — h is divisible by 4; for
every complex number % ¢ R, we have groups £(u, + or — or 4) which
give homogeneous space forms. If T (+) is viewed as the additive group of
integers, then the free abelian part of & is the additive latticein C generated
by 1 and u.

/

We retain the notation of §9.2, set ¢ = (_(1) (1)) and define J =
q
( )e GL(k,R). Now let d be any skew nonsingular element of
q

GL(k,R) such that dJ + Jd=0. As J?= — I,, we may identify C
with the subalgebra of ((U) consisting of all al + bJ with a,b ¢R.
Given u = al + bJ ¢ C with b 5% 0, we define subgroups

L(w, +) = {ta(d), ta(du)}
E('u‘a —') = {tH(d)a - tH(du)}
L, £) = {— Ip,,tu(d), ta(du)}

of O*(n + 1). As dv isskewand nonsingular for v ¢ C* and tg(dv,)-tu(dv,) =
=ty (d(v, + v;)) for v, e C, these lattice groups are free and properly dis-
continuous on Q7. Let -/?be the collection of space forms S*/€ (u, -+ or — or +);
we must check that the elements of {7 are homogeneous.

G 92 G5 ) ) .
Let g = <O s g5> € O*(n + 1) in the basis B of V;g centralizes
0 0 g,

L(u, + or — or +) if and only if g¢J = Jg; and dg; = g,d. We now may
proceed as in the proof that the elements of Cff; are homogeneous, except
that H must be replaced by H' = {9, e GL(k, R):9,dg, = d,9,J = Jg,};
we need only check that H’ is transitive on the nonzero elements of R¥.
Let 28 =k; we give R¥ the complex structure defined by J; H' becomes

{9, e GL(3, C): %, d,-g, = d,} where d, is the skew C-linear map z— d(x)
and conjugation is with respect to a C-basis of the form {e,; ,}, whence the
transitivity of H' on Rk — {0} = C* — {0} is clear. Thus the lattice
space forms S3/8 (u, + or — or +) are homogeneous. One can check that
L(u,+or —or +) is defined up to conjugacy in O*(n + 1) without
reference to d or J, and that (z,y = + or —or +) £(u, x) is conjugate to
L(v, y) if and only if # =y and the lattices {1,u4} and {1,v) in C are
equal.

9.4, Assume 2h>n>1,h isevenand k= n 4+ 1 — h is divisible by 4;
we then have an infinite dihedral group D}, extension of I (+) by an
automorphism of order 2, and, for m = 3, 4, 6 or 8, some extensions L, («)
of the lattice groups.
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We retain the notation of § 9.2 and, as before, set ¢ = (_(1) (1)> and
q
J == ( ) e GL(k,R), and choose a skew nonsingular % X ¥ matrix
q q
d with Jd+dJ=0. Let J’———( ) e GL(h — k,R) and let

J 0 0

o = (O J’ 0) relative to B;J,,, € O*(n 4+ 1). Finally, u =al, +
0 0 J

+ bJ,b # 0, represents a non-real complex number. DY = {J,.,,tu(d)}

is an infinite dihedral group (z,y: 2t =1, zyx~! = y).

R,, is the rotation cos (2r/m)I,,, + sin (2z/m)J,,, of V. R, e O*(n + 1).
Note that R, = J,,,. Let m = 3,4,60r 8, and suppose that the lattice
{l1,u} in C 1is invariant under left multiplication by cos (47 /m) +
+ V' — 1sin (4n/m), where V/ — 1 is chosen such that u = a - V = 1s.
We then set 8,(u) = {BR,,,tn(d),tu(ud)}. L,(u) is free on Q}, and acts
properly discontinuously because, as

R,,-ta(vd)- R, = tg {(cos (4m/m) + V' — 1sin (4n/m)) vd}

for v ¢ C,Q(u, +) has index m or m/2 in &, (u). Similarly, D* is free
on Q3, and acts properly discontinuously because I (+) is a subgroup of
index 4. Let /), be the collection of space forms S%/Q,.(u) (m = 3,4, 6, 8)
and let (|, be the collection of space forms S%/D%; we must show that the

elements of _{J, and of (JJ, are homogeneous.
Let D= g_(u) or D%; in the basis 8, the centralizer of D in O"(n+ 1)

G 92 G5
is the collection of all g = (O A g5) e O"(n+1) with gJ,, =J,..9
0 0 g

and ¢,d = dgs. We give V the complex structure defined by J,,,, so @
is the real part of a hermitian form @, and {v,;, ,} is a @,-orthonormal basis
of V. We set

(k == 28, h = 2t) ﬂc = {fl’ fa»- ) fza—l; Ve(a+1) =13+ 5 Vag—15 €15+« + 620—1} ’
C-basis of V. Letd, e GL(s, C) be the matrix of the C-linear transformation

x—>d(x) of U, relative to {ey;_,}. The centralizer of D in O*(n 4 1)

B 92 9
is then the collection of g € U¥(s + ¢, C) such that g = (01 A gﬁ) in the
0 0 g

C-basis B, of V, with g¢,d, =d,gs. The condition ¢ ¢ Ut(s +¢, C) is
expressed g, = ‘9,1, 9, ¢ U(t — 8) ordinary unitary group, 2<(9,);, (95),> +

+ 2{(93):> (91)5) = <(92)s> (92),> and 2<(g1):, (96)s> = <(92)s, (9s);> Where (g.,),
is the v® row of g, and < , ) is the ordinary hermitian pairing of complex
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3 t—s 8
m-tuples. We take any x = X a,vy_, + 2 0,055,531 + 2 €;V500004p—1 In Qf,
1 1 1

which is given by @,(v, v) = 1, and wish to find g ¢ O*(n + 1) which central-
izes D and gives ¢(vy,,) = x; this last is equivalent to ¢ — a = (¢,);,
¢+ a = (gs) + (g6} and 2b = (g,);. We may choose g, with g,d, = d,'g,~*
and (g,), = ¢ — a, set gg = g, 7, let (g), = 2b andlet (gy), = ¢ + a — (g,
The proof is now identical to that of § 9.2, but that some condition are conju-
gate linear.

Now (J, and f,(m = 3,4,6,8) consist of homogeneous manifolds
of constant positive curvature. For every pair (h,n) of integers with
2k >n>1, h evenand n + 1 — h divisible by 4, thereis exactly one element
S*D% in (J,. For every quadruple (h,n;m; A) with h,n and m
integers such that 2 >n > 1,4 is even, n + 1 — h is divisible by 4 and
m=3,4,6 or 8, and where 4 = {1, %} is a lattice in C with v ¢ R and

exp (4n V—tjm)l = A, there is exactly one element S7/8, (u) of _[,.

10. The eclassification theorem for homogeneous manifolds
covered by quadries

The main result of this paper is

10.1. Theorem. Let D be a subgroup of O*(n + 1) such that Si/D is a
connected homogeneous manifold. If D 18 finite, then is it cyclic or binary
polyhedral, and S%/D 1is a classical space form, element of ~f, KT, (J), I, ©
or &. If D isinfinite but fully reducible, then it is isomorphicto Z or Z X Z,
and S%/D e ff.. If D is abelian but not fully reducible, then either it is isomorphic
to Z or Z X Zy with S*D ¢ Cff,, or it is isomorphicto ZXZ or Z X Z x Z,
with StD e L. If D 1is neither abelian nor fully reducible, then either it is
an extension of Z by an element of order 4 and S?/D € (], oritisan extension
Z X Z by an element of order m, with m = 3,4,60r 8, and S?/D ¢ L,.

Remark. For some (h,n), certain families of space forms are excluded.
Thus S%/D¢ L, or (J if 2h =<n, if n +1 — h £ 0 (mod 4), or if & is
odd; S}D¢ L if 2h<n or if n+1—h=£0(modd); SyDe¢ H, if
2h <n orif n+1—h isodd; S?/De¢ Cff, if 2h#.n+1; SYDe¢(J, T, ©
or & if h £ 0 (mod 4) orif n 4 1 = 0 (mod 4); Sp/D¢ & if & is odd or if
n -+ 1 is odd.

Proof. Let V = R»+*, let G be the centralizer of D in O%(n + 1),

and let B be the subalgebra of & (V) generated by D. Theorem 2.5 says
that @ is transitive on Qj. We will divide the proof into several cases depend-
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ing on whether G is irreducible on ¥V, whether D is fully reducible on V
and whether B is a division algebra. Note that B is a division algebra if @
is irreducible on ¥V, by SonUR’s Lemma.

10.2. Suppose that B is a division algebra. We view V as a left vector-
space over B, note that D is a subgroup of the multiplicative group B*,
and (Lemma 8.1) choose a ¢-orthonormal R-basis {w,} of V and a standard
R-basis {a;,} of B such that (r = dim. B)w,, ; = a;w,;,,. Then 8 = h/r
and m = (n 4 1)/r are integers, v; = w,;_;),;, gives us a B-basis {v,} of V,

8 m

and the hermitian form @p(x,y)= — 2y, + 2 vy, (x = X z;v;, and
1 8+1

y = Xy,v; with z,,y, ¢ B) has the property that Q(x, y) = R.(Qz(,y))

and Q} is given by @p(z,z) = 1.

D is a subgroup of the unimodular group B’ of B because D preserves
Q3, and D is discrete because it is properly discontinuous on Q}; it follows
from compactness of B’ that D is finite. Thus D is a finite subgroup of B’
acting by left scalar multiplication on S§3; = {x e V:@Qp(x, ) = 1}. Now
S3/D is a classical space form.

10.3. Suppose that D is fully reducible on ¥. If B has an element whose
characteristic polynomial is not a power of an irreducible polynomial, then the
rational cononical decomposition V =2V, of ¥V by that element is nontri-
vial. G preserves each summand V,, so Lemma 8.3 says that 2A =n 41
and the decomposition is of the form V =U @ W with U and W maximal
totally isotropicin V. U and W are D-invariant by Lemma 8.6, and ¢
is irreducible on each by Lemma 8.2; it follows that the restrictions B |y
and B |y are division algebras. These division algebras are each isomorphic
to R by Lemma 8.4, whence D is scalar on U and on W. We choose an
orthonormal basis {v;,} of V such that (e; = v,,;, + v,, f; = vy, — v; for
1 <i=<h){f,} isabasisof W and {e;} is a basis of U. Then every deD
. al, 0
is of the form d = ( 0 a-1]

form a discrete subgroup of R*; Lemma 6.3 then says that D is generated

) in the basis {f,;, e;}. The real numbers a
A

by some one + (‘(;'Ih a,~13) and perhaps also — I, with a>1, in

{f;, e;}. Changing to the basis {v;}, we see S}/D e (ff,.

Now suppose that every b ¢ B has characteristic polynomial which is a
power of an irreducible polynomial; we will see that B is a division algebra,
whence D is finite, @ is irreducible and S3/D is classical. This is clear if G
is irreducible on V; now assume G reducible. We then have a G-invariant
D-invariant maximal totally isotropic subspace U of ¥V by Lemmas 8.2

9 CMH vol. 36
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and 8.6; the restriction B |y is a division algebra, by ScHUR’s Lemma, be-
cause @ isirreducibleon U. Let A bethekernel oftherestriction f: B— B|y.
By our hypothesis on characteristic polynomials, A is the set of all elements
of B whose every eigenvalue is zero; it follows that A is contained in the
radical of B. B is fully reducible on ¥, consequence of the full reducibility
of D; it follows that B is semisimple [1, Th. 4, p. 118]. Thus A =0, so
f: BL B|y and B is a division algebra.

10.4. Suppose that D is not fully reducible on V; we will see St/D ¢ ¢/,
L, (), or J[,. First note that D is infinite and G is reducible. Lemmas
8.2 and 8.6 give us a G-invariant D-invariant proper maximal totally isotropic
subspace U of V, of dimension £ == 4+ 1 — A, on which @ is irreducible,

and gives us a @-orthonormal R-basis y = {v;,...,v,,,} such that
(e, =104y +v;, and f;=wv,_; —v; for 1 <j <k) {e;} is a basis of U.
U+ is also G-invariant and D-invariant, and has basis {v,,,,...,v,5€1,...,€.};

it follows that every element of G, D or B has block form

@ Gy 0Oy
a = (O ay as)
0 0 a,

in the basis f= {fi,--, fx;Vis1s-+->Vns €,-..,€,3 of V. Note that
a ¢G or a €D gives a e O*(n + 1), whence a; = ‘a,;”! and a, € O(h —Fk).

Let 7,,r, and r, be the matric representations of respective degrees
k,h —k and k of @, given by a—>a,,a—>a, and a— a4. 74 is the restric-
tion G— Gy = G| v, hence irreducible; 7, is irreducible because it is contra-
gredient to 7g; 7, is an orthogonal representation of G'. Let a ¢ @, av,,, =
= X x,v,. A short calculation shows that the first row of a; is
(Zpy1 — Zys- -« Tppr — &x); it follows from the transitivity of G on Q3
that neither 7, nor 7y has a nonzero symmetric bilinear invariant.

Let t,t, and #; be the matric representations of respective degrees
k,h —k and k of B, given by a—>a,,a—>a, and a—as, and let s, s,
and 8, be their restrictions to D. {(B) = B, is a division algebra by ScHUR’S
Lemma because it centralizes the irreducible group G¢; thus s, is fully redu-
cible. 8, is fully reducible because it is contragredient to s;, and s, is fully
reducible because it is an orthogonal representation. Every element of D has
characteristic polynomial which is a power of an irreducible polynomial: if
not, Lemma 8.3 would give h =k and show that we could also assume
W = {f;} to be G-invariant and D-invariant; it would follow that D =
= (8, @ %) (D) so D would be fully reducible on V. Thus 8,8, and s
have the same kernel 4 and every d ¢ 4 is of the form
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I d, d
d = (0 I d5> relative to g .
0 0 I

8¢ represents by unimodular elements of the division algebra By, for s4(d)
was just seen to have the same characteristic equation as its contragredient
tss(d)t, for every d ¢ D. Now s, is self-contragredient, hence equivalent to
8,. It follows that ¢, and {¢; are equivalent, hence have the same kernel A.
We have seen that there is no nontrivial G-invariant direct sum decomposition
of V, so the characteristic polynomial of any element of B is a power of an
irreducible polynomial. Thus every element of the kernel Ker.#, has all
characteristic roots zero, hence lies in A because f#g(B) is a division algebra.
On the other hand, ¢,( A) is easily seen to be the radical of #,(B), and #,(B)
is semisimple because #, is fully reducible [1, Th. 4, p. 118], consequence of
the fact that s, is fully reducible; it follows that A = Ker. ¢, unless 2 — k =

0 a
= 0. Now we see that every a ¢ A is of the form a = (O O2 Zi) , S0 A
0 0 0
is a nilpotent ideal of B and the difference algebra (see [1], p.27) B —
— A L1t(B), being a real division algebra, is separable [1, Th. 21, p. 44].
This shows that A is the radical of B and that [1, Th. 23, p. 47] B has a
subalgebra By with t;: By L t3(B). By Lemma 8.2, we may take a standard
R-basis {x;,} of By and assume that v,,, = «,v,,( = dim. By) and
that the respective R-linear spans of {f,}, {vx41,...,v,} and {e;,} are By-
invariant. Note that we then have e, ,=«&;¢€,, and f, =« f;,. In

b, 0 0
particular, By consists of all (O b, 0) for be B, and A consists of

0 b, b 0 0 b
all matrices (O 0 bs) for b e B. It follows that @ centralizes every
0 0 0
0 o
matrix dy = (O ds O> and that d, =dg, for d e D.
0 0 d,

Given d ¢ D, we note that dy ¢ O*(n + 1); thus
I dy7dy dy 7'y
dy~id = (0 I dy ;‘ds) eO*(n + 1). It follows that d,7'd, =
0 0
= 2(¥(dy2d;)). Set d' =d,"'dy. Now let g eG. g(dvd)= (dv~d)g
gives us ¢,d' = d'g, and g¢,(2'd') = (2!d’)gs, whence (d'-'d')gs =d'g,'d' =
=g,(d'-d'). As g, = 'gs! and as d'-%d’ is symmetric, it follows that d’-d’
is the matrix of a G4-invariant symmetric bilinear form on U. But 7, has no
nonzero symmetric bilinear invariant; thus d’-%d’ = 0. This gives d;,"dy; = 0
and d,'d; =0, whence d; =0 and d; = 0. We conclude that every
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4 0 d
element of D is of the form d = (0 d, O ) relative to B. Notice that
0 0 d,

some d ¢ D has d; % 0: D would be fully reducible if this were not the case.

Choose d e D with d,; 0 and note that dg = gd gives Ygd,gs = d,
for every g ¢ @. Let F be the centralizer of r4(@) in &(U). F is a division
algebra which contains {;(B) as a subalgebra. Given ueF, we have
t9¢(dsu)ge = dyu for every g e G. Thus d,u is a bilinear invariant of 7.
It follows that d;u is a nonsingular skew matrix. This gives d,u = — (d;u) =
= — ., = tud,. In particular, given %, v € F, we have uv=d;1- {(uv)-dy =
=dy - W-dy-dyt-tu-d; = uv, so F is commutative.

Given beB and g e@G,dgt=g9gd and bg =gd gives dyg,! = g¢d;
and bsgs = 967105 ; thus ds b3+ gg = dy™1- igg1 - by = gedy by, 80
d;1b; € F; it follows that b, ed,-F. Let B, be the collection of all matrices
b, for b ¢ B; we have just seen that the linear space B; has dimension at
most dim. F. Let A; be the collection of matrices dy for d’' e A. Given
d,d" e 4, we have

I 0 dg\ /I 0 df I 0 d3 +df
d’d”=(0 I O)(O I 0 >=<0 I 0 )=d"d’.
0 0 I/ \0 0 I 0 o0 I

Thus A4 is free abelian, isomorphic to the additive group 4,. 4 is discrete,
as D is discrete, so A4, is a lattice in B,. This shows A4 free abelian on at
most dim. F generators. If #,(B) L R and 4 = {I}, then s;: D ¥ s4(D)c R/,
contradicting the hypothesis that D be infinite; thus 4 # {I} if £(B) L R.
If t(B) 2 C and 4 = {I}, then 84: D L 84(D) c C' shows D abelian, so
B is abelian; then byb; = bjb, for every b,b' ¢ B, whence b; = %] for
b’ ¢ B. This gives #(B) L R, contrary to our hypothesis; thus 4 % {I}
if #,(B) 2 C. We conclude that 4 # {I} and A4 is free abelian on at most
dim. F generators.

I 0 ¢

Suppose #(B) L R and A4 is infinite cyclic. Let § = (O I 03)
0 0 I

generate A. k is even because 4, is skew and nonsingular. If s4(D) = {I},

then D= A4, so D = T(+) and S%/DeH,. If 34(D) # {I}, then s4(D) =

— I 0 dy
= {4+ I}, and we choose d=( 0o —1 0):-:1). D= {d, A} and
0 0o —1

d® e 4, B0 — 2d; is an integral multiple of §;. If — 2d; is an even multiple
of d;, then d; = md; for some integer m and — I = dé™ ¢ D; we then
have D = {— I, 4} = T(+) and S¥/D e ;. If — 2d, is an odd multiple
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of 6, —2d; = (2m + 1)d;, then d6m=( 0 —1I 0> generates
0 .0 —1I

D; we then have D = T(—) and S?/D ¢ A, .
Suppose #(B) L R and A4 is not infinite cyclic. Then F 2 C and 4 is
free abelian on two generators 8 and é'; d3 = 8,u for some non-real u eF.

k is divisible by 4, for we identify F with C and observe that z— 8,2 is
a C-linear nonsingular transformation of U whose matrix must be skew
because it is a bilinear invariant of the C-linear group 7¢(&). If s(D) = {I}
then D=4, so D=8(u,+) and S}/D e L. If s(D)# {I}, then
8(D) = {+ I} and, as in the last paragraph, we choose d es;1(— I) and
observe that d? ¢ A implies — 2d, = méd, + m'dg for integers m,m’. If
both m and m' are even,then D = {— I, A} = Q(u, &) and S%/D ¢ L.
If both m and m' are odd, we replace d by an appropriate dé* §’®* and

—I 0 —}(8+ %)
assume m = — 1 =m', d= 0 —1I 0 ,d2 = 66’.
0 0 —1I
I 0 &(u+ 1)/2
Now D = {§,d} and ——d=(0 I 0 ); therefore D =
0 0 I
= Q((w 4+ 1)/2, —) and S?/D e L. If m is odd and m’' is even, we may
— I 0 — 446
assume d=( 0o —1I 03>; then D= {6',d} =R8(3%?}, —) and
0 0 —1

S3D e 2. Finally, if m is even and m' is odd, then we may assume

—1 0 —4468
d-—-—( 0o —1I O); then D = {8,d} = 2(3%, —) and S%/D e L.
0 0 — I

I o0 ¢
Suppose #(B) L C and A4 is infinite cyclic. Let 6§ = (0 I 33)
0 0
generate 4. As A is a normal subgroup of D, we have ddd— ¢ 4 for every
d eD. TUsing d,d,'=d,d,=d,d, and §,d,7!= d,716, =d,8;, this
gives d,26, = md, for some integer m. Similarly, d-10d ¢ 4 gives d,~%3, =
pd, for some integer p; d; = d,%d,20, = mpd, gives p = m~!, whence
m= +4+1. m=1 givex d,=+1; m= —1 gives d2= — I. There
exists d e D with d2= — I, for 8(D) % {4 I}. Given such an element

& 0 (dy+ di)dy
d, we note that d2= {0 d2 0

0 0 d2
B generated by d is mapped isomorphically onto #(B) by f,. We may,

) = — I, so the subalgebra of

0 0
then, chose deD with d2= — I and asume d = (O d, O) . Now
0 0 4
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D= {d,é},d*= —1,déd* = 61, the argument of the last paragraph
shows k divisible by 4, and & is even because By 2 C. Thus D = D¥
and S?/D e (/.
Suppose #(B) L C and A4 is not infinite cyclic. Then % is even and,
looking at A4, k is divisible by 4. Let §, 8’ generate 4. Given d e D,d? +
I 0 (d?+ dy72)d,
d,~? is a real scalar matrix; thus (ddd—?) (d—1dd) = (O I g ) ed
0 0

shows d;?2 + d,~2 integral. Identifying #,(B) with C, set d, = cos (¢) +
+ ¥V — 1sin ();d2 + d;~® is then 2cos (2f), so cos (2f) = —1,—%,0,%
or 1.

If cos(2t)= —1, then t= 4+=x/2 and d2= —I; it follows that
d®= —1I. If cos(2¢) =0, then ¢t = +=x/4 or 4 5xn/4 and dt= —I;
it follows that d¢ = — I. If cos (2¢t) = 1, then d, = 4 I. If cos (2¢) = — 1,
then ¢t = 4 2#/3 or +4x/3, and one easily checks d? 4 I 4 d,72 = 0;
it follows that d® = 4+ I. Finally, cos (2¢) = } is impossible because it would

d: 0 +V3d,
imply t= +=/6 or 4 7x/6, whence d? = <0 dg? 0 ) and
—I o0 +2V34, 0 0 d;®
dt = ( 0o —1I 2 ) commute; this would give d%d, = d,d?2,
0 0o —
hence d; = 0, and tell us that 4 = I because d = sg'84(d). Thus s4(D)
is cyclic of order 3,4,6 or 8 (for s(D) ¢ R'), and we have an element
d* ¢ D such that sz: {d*} L2 s¢(D). The subalgebra of B generated by d*
maps isomorphically onto #;(B) under ?#, so we may assume By chosen
with d* ¢ By. This gives d*; = 0 for our choice of d*. Now choose J €74(B)
with J2= —1I,J,,¢Bv with #(J,.;) =J; we may assume d* =
= co8 (2x/m)1,,, + sin (2= /m)J,,, where m = 3,4,60r 8. d* now acts
on A by (d*dd*1); = (cos (4n/m)l + sin (4n/m)J)d;. Thus D = &, (u)
where &'y = ud;, w = al 4+ bJ, and S3/D €8,,. Q. E.D.

10.5. Corollary. Let D be a subgroup of O*(n -+ 1) suchthat Si/D isa
connected homogenous manifold. If 2h <n or n 4+ 1 — h 18 odd, then Si/D
i8 a classical space form, element of of, ¥, (J), I, ©), or 4.

For none of the exceptional families of space forms occur in these signatures.
Thus:

10.6. Corollary. Let M™ be a connected Riemannran homogeneous manifold
of constant negative curvature. Then M™ 1is isometric to the hyperbolic space
H* = H}.

10.7. Corollary., Let M™ be a connected RIEMANNtan homogeneous manifold
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of constant positive curvature. Then M™ i3 isometric to S"/D where S™ 1is the
sphere ||z|| = k™% in a left hermitian (positive definite) vectorspace over a real
diviston algebra F, D 1is a finite subgroup of F', and M™ has curvaiure k.
All these RIEMANNian manifolds S™/D are homogeneous of comstant positive
curvature. The only cases are (1)D = {I} or Z,,(2)n =1 (mod 2) and
DwZ(g>2) and (3)n =3 (mod 4) and D L D}, T*, O* or I*.

Corollaries 10.6 and 10.7 follow immediately, and give the classification of
the RiemaNNian homogeneous manifolds of constant nonzero curvature. That
classification is known [6].

11. The difficult signature

S* and 3’,} are essentially different for h =n — 1;#,(S)_;) L Z. We will
relate the homogeneous manifolds M} _, of constant positive curvature with
the homogeneous manifolds S;_,/D covered by quadrics. The trick is to use
the universal covering group of the non-connected group O*1(n 4 1).

11.1. Lemma, Let =: §;‘,__1——> Sn_1 be the universal pseudo-RIEMANNian
covering, let On-1 (n + 1) be the full group of isometries of §2_1, and let D,
be the group of deck transformations of the covering. Then D, s a central subgroup
of the identity component SOn-1 (n + 1) of On-1 (n + 1), D, 18 normal in
On-1 (n+ 1), and we have an epimorphism f: On-1 (n+1)—> 0"1(n 4+ 1)
of kernel D, defined by f(g)-n(z) = n(g%).

Proof Let G be the normalizer of D, in On-1 (n + 1), let az(%) =
let K be the isotropy subgroup of on—1 (n + 1) at p, and let K be the
isotropy subgroup of 0" 1(n 4 1) at p. o1(n + )= @-K because homo-

geneity of S,_; implies that @ is transitive on .S‘" . [ iswell defined on G,
and f(@G) = 0" (n + 1) because every isometry can be lifted; it follows that

(@~ K ) = K. Isomorphic to the linear isotropy group of G at 5 ,Gn~ K
is 1somorph10 to a subgroup of O (n) K ~ O0"'(n) now gives
G~ K © 01 (n); this gives K c @ because K is isomorphic to a subgroup
of 0*1(n). Thus O"1(n + 1) = Q- K = @. It follows that D, is normal
in O (n + 1) and f is well defined on o1 (n 4+ 1). It is clear that

SOn-1 (n + 1) centralizes D,, being a connected group which normalizes
the discrete group D,, and D, isthe kernel of f by construction.

Now we need only show D, c Som1 (» + 1); as f is onto, it suffices to
show that O"‘1 (n + 1) and O"'(n + 1) have the same finite number of
components. K ~ SO™1 (r 4+ 1) is connected because Sj,_, is simply connec-
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ted, and K meets every component of On-1 (n + 1) because 3‘”,,_1 is connected;
it follows that On-1 (n + 1) and K have the same number of components.
K w On1 (n) £ K, whence K and K each has 4 components. O"1(n + 1)
has 4 components. Q. E. D.

11.2. We check that #—2({4- I}) isinfinite cyclic. This is the case m = 2 of

Lemma. Let Sh_,/Z,, be homogeneous. Then the fundamental group 7, (Sn_4/Z,,)

18 tnfinite cyclic.
-1

Proof. S,_, isgivenby 2,2 + z,,,2 =1 +Zx, , sothemap &:[0,1]—>S)_,

given by s(t) =(0,...,0,sin (2xt), cos (2azt)) represents a generator of
71 (Sn_q). Let b: 8:_1—>S:__1/Zm be the projection and set B = b,n,(Sh_,).
We may assume Z, generated by I if m=1,—1 if m=2, and
(R(l/'m) N > if m>2, where R(g) ____( cos (2mq) sin (2nq)> .
. R(1/m) — 8in (2mq) cos (2nq)

Let »:[0,11> S,_4/Z,, by v(t) =0b(s(t/m)); bys = v™ e, (Sn_4/Z,). Thus
B has index m in the cyclic subgroup {v} of =,(S;_,/Z,,). The covering b
has multiplicity m, whence B has index m in =,(Sp_,/Z,); thus {v} is
all of =,(Sh_,/Z,). Q. E.D.

11.3. Certain abelian subgroups of On-1 (n + 1) will be seen to contain

conjugates of every group D such that S,_,/D is homogeneous. We will
describe these groups.

R(s)
If n is odd, every rotation matrix R(s),,, = < ) lies in
R (s)

SO"1(n + 1), where R(s)= (__ :;)If gz;; ZiOI; gz:;) . The collection

Agr of all these rotation matrices is a circle subgroup of SO*1(n 4 1). It
follows from Lemma 11.2 that the inverse image Ar = n—'(4g) is a closed

non-periodic 1-parameter subgroup of SO (n + 1).
If n> 2, we take d to be any nonsingular skew 23X 2 matrix, and recall

(§ 9.2) that each translation matrix ig(sd) = (O ; 0 >
sd 0 I, 4 sd

(8 €R) lies in SO™"1(n 4+ 1). The collection Az of all such 4 tg(sd) is a
closed subgroup of SO"(n -+ 1) isomorphic to Z; X B'; Lemmas 11.1 and
11.2 inform us that the inverse image Ap = g1 (A7) is a closed subgroup of
or-1 (r + 1) isomorphic to Z X R', where the Z is a#1({4 I}) and the
R! is the lifting of the 1-parameter group {tx(sd)}.
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cosh (8)I, sinh (8)I ) .

sinh (8)I; cosh (s)I:, lies in 50%(4).
As with the translation matrices, Ay = n—1({+ Rh(s)}) is a closed subgroup

of 8~02(4) isomorphic to Z X R!, where the Z is =;71({4+ I}) and the R!
is the lifting of the 1-parameter group {Rh(s)}.

Finally, set le =n1({£1}) c 5"*1(91, + 1), and 4z = {4+ I}.

Each hyperbolic rotation RFkA(s) = (

Lemma. Let D be a subgroup of On-1 (n + 1). Then S Sn_i/D s a homo-

geneous mamfold of and only if D is conjugate to a discrete subgroup of Az, Ag,
AT or AH

Proof. Suppose 52_1/D homogeneous. Let G' be the centralizer of D in
o1 (» + 1). The identity component of G is transitive on },’:_1 , and
centralizes D, by Lemma 11.1; it follows that the centralizer Q of D-D,
ig transitive on 3’,:_1. Thus the centralizer G = f(é) of f(D) in O*1(n + 1)
is transitive on S;,_;. We now look at the proof of Theorem 10.1; G acts on
V = R"* and B is the subalgebra of (S(V) generated by f(D). If B isa
division algebra then, as in § 10.2, f(D) is conjugate to a subgroup of Az
(for n even) or Agr (for n odd). If f(D) is fully reducible on ¥ and B is
not a division algebra then, asin § 10.3, B has an element whose characteristic
polynomial is not a power of an irreducible polynomial, n = 3, and f(D)
is conjugate to a subgroup of Ay. If f(D) is not fully reducible on ¥V, then,
as in § 10.4, f(D) is conjugate to a subgroup of 4Ar. Thus D is conjugate
to a subgroup of A4 z, Ar, A}} or A~T. Free and properly discontinuous on
52-1, D is discrete.

Let D be a discrete subgroup of Az, A R, Ay or Ar. The centralizer G of
f(D) in O"'(n + 1) contains the centralizer of Az, Agr, Ay or Ar, and
is thus transitive on S, _,; it follows that the centralizer of D in on-1 (n 4+ 1)
is transitive on 51,‘_1. As D acts effectively, this shows D free on 5",,_1 .
As D is discrete, it easily follows that §:_1 /D is a homogeneous manifold.

Q. E.D.

11.4. The discrete subgroups of A Z, Ap, Ay and Ay are easily described.
Any subgroup of Az is discrete and infinite cyclic. The discrete subgroups
of fI r are the subgroups on one generator; they are discrete. Viewing ZH

and XT as closed subgroups Z X R!' of a vector group R2?, we see that a
discrete subgroup is on 1 or 2 generators; a subgroup on 1 generator is discrete
and infinite cyclic; one easily checks that a non-cyclic subgroup on 2 generators

is discrete if and only if it does not lie in the identity component of Ay (or AT)
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12. The classification theorem for homogeneous manifolds
of constant non-zero eurvature

Theorem. Let M} be a connected homogeneous pseudo-RIEMANNian manifold
of constant positive curvature. If h <n — 1, then M3} 18 isometric to a classical

or exceptional space form S3/D, element of of, &, (J, I, ©, &,
S, Her Door L, L Los Lo or Lo If k=1 — 1, then My is isometric

to a mamfold Sz__l |D, where D 18 a discrete subgroup of a closed subgroup

AZ,AR,AH or Arp of On-1 (m+1). If h=mn, then M} s isometric to S"n,
a component of S, .

Proof. This is an immediate consequence of Theorem 5, Theorem 10.1 and
Lemma 11.3.

Chapter ITI. Isotropic and symmetric manifolds of constant curvature

13. The notion of a symmetrie or isotropic manifold

Let @ be the metric on a pseudo-RiEMANNian manifold M7 and, given
peMy, let I(M3), be the isotropy subgroup at p of the group /(M3) of
isometries. A symmetry at p is an element s, e /(M}) of order 2 with p as
isolated fixed point; such an element is unique and central in /(M}%), because
the tangent map at p is — I. My is symmetric if there is a symmetry at
every point. M} is isotropic if, given p e My and a e R, I(M3), is transitive
on the set of tangentvectors X at p such that @, (X, X) = a. M3 is strongly
isotropic if, given p e My, I(M3), is transitive on the @,-orthonormal frames
at p, i.e., I(M}) @ O*(n).

Note that a strongly isotropic manifold is an isotropic manifold of constant
curvature; we will prove the converse. We'll also see that an isotropic manifold
of constant curvature is symmetric.

It is well known that a connected manifold is homogeneous if it is either
isotropic or symmetric. For, given a tangentvector X at a point p, we have
an element sx e /(M}), such that (sx)yX = — X. Now let =,y e M; and
join them by a broken geodesic. If =,,..., z,, are the successive midpoints
of the geodesic segments of this broken geodesic, and if X,,..., X, are the
respective tangentvectors to the geodesic segments at w,,...,z,, then

8XmSXm— - - - SX1(%) = ¥.
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14. The classification theorem for symmetric manifolds of zero curvature
and for nonholonomie manifolds

14.1. Theorem. Let M} be a connected pseudo-RIEMANNian manifold. Then
these are equivalent:

1. M3 s a symmetric manifold of constant curvature zero.

2. My 18 a complete manifold with trivial holonomy group, ¢.e., parallel
translation in M3 18 independent of path.

3. M3 s isometric to a manifold Ry/D where D 1is a discrete subgroup of
the underlying vector group R™ of Rj}.

Proof. Suppose first that M} is complete with trivial holonomy. Then M}
has constant curvature zero and admits R} as universal pseudo-RIEMANNian
covering manifold. Let D be the group of deck transformations of the universal
pseudo-RIEMANNian covering =:Rj;— M. D is a discrete subgroup of
I(R}) = NO*(n); we write every deD in the form d = (R,,t;) with
R;e0"n),t;eRy and d:xz— R,(x) +t;. {R,:deD} is isomorphic to
the holonomy group of M} at n(0), whence D is a group of pure translations.
Thus (2) implies (3). The last part of our argument shows that (3) implies (2).

To see that (3) implies (1), we note that R;/D carries the structure of a
connected abelian L1t group, and that y— 2?y~! is the symmetry at « be-
cause y— y~! is the symmetry at the coset D.

Now suppose M7} is symmetric of constant curvature zero, let D be the
group of deck transformations of the universal pseudo-RIEMANNian covering
n: Ry— M3, and write every deD in the form (R, t;) as above. Let

n h
Qx,y) = —Zx,y; + Zx;y; on R*, so O"(n) c /(R}) is the orthogonal
1 A+1

group of . Choose d ¢ D; we must show that d is a pure translation. The
space N7 = Ry/{d} ({d} is the subgroup of D generated by d) is symmetric
because it covers M} and we can lift each symmetry; it follows that the central-
izer @ of d in NO*(n) is transitive on R}, and that every symmetry of R}
normalizes {d}.

Given xR}, choose geG with g(x) =0. Q@d(x) — z,d(x) — x) =
=Q (gd(x) —9(),9d(2) — (%) = Q(t4.t4). Thus Q (Ry— D)z, (Rg—I)z)+
+ 2Q ((R; — I)z,t;) = 0 for every x e R;. Replacing z by ux as » runs
through R, we see that Q((R; — )z, (R; — I)x) =0=Q ((R; — I)x, t;)
for every « ¢ R;. Polarizing the first equality, then expanding and using
R,e0"n), we get Q(x,(2I — R; —R;Y)y) =0 for z,yeR;. Thus
2] = R;+ R,, whence (R; — I)) =0. We conclude that R;=1 +N
with N2 = 0, N(R}) is totally @-isotropic, and ¢; is @-orthogonal to N (R}).
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In particular, (R;)™ = I + mN, whence either B; =1 or R, has infinite
order. Thus {d} is either trivial or infinite cyclic.

We now use the fact that {d} is normalized by the symmetry s, = ( — I, 0)
of Ry at 0. s ds, = (R;, —t;) iseither d or d1, as {d} is either trivial
or infinite cyclic. s,ds,™ #d as ¢; # 0, for d has no fixed point. Thus
8,d8, 1 =d1= (R;, — R; ;). In wparticular, R2=1. As R2=
=14 2(R; — I), as seen in the last paragraph, we conclude that R, =1
and d is a pure translation. Thus (1) implies (3). Q.E.D.

14.2. Corollary., Let M™ be a connected RIEMANNian mansfold. Then these
are equivalent:

1. M» i3 a symmetric manifold of constant curvature zero.

2. M™ 48 a complete manifold with trivial holonomy group.

3. M™ is isometric to a product of a euclidean space with a flat torus, i.e., M
18 18omelric to a quotient R™/D of a (positive-definite) euclidean space by a
discrete vector subgroup.

4. M™ 18 a homogeneous manzfold of constant curvature zero.

Proof. The theorem establishes the equivalence of (1), (2) and (3), and (3)
trivially implies (4). Now assume M” homogeneous of constant zero curvature,
and let d = (R,;,¢;) be a deck transformation of the universal RIEMANNian
covering m: R*— M". In the proof that (1) imply (3) in the theorem, we saw
that (BR; — I)(R") must be totally isotropic. Thus R, =1, for R" is a
positive definite euclidean space. Q. E. D.

15. The classification theorem for isotropic manifolds of zero curvature

Theorem. Let M3, be a connected pseudo-RIEMANNian manifold of constant
curvature zero. Then these are equivalent:

1. M3 18 isotropic.

2. M3 s strongly isotropic.

3. M} is isometric to Rj.

Proof. It is clear that (3) implies (2) and that (2) implies (1); now assume M}
isotropic. Let D be the group of deck transformations of the universal pseudo-
RIEMANNian covering = :Rj— M}, and write d = (R;,t;) e NO*(n) for
every d € D. The centralizer @ of D in NOQO(n) is transitive on R}, and
the isotropy subgroup K of G at 0 is irreducible when we view K as a
group of linear transformations of the vectorspace V = R}. As in the proof
of the last theorem, transitivity of G implies that every (R; — I)2 =0,
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whence R; — I is nilpotent. K centralizes every R; — I by construction,
whence R; — I = 0 by ScuHUR’s Lemma. Thus D is a group of pure trans-
lations (I,¢;). Let W be the subspace of V' spanned by the vectors ¢, with
d € D. Identify V with the tangentspace to R} at O; then a tangentvector
X e V is an element of W if and only if the geodesic exp (tn, X) in M} lies
in a compact set; it follows that W is K-invariant. Thus W =0 or W=7,
by the irreducibility of K. W £ V because K cannot carry a closed geodesic
of M} onto an open geodesic. We conclude that D consists only of (Z, 0).
Q.E.D.

16. The classification theorem for symmetric and isotropic manifolds
of constant nonzero curvature

When considering pseudo-RiEMANNian symmetric, isotropic or strongly
isotropic manifolds of constant nonzero curvature, we may assume that

curvature positive; for I(S‘},'/D) = I(I;,’:_,,/D).

16.1. Theorem. Let M} be a connected pseudo-RiEMANNian manifold of
constant positive curvature. Then these are equivalent:

1. M3, is strongly isotropic.

2. M7} 18 isotropic.

3. My is symmetric.

4. M3 is complete, so we can speak of the group D of deck transformations of
the universal pseudo-RIEMANNian covering B:Sp — My; furthermore, D 13 a
normal subgroup of I(§2).

5. If h<mn — 1, then M? is isometric to St or S¥/{+ I}, element of of;
if h=m, then M" is isometric to S*, elementof of: if h=n —1, and if
4 z denotes the complete inverse image of {4+ I} c O*(n + 1) wunder the
epimorphism f: 5”-1(77,-{- 1)> 0" 1(n + 1) of Lemma 11.1, then M} 18
isomelric to a manifold 52_1 /D where D 18 a subgroup of the infinite cyclic
group j Z.

6. Sy/{x I} admits a pseudo-RIEMANNian covering by M3.

16.2. Proof. If M7} satisfies any of the 6 conditions, then it is homogeneous.
If n = h, this implies that M} is isometric to S;/{- I}, which is isometric
to §:, whence M} satisfies all 6 conditions. Now we will assume A <mn.
Suppose first that M} admits a pseudo-RiEMANNian covering «:Sj; - M}
(S is connected because k < n), andlet D, be the group of deck transform-
ations of the covering. « is the universal covering, hence normal, if A <n — 1.
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o is also normal if A =n — 1, for, in the terminology of Lemma 11.1 and
of our various conditions, f = « -z and we need only check that D, = f(D);
the latter is clear because f-1(D,) is D, being the normalizer of D, in D.
Thus M} = S3/D,. Then, as every discrete normal subgroup of O%*(n + 1)
is contained in {4+ I}, conditions (4), (5) and (6) are each equivalent to the
condition

7. D, c {+1}.
As (7) implies (1), and (1) implies (2) and (3), we need only check that (2) and
(3) each implies (7).

16.3. Suppose that M} = S}/D,, is symmetric. Let b ¢ D, andlet B be the
subgroup of D, generated by b; the manifold N} = S}/B covers M}, so
every symmetry of M} lifts to N,. Thus N}, is symmetric. Now every
symmetry of N} lifts to a symmetry of S;, whence every symmetry of S7
normalizes B. Thus the symmetry s = diag. {—1,—1,...,— 1,1} to
Sz at p,= (0,...,0,1) normalizes every conjugate of B. We now use
homogeneity of M3 and the list provided by Theorem 10.1 to prove D,c {41},
which is the same as M% ¢ o/. If M?% is classical but not contained in ~/; then we
have an element b eD, which is conjugate to b’ = diag. {R(v),..., R(v)}

cos (2rv) sin (2nv)
where R(v) = (— sin (2zv) cos (2nv)
that sin (27v) 5% 0; s normalizes the group B’ generated by b’, whence
8b's 1b'-1¢ B'; this contradicts sin (27nv) %40 because sb's1b'-1 =

= diag. {I3,..., Iy, S} where I, = (1 O) and

) and v is a rational number such

01

S = (_; ;))-R(v)-(_(l) ;))-R(——v).

If M} eCff,, then we have an element & e D, which is conjugate to &' =
. . __ (cosh(v)  sinh(v)

= 4 diag. {Rh(v),..., Rh(v)} where RA(v)= (sinh('u) soshiv) and
sinh (v) £ 0; the group B’ generated by &’ is infinite cyclic and normalized
by s, whence 8b’s~1b'-1 = I or b'-2; this contradicts sinh(v) £ 0 because
8b's71b'! = diag. {I,,...,1;, S’} where

, _(—1 0 —1 0 B
S = ( 0 1) ~Rh(v)-( 0 1) - Rh(— v).
Now suppose that M® is neither classical nor in Cf,; by Theorem 10.1 and
the homogeneity of M3, D, has an element b which is conjugate to some
tu(d) with d skew, nonsingular and of degree kt=n-+1—h <h. If
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{v;} is our given O"(n + 1)-orthonormal basis of ¥V = R™*, we may set
;= Vpy; + v; and f; =, —v;, and

I, 0 2d
ta(d) = (0 I, ., O ) in the basis
o o I,

By = {hseo s fis Vs - s Vs €n o 00} Of V. As py=v,,,,

/ 0 E
E 0 A
where A4 = diag. {— 1,...,— 1,0} and EF=1,+ A. The group B’
generated by iz (d) is infinite cyclic and normalized by s, whence s-ty(d)-s!
is tg(+ d). Using A2+ E?2= 1, and AE = 0= KA, we see that
I, O 24dA
8-tg(d)-s71 = (0 I, ., O ) ,
0 o0 I,
whence Ad4 = 4 d. As A issingular and d is nonsingular, this is impossible.
Thus (3) implies (7).

16.4. Suppose that M} = S%/D, is isotropic, and let beD,. Let G be
the normalizer of D, in O*(n + 1) and let H be the isotropy subgroup at
xeS;. H is transitive on the tangentvectors to S; of any given length,
whence H(y) is uncountable if 4+ x #y eS;. If b(x) # 4 «, this shows
that {b—lgbg~'(x):g e H} is uncountable. On the other hand, b-gbg~e D,
for ge H, and D, is countable. Thus b(x) = 4+ x for every beD, and
every « e Sj. This shows that every be D, is 4 I, whence (2) implies (7).

16.5. We have now seen that our 6 conditions are equivalent if M} admits
a pseudo-RiEMANNian covering by S;. Now we may assume h =mn — 1.
We retain the notation of Lemma 11.1. The f-image of a discrete normal sub-
group of on1 (» + 1) is a countable normal subgroup of O0”1(n 4+ 1), thus
contained in {4 I}; it follows that (4), (5) and (6) are each equivalent to

8. Dc 4,, i.e., f(D)c {+I}.
As (8) implies (1), and (1) implies (2) and (3), the theorem will be proved when
we check that (2) and (3) each implies (8), when h =n — 1.

16.6. Let M, _, be symmetric. As every symmetry of My_, lifts to a sym-

metry of S" 1, we see that every symmetry of .S‘:‘,__i normalizes D; as every

symmetry of Sj_, lifts to a symmetry of S" _1, it follows that every symmetry
of Sp_; normalizes f(D). As in § 16.3, we see f(D) c {4+ I}. Thus (3)
implies (8).
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Let M} _, be isotropic, and let G' be the normalizer of D in on1 (n 4+ 1).
Every isotropy subgroup of G is transitive on the tangentvectors, at the rele-
vant point, of any given length; it follows that the normalizer of f(D) in
O%*n +1) is f(@G) and has the same property. As in § 16.4, we see
f(D) € {£ I}. Thus (2) implies (8). Q. E. D.

17. Applications

17.1. Theorem. Let M3 be a connected isotropic pseudo-Rirmannian manifold
of constant curvature. Then M3 8 symmetric.

Proof. This is an immediate consequence of Theorems 14.1, 15 and 16.1.

17.2. Theorem. Let M; be a pseudo-Rizmannian manifold. Then these are
equivalent:

1. M3} 48 strongly isotropic.
2. M3} is an isotropic manifold of constant curvature.

Proof. Note that we may assume M}; connected. The theorem is then an
immediate consequence of Theorems 15 and 16.1, and of the fact that a
strongly isotropic manifold has constant curvature. Q. E.D.

17.3. Theorem. Let n: N3 — M} be a pseudo-Riemanwian covering with N}
strongly isotropic, and let D be the group of deck transformations of the covering.
Then M?% 1s strongly isotropic of and only if D is a normal subgroup of 1(Ny);
in that case, the covering is normal.

Proof. N3 has constant curvature, and the theorem follows trivially from
Theorem 15 if that curvature is zero; we may now assume that N; has
constant positive curvature. We have pseudo-RiEMANNian coverings
o: §Z—> N7 and B: 3‘},‘—» M3 with respective groups D, and Dg of deck
transforms.

Suppose M; strongly isotropic. Then D, c Dg, D, and Dﬁ are normal
in / (S") by Theorem 16.1, and « induces an isomorphism / (S")/D — I(N})
which carries Dg onto D. Thus D isnormalin /(N}), and z is normal.

Suppose D normalin /(N3). Westill have an isomorphism I(S")/D — [(N3)
because N3 is strongly isotropic, whence the inverse image Dg of D is

normal in I(S") By Theorem 16.1, M} is strongly isotropic. Q. E.D.

Added in proof: 1. Remark on Corollary 10.5. If 2k < n, then D isfinite even
if S3/D is not assumed to be homogeneous. See [7].
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2. Remark on Corollary 14.2. The analogous result is true for manifolds M}
provided that A =1 or h =n—1 (the Lorenz signatures), or that M} is compact,
or that » < 4; it is false if these assumptions are not made. See [8].
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