
KOEBE Arcs and FATOU Points of Normal
Functions.

Autor(en): Bagemihl, F. / Seidel, W.

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 36 (1961-1962)

Persistenter Link: https://doi.org/10.5169/seals-515613

PDF erstellt am: 17.07.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-515613


Koebe Arcs and Fatou Points of Normal Functions

by F. Bagemihl and W. Seidel1), Détroit, Michigan (USA)

Let C be the unit circle and D be the open unit disk in the complex
z-plane, and Cw, Dw be the corresponding entities in the complex w-plane.
The closure of a point set 8 will be denoted by S, and the Lebesgue mea-
sure of a measurable set E by m(E).

We begin by setting down sortie définitions.

Définition 1. Let A be an open arc of 0, possibly C itself. A Koebe
séquence of arcs (relative to A) is a séquence of Jordan arcs {Jn} in D such
that (a) for some séquence {en} satisfying the conditions 0 < en < 1 (n 1,

2,3,...) and en -> 0 as n -> oo, Jn lies in the ew-neighborhood of A (n 1,

2,3,...), and (b) every open sector A of D subtending an arc of G that
lies strictly interior to A has the property that, for ail values of n except
at most a finite number, the arc Jn contains at least one Jordan subarc
lying wholly in A except for its two end points which lie on distinct sides
of A.

The terminology in Définition 1 is suggested by the appearance of such arcs
in Koebe's lemma [2, p. 19].

Définition 2. A strong Koebe séquence of arcs is a Koebe séquence of arcs
{Jn} with the property that, to every C € (7, there corresponds a rectilinear
segment extending from C to a point of D, which is intersected by infinitely
many of the arcs Jn (n 1, 2, 3,...

It is easily verified that a strong Koebe séquence of arcs is a Koebe séquence
of arcs relative either to C itself or to C minus a single point of C.

Définition 3. If f(z) is a meromorphic function in D and c is a constant,
finite or oo, we say that f(z)-*c along a Koebe sequœnce of arcs {Jn}9
provided that, for some séquence of positive numbers {rjn}, where rjn->Q
as n-> oo, we hâve, for every z €Jn(n 1, 2, 3,...), | f(z) — c | < r\n or
|/(z)| > lfan> according as c is finite or infinité.

Définition 4. If f(z) is a meromorphic function in D, we say that f(z)
is bounded by M on a Koebe séquence of arcs {Jn}, provided that there
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exists a finite positive constant M such that \f(z)\< M for every z c Jn

(n=l,2,3,...)-
Définition 5. Let zf S (z) dénote an arbitrary one-to-one conformai

mapping of D onto itself. A function f(z), meromorphic in D, is said to
be normal in D [5, p. 53], if the family of fonctions {/ (8 (z)) } is normal in
D in the sensé of Montel, where convergence is defined in terms of the
spherical metric.

Définition 6. A Fatou point of a meromorphic function in D is a point
£ c G such that, for some complex number c (possibly oo), as z-> f in any
Stolz angle at f, f(z)->c; c is then called a Fatou value of f(z).

We show first (Theorem 1) that a normal meromorphic function that tends
to a constant along a Koebe séquence of arcs is identically constant. This
generalizes a resuit due to Gross [4, pp. 35-36] as well as a resuit due to the
présent authors [1, Corollary 1, p. 266]. Next we prove (Theorem 2) that a
normal holomorphic function that is bounded on a strong Koebe séquence of
arcs must be a bounded function. This generalizes [1, Corollary 2, p. 266].
(The two results in [1] alluded to involve "boundary paths" instead of Koebe
séquences of arcs.)

Theorem 3 asserts that if the set of Fatou points of a normal holomorphic
function in D is of measure zéro on an arc of C, then that arc contains an
everywhere dense set of Fatou points of the function at each of which the
corresponding Fatou value is oo. This generalizes [1, Theorem 5, p. 267]. It
follows immediately that the set of Fatou points of a normal holomorphic
function in D is everywhere dense on C, which sharpens [1, Theorem 4,

p. 267]. This resuit is to be contrasted with one given in [5, p. 58], according
to which there exist normal meromorphic fonctions in D possessing no Fatou
points. (Cf. also [1, Remark 4, p. 267].) Theorem 4 shows that a normal
holomorphic fonction in D can hâve its set of Fatou points of arbitrarily small
positive measure without having oo as a Fatou value. This leads us to pose
the following problem, which we hâve not solved.

Problem. Let f(z) be a normal holomorphic function in D. Suppose that
an arc A of C exists such that the measure of the set of Fatou points of
f(z) on every subarc of A is less than the length of that subarc. Does A
contain a Fatou point of f(z) at which the corresponding Fatou value is oo

We proceed now to the proofs of our theorems.

Theorem 1. Let f(z) be a normal meromorphic function in D. If f(z)-+c
ahng a Koebe séquence of arcs {Jn}, then f(z) c.
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Proof. We may assume that c 0, for otherwise we can replace the normal
meromorphic function f(z) by the normal meromorphic function f(z) — c

if c is finite, or l/f(z) if c =f= oo.
Let the given séquence {Jn} be a Koebe séquence relative to the arc .4

(see Définition 1), and consider an arc B {z : \ z \ 1, qt < arc z < q2}

strictly interior to A. Dénote by A the open sector of D with vertex at
the origin and vertex angle /?, subtending the arc B. The sides of A will
be called sx, s2, where thèse segments terminate in eiqi eiq*, respectively.
In view of (b) in Définition 1, there is no loss of generality in asserting now
that for every n the arc Jn contains a Jobdan subarc Fn lying wholly in
A except for its endpoints P(*\ P(% which lie on slts2i respectively. It is
obvious that {Fn} is a Koebe séquence of arcs relative to J5.

Set

rn min | z \, Bn max \z\ (n 1, 2, 3,...

It follows from (a) in Définition 1 that

n n • V /
n-> oo n -> oo

For n 1,2,3,..., we now define a Jordan curve Kn. Let the circle
| z | Bn intersect st and s2 in the respective points Qty, Q^, and dénote
the radial segments P^Q^, P*$ Q*% by t^, t^, respectively (thèse
segments may reduce to single points). Then, if Bn is the open arc of the circle
| z | Rn which lies in A and jB* is the complementary arc, we put

The interior of Kn will be called Qn, and we set Gn {z : | z \ < Bn}.
Carleman's Extension Principle for harmonie measure implies [7, p. 70]

that

ai(0, £> ~rn~ e Qn) ^ co(0, Bn, Gn) -L

We hâve [7, p. 26]

oi(0, <» - Tw - «», ûj a>(0, W v, «», ÛJ + o>(0, Tn, fij
An inequality due to Ostrowski [3, p. 42] shows that
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and (1) implies that lim œ(0, t($ ^ t(%, Qn) 0. Hence

lim info»(0, T.,!*,,) S: JL.

Consequently, if Dw is mapped conformally onto Qn by means of the
function z tpn(w), where y)n(0) 0 and the point w eiQi corresponds
to the point z P^), then each arc Fn, for n sufficiently large, is the image
of an arc of Cw of length at least fi/2 with its end point of smaller argument
at eigi.

If we set

gn(*>)=f(VnM) (71=1,2,3,...), (2)

then [5, p. 57] gn(w) is a normal meromorphic function in Dw. Since f(z)
is normal in D, there exists [5, p. 56] a finite positive constant y such that
for every z e D,

ÏTW(1-|Z|")S" (3)

Now from (2) we obtain

According to [9, p. 133], if Dx(z) dénotes the radius of univalence at the point
z tpn(w) of the région Qn, we hâve

and since Ûn lies in D,

A(«) ^ 1 ~ h I ^ 1 ~ I « l2 • (6)

CJombining (3) to (6), we find that

Let S^ dénote the subarc of Cw whose end point of smaller argument is
eiqi and whose length is 0/2. The hypothesis that f(z) -> 0 along the Koebb
séquence {Jn} implies that limgrn(^) 0 uniformly on S. This together

n> o

with (7) shows, in view of [5, p. 64], that the séquence {gn(w)} tends
uniformly to zéro on every compact subset of Dw.

We shall now show that f(z) 0. Suppose that, on the contrary, f(zQ) ^ 0
for some Zq€ D. By (a) in Définition 1, Zq e Qn for ail sufficiently large values
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of n. Let w cpn(z) be the inverse of the function z ipn(w). Then, accord*
ing to (2),

9n(<Pn(*o))

for ail sufficiently large values of n. Since {gn(w)} tends uniformly to zéro
on every compact subset of Dw, but / (z0) ^ 0, we must hâve lim | <pn (zQ) | 1.

n -» oo

But this is impossible; for if we fix q so that | zQ | < q < 1, then Schwarz's
lemma yields

\<Pn(Z0)\ <

for ail sufficiently large values of n. Our supposition has thus led to a
contradiction, and the theorem is proved.

Theorem 2. Let f(z) be a normal holomorphic function in D. If f(z) is
bounded by M on a strong Koebe séquence of arcs {Jw}, then f(z) is bounded

by M throughout D.
Proof. If f(z) is bounded in Z>, then Définition 2 implies that none of

its radial limits, except perhaps one, is greater than M in modulus, and the
représentation of f(z) by its Poisson intégral shows immediately that
\ f(z)\ < M throughout D.

We shall now suppose that f(z) is unbounded in D, and show that this
leads to a contradiction of the hypothesis that {Jn} is a strong Koebe
séquence. The set of ail points z € D &t which | f(z) | > M + 1 is open and
not empty; let Rx be some component of this set. At ail boundary points of
Rx that lie in D, we hâve | /(a:) | M + 15 and the maximum principle
implies that JB1 cannot lie wholly in some disk \z\ <q <l. Hence, the
boundary of Rx contains at least one point of C. The région Rt cannot
hâve more than one accessible boundary point on G, for if it had two such

points Ci and f2 > they could be connected by a Jobdan arc F lying, except
for its end points Ci and £2, in i?x, and F would décompose D into two
subregions. But Rx, and hence F, meets none of the arcs Jn(n 1,2,3,...),
and therefore infinitely many of thèse arcs would hâve to lie in one of the two
subregions of D, contradicting the remark following Définition 2 and (b)
in Définition 1.

We now map Dw conformally onto the universal covering surface R* of
Rx by means of the single-valued function z <p (w), and set

in Dw. We hâve | (p(w) | < 1 in Dw. The Fatoij values of <p(w) are of
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modulus 1 on at most a subset of measure zéro of Cw ; this follows from the
Riesz uniqueness theorem [7, p. 209] and the fact that Bx has at most one
accessible boundary point on C. Since Bf is unbranched over J?1} almost
ail the Fatou values of <p(w) are points in D that lie on the boundary of
Rt. Hence, g(w) possesses limits of modulus M + 1 along almost ail radii
of Cw. It follows that f(z) is unbounded in JS1, because otherwise we
should hâve | g(w) | < M + 1 throughout Dw, contradicting the définition
of jRx.

The set of ail points z c R1, at which | / (z) \ > M + 2 is open and not
empty; let R2 be some component of this set. Then R2 c Rl9 and if we
apply to j?2 the foregoing argument for Rl9 we arrive at the conclusion
that f(z) is unbounded in B2. Proceeding in this manner, we obtain a séquence
of nested régions

Bx) i?2 :> B^
such that, for n 1,2,3,...,

\f(z)\>M + n (zeBJ. (8)

Now take

Z3€B3 - {z1,Z2},...,ZneBn - fe,3a,..., V-i},...
and join z1 to z% by means of a Jordan arc Kt lying in Bl9 join z2 to z3

by means of a Jordan arc K2 lying in B2 and having no point except z2 in
common with Kl9..., join zn to 2W+1 by means of a Jordan arc Kn lying
in Bn and having no point except zn in common with Kx ^ jBT2 w • • • w ^n-i > • • • •

We thus obtain a path

P= Z Kn
n l

in D. Its initial point is zli and its uend" lies on C because, due to (8) and
the fact that Kn c Bn {n 1, 2, 3,...),

lim min | f(z) | oo
n->oo zeKn

and /(2), by hypothesis, is holomorphic in Z>. The path P then is a "boundary

path" in D along which f(z)-+ oo. According to [1, Corollary 1, p. 266],
the end of P is a single point f cO. Since /(z) is normal in D, C is a Fatou
point of f(z) with oo as the corresponding Fatou value [5, p. 53]. But, in
view of Définition 2, this contradicts the hypothesis that {Jn} is a strong
Koebe séquence, because f(z) is bounded on {Jn}; and the theorem is

proved.
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Theorem 3. Let f(z) be a normal holomorphic function in D and A be an
open subarc of C. If the set of Fatou points of f(z) on A is of measure zéro,
then A contains a Fatotj point of f(z) at which the corresponding Fatou value
is oo.

Proof, Take a point f c A. The function f(z) cannot be bounded in any
neighborhood of £, because otherwise, by a simple extension of Fatou's
theorem, the set of Fatou points of f(z) on A would be of positive measure,
contrary to hypothesis. Hence, there exists a number ô > 0 such that the

région H Dr\ {z:\z- £ | < (5} satisfies the conditions that H ^ C c A
and f(z) is unbounded in H. Consequently there exists a séquence of points
{zn} in D such that zn-> f and Mn | f(zn) | -> oo as n-> oo, where

1<M1<M2< • • • <Mn< • • For n 1, 2, 3,..., let Vn be the open
set of ail points of D at which \f(z)\> Mn — 1, and dénote by Rn that
component of Vn which contains the point zn. Evidently | f(z) \ Mn — 1

at ail boundary points of Rn that lie in D. The maximum principle implies
that Rn<^C is not empty. As n-+ oo, the diameter of Bn tends to zéro.
For if rn min | % |, the hypothesis that / (z) is holomorphic in D implies

zeJRn

that lim rn 1, so that if the diameter of Rn did not tend to zéro as n -» oo,
n-> oo

one could obtain a Koebe séquence of arcs along which f(z) -> oo, which is
impossible in view of Theorem 1. Thus there exists a natural number N such
that Rn c H, and we set Ox — Rn-

We shall show that f(z) is unbounded in Gx. Let G* be the smallest
simply connected région containing Gl9 and z q>(w) be a function that
maps Dw conformally onto (?*. The set JS* G* ^ C is not empty; we
dénote by B\ the set of ail points of J5* that are accessible from the région
G*. According to Fatou's theorem, <p(w) has a radial limit at almost ail
points of Cw ; we put

for every fi for which the limit exists. The set

^={4*: |,*(«*) | 1}

is a Borel set, and is therefore measurable, and we hâve

5= {i

Consider the function

g(w)
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in Dw. We are going to show that g(w) is unbounded in Dw. Assume that
g(w) is bounded in Dw. We hâve either m(E1)>0 or m(E1) §.

Suppose first that m(Ex) > 0. Let Eo be the Bobel subset of positive
measure of Ex at each point of which g(w) possesses a radial limit, and E^
be the image of EQ under the mapping z q>(w). An application of an extension

of Lowneb's theorem [10, p. 322] shows that JB^ is a measurable subset
of J5* with m(J5^)>0. Let Coei?*. Then there is a path in G* terminating
in £0, an(i fchis path is the image, under the mapping z (p(w), of a path
in Dw that terminâtes in a point e^ocUo. Now ç>*(e^o) f0> and g(w)
has a radial limit at the point e^o; therefore f(z) tends to a limit along a
path in (?* terminating in f0. By hypothesis, f(z) is normal in D, and
consequently [5, p. 53] £0 is a Fatou point of /(z). Since £0 was an arbitrary
point of jB*, and m(B%) > 0, we hâve arrived at a contradiction of the
hypothesis that the set of Fatou points of f(z) on A is of measure zéro.

Suppose next that m(Ex) 0. Since every boundary point of 6?* is a

boundary point of Gl9 the italicized remark in the first paragraph of the
proof implies that the Fatof values of g(w) areequalto Mn — 1 in modulus
almost everywhere on Cw. The représentation of g(w) by its Poisson intégral

shows that | g(w) | ^Mn— 1 throughout Dwi which implies that
| f(z) | fg Mn — 1 L throughout Ox En, contrary to the définition of

Thus g(w) is unbounded in Dw, which implies that f(z) is unbounded
in (?* and hence in Gx. It follows that the open set of ail points of Gx at
which | f(z) | > L + 1 is not empty, and letting G2 dénote a component of
this set, we conclude as above that f(z) is unbounded in G2. Continuing in
this manner, we obtain a séquence of nested subregions Gxï (?2 } (?3

of H, and now an argument employed in the proof of Theorem 2 enables us
to infer the existence of a Fatof point of fiz) on A at which the correspond-
ing Fatou value is oo, thus completing the proof of the theorem.

Corollary 1. The set of Fatou points of a normal hohmorphic function in D
is everywhere dense on C.

Theorem 4. Given e > 0, there exists a normal holomorphic function f (z)

in D whose set of Fatou points is of measure less ihan s but for which oo is
not a radial limit.

Proof, Consider first the function y{w) g(w) + h(w) in DWi where

g(w) is the elliptic modular function, holomorphic and normal in Dw, whose
set of Fatou points E is enumerable and whose Fatou values are 0, 1, oo5

and h(w) is bounded and holomorphic in Dw and possesses a radial limit at
every point of Cw — E but no radial limit at any point of E [6, Theorem 6,
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p. 14], Now (p(w) is holomorphic and normal in Dw [5, p. 53]; its set Eo of
Fatou points is enumerable, and oo is its only Fatou value.

Choose a positive number (5 so small that, if q cos —, then

+ 1

(9)

where L is a certain positive absolute constant to be specified later. Let P
be a perfect nowhere dense set on Cw that contains no point of Eo and for
which m(P)> 2tz — ô, and set H Cw — P. Dénote by R the simply
connected subregion of Dw whose boundary consists of the points of P and
the open chords of Cw that subtend the components of the open set H. The
boundary of R is evidently a rectifiable Jordan curve of length less than
27t. Since each component of H is of length less than ô, the région R
contains the disk | w \ < q. Let the fonction w X(z) map D conformally
onto R so that A (0) 0, and let S be the set of ail points on C that
correspond under this mapping to points on the chords of Cw subtending
components of H. Since the sum of the lengths of thèse chords is less than ô,
we hâve, by a theorem of Lavrentiev [8, p. 125],

m{S)<
log- + 1

(10)

Now consider the function f(z) <p(h(z)) in 2>. It is holomorphic and
normal in D [5, p. 57], does not hâve oo as a Fatou value, and its set of
Fatou points is S. According to (9) and (10), m (S) < e, and this complètes
the proof of the theorem.
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