VINCENT's Conjecture on CLIFFORD Translations of the Sphere.

Autor(en): Wolf, Joseph A.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 36 (1961-1962)

PDF erstellt am:
17.07.2024

Persistenter Link: https://doi.org/10.5169/seals-515615

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Vincent's Conjecture on Cufford Translations of the Sphere

by Joseph A. Wolf ${ }^{1}$, Princeton (N. J.)

I. Introduction and statements of theorems

G. Vincent has suggested the possibility that every finite group of Clifford translations of a sphere is either cyclic or binary polyhedral [2, § 10.5]. In a recent Comptes rendus note [3] I stated that this is the case; the purpose of this note is to supply a proof.
S^{n} is the unit sphere in Euclidean space R^{n+1}, and carries the induced Riemannian structure; hence the group of isometries of S^{n} is the orthogonal group $O(n+1)$. Recall that an isometry f of S^{n} is a CLIFFoRD translation if the distance between a point $x \in S^{n}$ and its image $f(x)$ is independent of x. This just means that either $f= \pm I \quad(I=$ identity $)$ or $n+1=2 m$ and there is a unimodular complex number λ such that f has m eigenvalues equal to λ and m eigenvalues equal to the complex conjugate $\bar{\lambda}$ of λ.

We recall the binary polyhedral groups. The polyhedral groups are the dihedral groups \mathscr{O}_{m}, the tetrahedral group \mathcal{J}, the octahedral group \mathcal{O} and the icosahedral group \mathcal{J}-the respective groups of symmetries of the regular m-gon, the regular tetrahedron, the regular octahedron and the regular icosahedron. Each polyhedral group can, in a natural fashion, be considered as a subgroup of the special orthogonal group $S O(3)$. Let $\pi: \operatorname{Spin}(3) \rightarrow S O(3)$ be the universal covering. The binary polyhedral groups ${ }^{2}$) are the binary dihedral groups $\mathcal{O}_{m}^{*}=\pi^{-1}\left(\supset_{m}\right)$, the binary tetrahedral group $\mathcal{J}^{*}=\pi^{-1}(\mathcal{J})$, the binary octahedral group $\mathcal{O}^{*}=\pi^{-1}(\mathcal{O})$, and the binary icosahedral group $\mathcal{J}^{*}=\pi^{-1}(\mathcal{J})$.

We can now state
Theorem 1 (conjectured by Vincent). If Γ is a finite group of Clifford translations of a sphere, then $\boldsymbol{\Gamma}$ is either a cyclic group or a binary polyhedral group.

In fact, one can add
Theorem 2. Let $\boldsymbol{\Gamma}$ be a finite group of Clifford translations of a sphere $S^{n} \subset R^{n+1}$. If $\boldsymbol{\Gamma}$ is cyclic of order 1 or 2 , then $\Gamma=\{I\}$ or $\{ \pm I\}$. If $\boldsymbol{\Gamma}$ is cyclic of order $q>2$, then $n+1$ is even (say $n+1=2 s$) and Γ is the

[^0]image of a representation ϱ of the abstract cyclic group \boldsymbol{Z}_{q} where A is a generator of Z_{q} and ϱ is $S O(2 s)$-equivalent to the representation
\[

A^{t} \rightarrow\left($$
\begin{array}{lll}
R(t / s) & & \\
& \ddots & \\
& & { }_{R(t / s)}
\end{array}
$$\right), \quad R(\theta)=\binom{\cos (2 \pi \theta) \sin (2 \pi \theta)}{-\sin (2 \pi \theta) \cos (2 \pi \theta)}
\]

If Γ is binary polyhedral and noncyclic, then 4 divides $n+1$ (say $n+1=4 s$) and $\boldsymbol{\Gamma}$ is the image of a representation ϱ of an abstract binary polyhedral group $\mathcal{O}^{*} \cong \mathbf{\Gamma}$ where ϱ is $S O(4 s)$-equivalent to a sum of s copies of the SO(4)-representation

$$
\mathcal{P}^{*} \subset \operatorname{Spin}(3)=S U(2) \subset S O(4)
$$

Finally, the images of these representations are finite groups of Clifrord translations of S^{n}.

Using Theorem 2 we will prove
Theorem 3. Let $\boldsymbol{\Gamma}$ be a finite group of Clifford translations of a sphere $S^{n} \subset R^{n+1}$. Then the centralizer of Γ in $O(n+1)$ is transitive on S^{n}.

Theorem 4. Let $\boldsymbol{\Gamma}$ be a finite subgroup of $\mathbf{O}(n+1)$. Then these are equivalent:
(1) Γ is a group of CLIfrond translations of S^{n}.
(2) $\boldsymbol{\Gamma}$ is the image, by one of the representations described in Theorem 2, of a cyclic or binary polyhedral group.
(3) The centralizer of Γ in $O(n+1)$ is transitive on S^{n}.
(4) The quotient S^{n} / Γ is a Riemanvian homogeneous manifold.

II. Proof of Vincent's conjecture

We must give an abstract characterization of finite groups of Cumfrord translations of a sphere.

Definition. Let $\varphi: \boldsymbol{\Gamma} \rightarrow U(q)$ be a faithful unitary representation of an abstract finite group $\boldsymbol{\Gamma}$ such that, for every $\gamma \in \boldsymbol{\Gamma}$, either $\varphi(\gamma)= \pm 1$ or q is even (say $q=2 s$) and there is a unimodular complex number λ such that $\varphi(\gamma)$ is $U(q)$-conjugate to

$$
\left(\begin{array}{llll}
\lambda_{\bar{\lambda}} & & \\
& \ddots & \\
& & & \\
& & & \bar{\lambda}
\end{array}\right) .
$$

Then φ is a Clifford representation of $\boldsymbol{\Gamma}$. Let $\boldsymbol{\Delta}$ be an abstract finite group which has a Clifford representation. Then Δ is a Clipford group.

Note that a Clifford representation φ of $\boldsymbol{\Gamma}$ gives a representation $\Gamma \xrightarrow{\varphi} U(q) \subset S O(2 q)$ of $\boldsymbol{\Gamma}$ as Cliffrord translations of $S^{2 q-1}$, and a finite group Δ of Clifford translations of S^{n} admits a Clifford representation $\Delta \subset O(n+1) \subset U(n+1)$.

Lemma 1. Let Γ be a noncyclic Clifford group. Then
(1) Every abelian subgroup of $\boldsymbol{\Gamma}$ is cyclic.
(2) Given primes p and q, every subgroup of $\boldsymbol{\Gamma}$ of order $p q$ is cyclic.
(3) $\boldsymbol{\Gamma}$ has a unique element of order 2. It generates the center of $\boldsymbol{\Gamma}$.
(4) If α and α^{t} are conjugate elements of Γ, then $\alpha=\alpha^{t}$ or $\alpha^{-1}=\alpha^{t}$.

Proof. Statements (1), (2) and the uniqueness of elements of order 2 in Γ are well known to follow from the fact that $\boldsymbol{\Gamma}$ has a free action on a sphere; see [2], [4] or [5], for example. As Γ has even order [2, § 10.5], (3) follows when we show that a central element $\neq 1$ of Γ has order 2.

Let φ be a Clifford representation of Γ. Looking at characters, we see that the irreducible components of φ are equal and are Cuifford representations, so we may assume φ irreducible. If $\gamma \neq 1$ is central in Γ, Schur's lemma shows that $\varphi(\gamma)$ is scalar,

$$
\varphi(\gamma)=\left(\begin{array}{lll}
\lambda & & \\
& \ddots & \\
& & \ddots
\end{array}\right)
$$

Hence $\lambda=\bar{\lambda}$ so $|\lambda|=1$ implies $(\gamma \neq 1) \quad \varphi(\gamma)=-I$, so that $\gamma^{2}=1$ and (3) is proved. In (4), we may assume α not central in Γ, so

$$
\varphi(\alpha)=\left(\begin{array}{lll}
\lambda_{\bar{\lambda}} & & \\
& \ddots & \\
& & \lambda_{-}
\end{array}\right) \quad \text { and } \quad \varphi\left(\alpha^{t}\right)=\varphi(\alpha)^{t}=\left(\begin{array}{lll}
\lambda^{t} \\
\bar{\lambda}^{t} & & \\
& & \ddots \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&
\end{array}\right)
$$

have the same eigenvalues. Thus either $\lambda=\lambda^{t}$ and $\alpha=\alpha^{t}$, or $\bar{\lambda}=\lambda^{t}$ and $\alpha^{-1}=\alpha^{t}$. Q.E.D.

Lemma 2. Let Γ_{1} be a normal subgroup of a Clifford group $\boldsymbol{\Gamma}$, assume $\boldsymbol{\Gamma}_{1}$ cyclic or binary dihedral $\mathcal{O}_{m}^{*}(m \neq 2)$, and suppose $\boldsymbol{\Gamma}$ generated by $\boldsymbol{\Gamma}_{1}$ and some element $\tau \in \mathbf{\Gamma}$. Then $\mathbf{\Gamma}$ is cyclic or binary dihedral.

Proof. First suppose Γ_{1} cyclic of order $m: \alpha^{m}=1 . \tau \alpha \tau^{-1}=\alpha$ or α^{-1} by Lemma 1. If $\tau \alpha \tau^{-1}=\alpha, \Gamma$ is abelian and thus cyclic by Lemma 1. Now
assume $\tau \alpha \tau^{-1}=\alpha^{-1} \neq \alpha$. τ is not central in Γ so $\tau^{2} \neq 1$, but τ^{2} is central in Γ and Γ is not cyclic, so τ has order 4. Thus Γ is binary dihedral ∂_{m}^{*} if m is odd, ∂_{s}^{*} if $m=2 s$.

Now suppose Γ_{1} binary dihedral \mathscr{D}_{m}^{*} with $m \neq 2: \alpha^{m}=1=\beta^{4}, \beta \alpha \beta^{-1}=$ $=\alpha^{-1}$ for m odd ; $\alpha^{2 m}=1, \beta^{2}=\alpha^{m}, \beta \alpha \beta^{-1}=\alpha^{-1}$ for m even. As $m \neq 2$, the cyclic group $\{\alpha\}$ is a characteristic subgroup of $\boldsymbol{\Gamma}_{1}$, hence a normal subgroup of Γ. Thus $\tau \alpha \tau^{-1}$ is either α or α^{-1}. β^{2} is central in Γ because it has order 2, so the subgroup Γ^{\prime} generated by β^{2}, α, and either τ or $\tau \beta$ is abelian and thus cyclic. Γ is generated by Γ^{\prime} and β. $\tau \beta \tau^{-1}$ has order 4, hence is of the form $\beta \alpha^{u}$ or $\beta^{3} \alpha^{u}$; thus $\beta^{-1} \tau \beta$ is of the form $\alpha^{u} \tau$ or $\alpha^{u} \tau \beta^{2}$ and $\beta^{-1}(\tau \beta) \beta$ is of the form $\alpha^{u}(\tau \beta)$ or $\alpha^{u}(\tau \beta) \beta^{2}$. Thus Γ_{1} is normal in Γ and we are done by the first paragraph of the proof. Q.E.D.

The next lemma depends on a procedure of H. Zassenhaus [5, proof of Satz 7] which depends on his result [5, Satz 6]: Let G be a finite solvable group of order not divisible by 2^{s+1}, and which contains an element of order $2^{s-1}(s>1)$. Then G has a normal subgroup G_{1}, with cyclic 2-Sylow subgroup, such that G / G_{1} is the cyclic group Z_{2} of order 2 , the alternating group \mathcal{H}_{4} on 4 letters, or the symmetric group \mathcal{S}_{4} on 4 letters. The lemma also uses a result of G. Vincent [2, Théorème X] which implies that a Clifford group with all Sylow subgroups cyclic is either cyclic or binary dihedral ∂_{m}^{*} (m odd).

Lemma 3. A solvable Clifford group is cyclic, binary dihedral, binary tetrahedral or binary octahedral.

Proof. Let Γ be a solvable CLIfford group. We recall [2,5] that the odd Sylow subgroups of Γ are cyclic and the 2 -SyLow subgroups are either cyclic or generalized quaternionic (binary dihedral ∂_{m}^{*} where $m>1$ is a power of 2) because every abelian subgroup of Γ is cyclic. If the 2-Sylow subgroups of Γ are cyclic, we are done by the above-mentioned result of Vincent. Otherwise, Γ has order $2^{s} n$ with n odd and $s>2$, and an element of order 2^{s-1}. Using the above-mentioned result of Zassenhaus, we take a normal subgroup Γ_{1} of Γ with all Sylow subgroups cyclic and $\Gamma / \Gamma_{1}=Z_{2}, \mathcal{H}_{4}$ or \mathcal{S}_{4}. Note that Γ_{1} is either cyclic or $D_{m}^{*}(m$ odd $)$ by the result of Vincent.

Case 1: $\Gamma / \Gamma_{1}=Z_{2}$. By Lemma 2, Γ is cyclic or binary dihedral.
Case 2: $\Gamma / \Gamma_{1}=\mathscr{H}_{4}$. As the 2-Sylow subgroups of Γ are generalized quaternionic and those of Γ / Γ_{1} are $Z_{2} \times Z_{2}, \quad \Gamma_{1}$ must have some even order $2 t . \quad \Gamma / \Gamma_{1}$ is given in generators and relations by $\hat{\mu}^{2}=\hat{\nu}^{2}=\hat{\omega}^{3}=1$, $\hat{\mu} \hat{\nu}=\hat{\nu} \hat{\mu}, \hat{\omega} \hat{\mu} \hat{\omega}^{-1}=\hat{\nu}$ and $\hat{\omega} \hat{\nu} \hat{\omega}^{-1}=\hat{\nu} \hat{\mu}$. We choose representatives μ, ν, ω in Γ for $\hat{\mu}, \hat{\nu}, \hat{\omega}$ in Γ / Γ_{1}.

First suppose that Γ_{1} is cyclic: $\alpha^{2 t}=1$. Lemma 1 shows that one of $\nu \mu, \nu$ and μ commutes with α, so we can assume $\mu \alpha=\alpha \mu$. Then μ and α generate a cyclic group of order $4 t$, which is normal in the group $\boldsymbol{\Gamma}^{\prime}$ generated by μ, α and ν. Lemma 2 shows that Γ^{\prime} is either cyclic order $8 t$ or binary dihedral $\supset_{2 t}^{*}$ of order $8 t$. Note that Γ^{\prime} is normal in Γ. If $t \neq 1$, Lemma 2 shows that Γ is binary dihedral. If $t=1, \Gamma^{\prime}=\supset_{2}^{*}$ has automorphism group \mathcal{S}_{4}, so an automorphism of Γ^{\prime} of order $3 k$ has order 3, and thus ω^{3} is central in Γ. Replacing ω by $\alpha \omega$ if necessary, we see that Γ is the binary tetrahedral group $\mathcal{J}^{*}: \mu^{4}=1, \mu^{2}=\nu^{2}=\alpha$, $\omega^{3}=1, \mu \nu \mu^{-1}=\nu^{-1}, \omega \mu \omega^{-1}=\nu$ and $\omega \nu \omega^{-1}=\nu \mu$.

Now suppose that $\Gamma_{1}=\bigodot_{m}^{*}(m$ odd $): \alpha^{m}=\beta^{4}=1, \beta \alpha \beta^{-1}=\alpha^{-1}$. The cyclic group generated by α is characteristic in Γ_{1}, hence normal in $\boldsymbol{\Gamma}$. As before we can assume $\mu \alpha=\alpha \mu$, so μ and α generate a cyclic group, evidently normal in the group Γ^{\prime} generated by μ, ν and α. By Lemma 2, Γ^{\prime} is either cyclic or binary dihedral. As the order of $\boldsymbol{\Gamma}^{\prime}$ is not 8 and Γ^{\prime} is normal in the group $\Gamma^{\prime \prime}$ generated by Γ^{\prime} and $\beta, \Gamma^{\prime \prime}$ is binary dihedral by Lemma 2. $\Gamma^{\prime \prime}$ is normal in $\boldsymbol{\Gamma}$ because it is generated by Γ_{1}, μ and v; a final application of Lemma 2 shows that $\boldsymbol{\Gamma}$ is binary dihedral.

Case 3: $\boldsymbol{\Gamma} / \boldsymbol{\Gamma}_{\mathbf{1}}=\mathcal{S}_{4}$. We have a natural homomorphism $\psi: \Gamma \rightarrow \mathcal{S}_{4}$ of Γ onto \mathcal{S}_{4} with kernel Γ_{1}, and we set $\Gamma^{\prime}=\psi^{-1}\left(\mathscr{F}_{4}\right) . \quad \Gamma^{\prime}$ is a normal subgroup of index 2 in Γ. By Case 2, Γ^{\prime} is either binary dihedral $\supset_{q}^{*}(q \neq 2)$ or binary tetrahedral \mathcal{J}^{*}. If $\Gamma^{\prime}=\mathcal{D}_{q}^{*}(q \neq 2)$, Lemma 2 shows $\Gamma=\supset_{2 q}^{*}$. If $\Gamma^{\prime}=\mathcal{J}^{*}$, then $\boldsymbol{\Gamma}_{1}$ is cyclic order 2 , is the center of $\boldsymbol{\Gamma}^{\prime}$ and is the center of $\boldsymbol{\Gamma}$. It is now easy to see that $\boldsymbol{\Gamma}$ is the binary octahedral group \mathcal{O}^{*}. Q.E.D.

It now remains only to show that a non-solvable Clifford group is the binary icosahedral group \mathcal{J}^{*}. Our proof depends on the isomorphism of \mathcal{J}^{*} with the group $S L(2,5)$ of unimodular 2×2 matrices over the field Z_{5} of 5 elements, as well as a result of M. Suzuki which implies [1, Theorem E] that a non-solvable group with every abelian subgroup cyclic has a normal subgroup isomorphic to some $S L(2, p)$ with $p>3$ prime.

Lemma 4. If p is a prime and $S L(2, p)$ is a Clifrord group, then $p=3$ or $p=5$.

Proof. Let ω be a generator of the multiplicative group of non-zero elements of the field Z_{p} of p elements, and set

$$
\nu=\left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{-1}
\end{array}\right) \quad \text { and } \quad \alpha=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { in } S L(2, p)
$$

$\nu \alpha \nu^{-1}=\alpha^{\left(\omega^{4}\right)}$ so $\omega^{2} \equiv \pm 1(\bmod . p)$ by Lemma 1. Hence $\omega^{4} \equiv 1(\bmod . p)$
so, as ω has order $p-1$ in the multiplicative group, $p-1$ divides 4. Thus p is 2,3 , or 5 . $p \neq 2$ because $S L(2,2)$ has several elements of order 2. Q.E.D.

Lemma 5. Let $\mathbf{\Gamma}$ be a Clifford group, and suppose that $\mathbf{\Gamma}$ has a normal subgroup Γ_{1} isomorphic to $S L(2,5)$. Then $\Gamma=\Gamma_{1}$.

Proof. Given $\gamma \in \boldsymbol{\Gamma}$, let $a d(\gamma)$ denote the automorphism $\alpha \rightarrow \gamma \alpha \gamma^{-1}$ of $\boldsymbol{\Gamma}_{1}$. Let $\gamma \in \boldsymbol{\Gamma}$ and assume that $a d(\gamma)$ is an inner automorphism of $\boldsymbol{\Gamma}_{1}$. There is a $\gamma^{\prime} \in \Gamma_{1}$ with $a d\left(\gamma \gamma^{\prime}\right)=1$, so $\gamma \gamma^{\prime}$ is central in the noncyclic Clifford group generated by $\gamma \gamma^{\prime}$ and $\boldsymbol{\Gamma}_{1}$. Thus $\gamma \gamma^{\prime} \in \boldsymbol{\Gamma}_{1}$, for either $\gamma \gamma^{\prime}=1$, or $\gamma \gamma^{\prime}$ is the unique element of Γ of order 2, and that is contained in Γ_{1}. Thus $\gamma^{\prime} \in \Gamma_{1}$ implies $\gamma \in \boldsymbol{\Gamma}_{1}$. It follows that $\Gamma / \boldsymbol{\Gamma}_{1}$ is isomorphic to a group of outer automorphisms of $S L(2,5)$. The group of outer automorphisms of $S L(2,5)$ has order 2 , so Γ_{1} has index 1 or 2 in Γ.

Now assume $\Gamma \neq \Gamma_{1}$, and let $\sigma \in \Gamma$ such that $\operatorname{ad}(\sigma)$ is the outer automorphism of $S L(2,5)=\Gamma_{1}$ which is conjugation by $\left(\begin{array}{rr}0 & -1 \\ 2 & 0\end{array}\right) \cdot \sigma$ cannot have order 2 but $\sigma^{2}=-I \epsilon S L(2,5)$, being central in Γ. In $S L(2,5)$ we have

$$
\alpha=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad \beta=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad \text { and } \quad \gamma=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

As $a d(\sigma) \alpha=\beta^{3}$ and $\gamma \alpha \gamma^{-1}=\beta^{-1}, \beta$ is conjugate in Γ to $\beta^{-3}=\beta^{2}$. As $\boldsymbol{\Gamma}$ is Clifford, it follows that $\beta=1$ or β has order 3. This is a contradiction. Q.E.D.

Lemma 6. Let $\mathbf{\Gamma}$ be a non-solvable Clifford group. Then $\mathbf{\Gamma}$ is a binary icosahedral group \mathcal{J}^{*}.

Proof. Lemmas 4 and 5 and the result mentioned of Suzuki [1, Theorem E] show $\Gamma \cong S L(2,5)$. But $S L(2,5) \cong \mathcal{J}^{*}$. Q.E.D.

Theorem 1 is an immediate consequence of Lemmas 3 and 6.

III. Representations of Clifford groups

Given an abstract Cumford group Γ, we will find the faithful orthogonal representations $\varphi: \Gamma \rightarrow \mathbf{O}(n+1)$ such that $\varphi(\Gamma)$ is a group of Cufford translations of S^{n}. This will provide proofs of Theorems 2 and 3.

Lemma 7. Let γ generate a cyclic group $\mathbf{\Gamma}$ of finite order q and let $\psi: \Gamma \rightarrow O(n+1)$ be a faithful orthogonal representation such that $\psi(\boldsymbol{\Gamma})$ is a group of Clifford translations of S^{n}. If $q \leq 2, \psi(\Gamma)=\{I\}$ or $\{ \pm I\}$. If
$q>2$, then $n+1=2 s$ and ψ is $O(n+1)$-equivalent to a sum of s copies of one of the representations given by

$$
\sigma_{t}(\gamma)=R(t / q)=\binom{\cos (2 \pi t / q) \sin (2 \pi t / q)}{-\sin (2 \pi t / q) \cos (2 \pi t / q)} \text {, t prime to } q .
$$

Conversely, $\{I\},\{ \pm I\}$ and $\mathbf{O}(2 s)$-conjugates of images of sums of s copies of a σ_{t} are groups of Clifford translations.

Proof. The statement for $q \leq 2$ is clear; assume $q>2$. As $\psi(\gamma)$ is a Clifford translation of order q, it has $(n+1=2 s) \quad s$ eigenvalues $\exp (2 \pi i t / q)$ and s eigenvalues $\exp (-2 \pi i t / q)$, where t is prime to q.
 equivalent to $\sigma_{t} \oplus \cdots \oplus \sigma_{t}$. The rest is clear. Q.E.D.

Lemma 8. An irreducible Clifford representation φ of a non-cyclic group Γ has degree 2.

Proof. $\boldsymbol{\Gamma}$ is binary polyhedral. Suppose first that $\Gamma=\bigodot_{m}^{*} . m>1$ as \supset_{1}^{*} is cyclic. \bigcirc_{m}^{*} has $m+3$ conjugacy classes of elements, hence $m+3$ inequivalent irreducible unitary representations, say of degrees d_{j}. The commutator subgroup has index 4 so we may assume $d_{1}=d_{2}=d_{3}=d_{4}=1$, and the other $d_{j}>1 . \Sigma d_{j}^{2}=4 m$ as \bigoplus_{m}^{*} has order $4 m$, so each d_{j} is 1 or 2. φ has even degree as Γ is non-cyclic, so the degree of φ is 2 .

Now suppose $\boldsymbol{\Gamma}=\mathcal{J}^{*}$ binary tetrahedral group. As above, we see that the degrees of the irreducible representations are 1, 2 and 3. As φ has even degree, it has degree 2.

Suppose that $\boldsymbol{\Gamma}=\mathcal{O}^{*}$. \mathcal{O}^{*} has a subgroup \mathcal{J}^{*} of index 2 such that φ is irreducible if and only if its restriction to \mathcal{J}^{*} is irreducible. Hence φ has degree 2.

Finally, suppose that $\Gamma=\mathcal{J}^{*}$. \mathcal{J}^{*} has 9 conjugacy classes, order 120, and presentation: $\alpha^{10}=1, \alpha^{5}=\gamma^{3}, \gamma \alpha \gamma^{-1}=\alpha^{-1} \gamma$. As φ has even degree $q=2 r, \varphi(\alpha)$ has r eigenvalues $\exp (2 \pi i v / 10)$ and r eigenvalues $\exp (-2 \pi i v / 10)$, for some integer v prime to 10 . Thus the character χ_{φ} of φ is determined on 6 conjugacy classes by r and $v: \chi_{\varphi}(1)=2 r, \chi_{\varphi}(\alpha)=$ $=2 r \cos (\pi v / 5), \quad \chi_{\varphi}\left(\alpha^{2}\right)=2 r \cos (2 \pi v / 5), \quad \chi_{\varphi}\left(\alpha^{3}\right)=2 r \cos (3 \pi v / 5), \quad \chi_{\varphi}\left(\alpha^{4}\right)=$ $=2 r \cos (4 \pi v / 5)$ and $\chi_{\varphi}\left(\alpha^{5}\right)=-2 r$.

Let b be an eigenvalue of $\varphi(\gamma)$. As $\varphi(\gamma)^{3}=\varphi(\alpha)^{5}=-l, b$ is a cube root of $-1 . \varphi(\gamma) \neq 1$ so $b=\exp (2 \pi i / 6)$ or $b=\exp (-2 \pi i / 6)$. Thus $\chi_{\varphi}(\gamma)=r(b+\bar{b})=2 r \cdot \cos (\pi / 3)=r$ and $\chi_{\varphi}\left(\gamma^{2}\right)=r\left(b^{2}+\bar{b}^{2}\right)=2 r \cdot \cos (2 \pi / 3)$
$=-r$. Finally χ_{φ} is zero on the conjugacy class consisting of elements of order 4 , so χ_{φ} is determined on all 9 conjugacy classes - hence is completely determined-by r and v. We notice that χ_{φ} is precisely r times the character of one of the representations $\mathcal{J}^{*} \subset \operatorname{Spin}(3)=S U(2) \subset U(2)$, so the irreducibility of φ implies $r=1$. Q.E.D.

We remark that we have just seen: If $\varphi: \mathcal{J}^{*} \rightarrow \boldsymbol{U}(q)$ is an irreducible Clifford representation, then $q=2$ and φ is equivalent to one of the representations $\mathcal{J}^{*} \subset \operatorname{Spin}(3)=S U(2) \subset U(2)$. In fact we have

Lemma 9. Let $\varphi: \Gamma \rightarrow U(q)$ be an irreducible Clifford representation of a noncyclic group. Then $q=2, \Gamma$ is binary polyhedral, and φ is equivalent to one of the representations $\Gamma \subset S p i n(3)=S U(2) \subset U(2)$.

Proof. We need only check the equivalence class of φ for $\Gamma=\partial_{m}^{*}(m>1)$, \mathcal{J}^{*} and \mathcal{O}^{*}. As with \mathcal{J}^{*}, we calculate the character χ_{φ} and see that it is the same as the character of one of the representations $\Gamma \subset \operatorname{Spin}(3)=$ $=S U(2) \subset U(2)$. Q.E.D.

Proof of Theorem 3. Given a finite group $\boldsymbol{\Gamma}$ of Cliffrord translations of $S^{n} \subset R^{n+1}$, we will show the centralizer G of Γ in $O(n+1)$ to be transitive on S^{n}. This is obvious if Γ is cyclic of order 1 or 2 , so we first suppose $\boldsymbol{\Gamma}$ cyclic of order $q \quad(q>2)$. Let $2 s=n+1$, as $n+1$ is even; let $\Gamma^{\prime} \subset U(s)$ be the cyclic group generated by $\exp (2 \pi i 1 / q) / . \Gamma^{\prime}$ is central in $U(s)$ so its centralizer in $U(s)$ is transitive on the unit sphere in complex euclidean space \boldsymbol{C}^{s}. By Lemma 7 we can assume that $\boldsymbol{\Gamma}^{\prime}$ goes onto $\boldsymbol{\Gamma}$, and its centralizer $U(s)$ into G, under the inclusion $U(s) \subset O(n+1)$ induced by an isometry of C^{s} onto R^{n+1} which sends the unit sphere of C^{s} onto S^{n}. Hence G is transitive on S^{n}.

Now suppose Γ noncyclic. $\boldsymbol{\Gamma}$ is isomorphic to a binary polyhedral group \boldsymbol{P}^{*}. Let K be the algebra of quaternions and let K^{\prime} be the multiplicative group of unit quaternions. Under the inclusion and identification $\mathcal{P}^{*} \subset \operatorname{Spin}(3)=K^{\prime}$, we'll view \mathscr{P}^{*} as a subgroup of K^{\prime}. Let $K^{s}(4 s=n+1)$ be a left quaternionic euclidean space, so that K (hence K^{\prime}, hence \mathcal{P}^{*}) acts on K^{s} by left scalar multiplication and the symplectic group $S p(s)$ acts on the right. The action of $S p(s)$ commutes with that of \mathcal{P}^{*}, and $S p(s)$ is transitive on the unit sphere of K^{s}. By Lemma 9 we can assume that \mathcal{P}^{*} goes onto Γ, and $S p(s)$ goes into G, under the inclusions $K^{\prime} \subset O(n+1)$ and $S p(s) \subset O(n+1)$ induced by an isometry of K^{s} onto R^{n+1} which sends the unit sphere of K^{s} onto S^{n}. Hence G is transitive on S^{n}. Q.E.D.

Proof of Theorem 2. By Lemmas 7 and 9, all that remains to be shown is that the images of the representations of Theorem 2 are actually groups of

Clufford translations. Let $\Gamma \subset O(n+1)$ be the image of one of those representations. In the proof of Theorem 3, we saw that the centralizer G of Γ in $O(n+1)$ is transitive on S^{n}. Now let $\gamma \in \Gamma$, let $x, y \in S^{n}$, and let δ be the distance function on S^{n} determined by its Riemannian metric. There is an element $g \in G$ with $g(x)=y$. Hence

$$
\delta(x, \gamma x)=\delta(g x, g \gamma x)=\delta(y, \gamma g x)=\delta(y, \gamma y)
$$

so γ is a Clifford translation of \boldsymbol{S}^{n}. Q.E.D.

IV. Homogeneous space-forms

We will prove Theorem 4. Theorem 2 establishes the equivalence of (1) and (2), Theorem 3 shows that (1) implies (3), and the proof of Theorem 3 shows that (3) implies (1). It is obvious that (3) implies (4): the centralizer of Γ induces a transitive group of isometries of S^{n} / Γ. Finally, (4) implies (3) is known [3, Théorème 1]. Q.E.D.

We remark that Theorems 3 and 4 provide a proof of a result [3, Théorème 6] previously announced without proof in the Comptes rendus, and that Theorems 1 and 4 provide an alternative proof of the classification [3, Théorème 5] of the Riemannian homogeneous spherical space-forms.

REFERENCES

[1] M. Suzuki, On finite groups with cyclic Sylow subgroups for all odd primes. American Journ. of Math. 77 (1955), 657-691.
[2] G. Vincent, Les groupes linéaires finis sans points fixes. Comment. Math. Helvet. 20 (1947), 117-171.
[3] J. Wolf, Sur la classification des variétés riemanniennes homogènes à courbure constante. C. R. Acad. Sci. Paris 250 (1960), 3443-3445.
[4] J. Wolf, The manifolds covered by a Riemannian homogeneous manifold. American Jour. of Math. 82 (1960), 661-688.
[5] H. Zassenhaus, U'ber endliche Fastkörper. Hamburg. Abhandlungen 11 (1935), 187-220.

[^0]: ${ }^{1}$) This work was done while the author held a National Science Foundation fellowship.
 ${ }^{2}$) This definition was brought to my attention by J. Trrs.

