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Some Géométrie Properties of Polynomial Surfaces1).

by Robert Osserman

In a récent paper [5] H.Huber proved that for every polynomial P(x,y),
the surface z P(x,y) is conformally équivalent to the plane. His method
requires obtaining estimâtes on the length of the intersection of the surface
with a sphère of radius r. We shall présent an alternative proof in this paper
by showing that an elementary argument gives a bound for the positive and
négative parts of the curvatura intégra of a polynomial surface. The resuit then
foliows immediately from a criterion of Blano and Fiala [1] for parabolic
surfaces.

As is clear from the method, the bound on total curvature extends to
polynomial hypersurfaces in any number of dimensions. The détails of this, together
with other results related to the main theorem, are given in a séries of remarks
and additional theorems. Theorem 3 and the corollary to Lemma 2 concern the
number of real finite intersections of real algebraic curves.

Theorem 1. Let P(x,y) be a polynomial of degree n. Let K betheQxuss
curvature of the surface S defined by z P(x,y), and let dA be the area
élément of S. Then

H\K\dA <27t(n - l)2. (1)

Proof. Let $* dénote the part of 8 for which K =£ 0. Then the Gatjss
spherical map is a local homeomorphism at each point of 8*, and the image of
#* is an unbranched covering of a part of the unit sphère. If the area of this
covering is /, we hâve / jjs* \K\ dA $$s\K\ dA. Since only points of
the upper hémisphère (or lower, depending on the choice of normal direction)
are covered, the theorem will be proved as soon as we show that no point is
covered more than (n — l)2 times. But that is équivalent to saying that there

are at most (n — l)2 points on /S* satisfying -z— a, -=— b, for any
given a and b. Il we set

(2)

u (u ?J^

then the condition K ^ 0 is équivalent to -) '—r =£ 0 which means that
3p

points on /S* correspond to isolated intersections of the curves — a 0
dP

and -5 6 0. Since thèse are both algebraic curves of degree at most
°y

x) This reeearch was supported in part by the Office of Scientific Research, U.S.Air Force.
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n - 1, they can hâve at most (n — l)2 isolated intersections by Bezout's
Theorem, which is the required resuit.

Corollary. For every polynomial P(x,y), the surface z P(z,y) is of
parabolic type.

Proof. Let K+ max {K, 0} and K~ max {— K, 0}. Then

Hs\K\dA= MsK+ dA + $SsK-dA
and we hâve in partieular

$$s K- dA <2n(n - l)2. (3)

But the theorem of Blanc and Fiala [1] (see also A.Huber [4] for a différent
proof and generalizations) states that a complète simply-connected surface
with an analytic RiEMAisnsrian metric satisfying $$ s K~ dA < oo must always
be of parabolic type. Since a polynomial surface is clearly complète, simply
connected, and analytic, the resuit follows.

Bemarhs. 1. If P{x1, xk) is a polynomial of degree n in k variables we
may again consider the Gauss curvature K of the hypersurface S : xk+1

P{xx, xk), which is defined as the ratio of the volume éléments under
the normal map of S into the unit sphère U : xx2 -f- + #fc+i2 1

• Exactly
the same reasoning gives the resuit $s\K\ dV < \ck(n — l)fc, where ck is the
volume of U.

2. If P(x, y) is linear, then obviously both sides of (1) are zéro. If P(x, y)
is quadratic, then the gradient map (2) is a linear transformation which will
be singular if and only if K 0. Thus, for n 2, the left-hand side of (1)
can be only 0 or 2n. For n > 2, we shall show (in the corollary to Theorem 3)
that equality can never be attained in (1). However, the bound is still the
correct one, since for each n we can find polynomials of degree n for which the
left-hand side of (1) cornes arbitrarily close to the right. For example, if
Q(t) (t — 1) (t — 2) (t — n), then we may set

P(x,y) M[Q(x)+Q(y)].
The équations (2) take the form u M Qf(x), v M Qf(y), and by choosing
M sufficiently large we may cover any prescribed compact part of the u, #-plane
(n — l)2 tirnes.

3. Inequality (1) implies in partieular the existence of the curvatura intégra
$§sKdA. For a complète surface this quantity is bounded above by 2n%,
where % is the Euler characteristic of S (Cohet-Vossen [2]. See also Huber
[4].). For a simply-connected surface we hâve % 1. Thus, for every poly-
nominal surface,

M <2tz. (4)
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Inequality (3) gives us also a lower bound, but it turns out that a much
stronger resuit is true (Theorem2). In order to obtain it we shall hâve to study
polynomial mappings more elosely, and we shall restrict ourselves to two
dimensions, making use of winding numbers.

We recall that if jTis a piecewise smooth closed curve in the u, v-plane, and if
(uo,vo) is any point not on F, then in a neighborhood of each point of F the

function 6 tan"1 — js defined up to an additive constant, so that the
u — u0

differential dO is uniquely defined along F. We may define the winding number
of Tabout (uo,vo) by

n(F;uo,vo) — $rdd

The foliowing lemma Connecting winding numbers with the degree of a map-
ping is known under much more gênerai conditions, but we include a simple
proof which covers the only case that we shall need.

Lemma 1. Let D dénote the disk x2 + y2 < R2 and let C be its circum-
ference, where C is given the positive orientation with respect to D. Let

u(x9y), v(x,y)
be œntinuously differentiable functions in D, let J(x,y) -f and let F

o(x ,y)
be the image of the curve C. Assume that (u0, v0) is a point not on F, whose

inverse image consists of a finite number of points at each of which J(x,y) ^ 0.

// J(x,y)>0 at p of thèse points and J(x,y)<0 at r of them, then we have

p -r n(F;uo,vo) (5)

Proof. Choose e > 0 so that the disk A : (u — u0)2 -\- (v ~ v0)2 < s2 does

not intersect F, and such that the inverse image of A consists of r + p disjoint
neighborhoods Nt in D, each of which is mapped one-to-one onto A. Dénote

by Ci the boundaries of Niy and by y the boundary of A. Then the function

0 tan"1 ' ~ ig defined up to an additive constant in a neighborhood
u(x, y) — u0

of each point of D1 D — U Ni. The differential dO is therefore a locally
exact, hence closed differential in D', so that J8i)/d# 0. Hence

27tn(F; u0, v0) $rd6 Jc^O Vj0, dO (p- r)$yd6 2n(p - r)

since p of the curves Ct map onto y with the positive orientation and r of them

map onto y with the négative orientation.
We wish next to apply this lemma to the case of polynomial mappings.

First we make the foliowing gênerai comments.
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Let u(x,y),v(x,y) becontinuouslydifïerentiableandlet J(x,y) :

d(x,y)
A point (u0, v0) is called a regular value if at each point of its inverse image
J(x,y) ^0. If u(x,y) and v(x,y) are polynomials, then either J(x,y) =0
in which case the whole plane will map into a curve, or else the set J(x, y) 0
is an algebraic curve G whose image will lie on an algebraic curve F in the
u, v-plane. Thus, given any neighborhood in the u, v-plane, ail points of the
neighborhood not on F will be regular. For a regular value it is perfectly clear
what is meant by the number of times it is covered under the mappjng. Note
also that (u0, v0) is a regular value if and only if ail intersections of u(x, y)

u0, v(x, y) v0 are simple, and the number of thèse intersections is

precisely the number of times that the point (u0, v0) is covered.

Lemma 2. Let P(x,y),Q(x,y) be arbitrary polynomials. For any regular value
(u0, v0) let the number of intersections of the curves P(x,y) u0, Q{x, y) vQ

where _ ;
' > 0 be p, and the number where _,

' : < 0 be r. Then
d(x,y) *' d(x,y)

| p - r| < min {deg P, deg Q} (6)

Proof. Set u P(x,y), v Q(x, y). Let (u0, v0) be regular, so that ail
intersections of P(x, y) u0, Q(x, y) v0 are simple. By Bezout's Theorem
there are only a finite number, and hence, for R sufficiently large they will ail
be contained in a disk x2 -{- y2 < R2. By Lemma 1 it is sufficient to show
that | n(F; u0, v0) \ < min {deg P, deg Q}, where jTis the image of x2 + y2

R2. Let us assume for definiteness that the degree of P(x, y) is less than
or equal to the degree of Q(x, y), and let the degree of P(x, y) be k. For ail
sufficiently large R the curve P(x,y) — u0 can intersect x2 + y2 R2 in
at most a finite number of points, and again by Bezout's Theorem the total
number of intersections is at most 2k. Hence if there are kt points on x2 + y2

R2 where u u0, v > v0 and k2 points where u uQ, v < vQ, we see

that min {kt,k2}<k. But the number of times that F intersects each ray
u u0, v > v0 and u u0, v < v0 must be at least \n(F; u0, vo)\. Hence
we hâve \n(F;uo,vQ) | < min {^, k2} < k min {deg P, deg Q}, which

proves (6).

Corollary. For any polynomials P(x,y), Q(xy y), if —r- > 0 or
d(P Q) ^Xy y>

- ' ' < 0 everywhere, then for ail (u0, v0) the number of simple intersections of
d{x, y)

P(x,y) u0, Q(x,y) v0

is at most the minimum degree of P(x, y) and Q(x,y).

Proof. If P(x, y) u0, Q(x, y) v0 hâve n simple intersections, then for
ail points {ux, vt) in some neighborhood of (u0, v0) the curves
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P(x,y) ==uly Q(x,y) vx

must hâve at least n intersections. In particular, if (ulf vx) is a regular point,
then since the Jacobian always has the same sign we find that
n < {the number of intersections of P %, Q vx} < min {deg P, deg Q}

Theorem 2. With the same notation as in Theorem 2, we hâve

\$$sKdA | <2n(n - 1). (7)

Equality is attained for ail harmonie polynomials.

Proof. Applying Lemma 2 to the map u -r—, v ——, we see that for
ox oy

every regular value (u0, v0) we hâve \p — r\ <n — 1. As in the proof of
Theorem 1, if we consider the normal map of S into the unit sphère U, and

if we dénote by Î7* the part of U corresponding to regular points (u0, v0),
then denoting the area élément of U by da we hâve

| JJs KdA| | JJ> K+dA - JJ> K~dA\ \ JjV*(p - r) da\ < 2n(n - 1)

The second statement in the theorem follows immediately from the fact
r\jp ?*-p

that if P(x, y) is a harmonie polynomial of degree n, then — i—— is an
ox oy

analytic polynomial of degree n — 1, so that except for a finite number of

points (u0, v0), the équation — i ~z— u0 — iv0 will hâve n — 1 distinct
(complex) roots.

Theorem 3. Let P(x,y), Q(x,y) be arbitrary polynomials of degree m,n
respectively. Then unless P(x,y) and Q(x,y) are both linear, there always
exists an open set in the u, v-plane such that for any point (u0, v0) in ihis set, the

number of (real, finite) intersections of P(x,y) u0, Q(x,y) v0 is strictly
less than mn.

Proof. Let ,<*,„)= <^f
Case 1. Suppose J(x,y) >0 or J(x,y) <0 everywhere. Then for ail

regular values (u0, v0), (and in particular for ail points not lying on a certain
curve) we hâve by Lemma 2 that the number of intersections of

P(x,y) u0, Q(x,y) v0

is at most the minimum of m and n. But for any positive integers m, %, we
always hâve min {m, n} < mn unless m n 1.

Case 2. Suppose the homogeneous polynomials of highest degree in P(x, y)
and Q(x, y) hâve a common factor. Then for ail (uOi vQ) the number mn of
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intersections of P(x, y) u0, Q(x, y) vQ from Bezottt's Theorem will
include at least one intersection (real or complex) on the Une at infinity, and
hence the number of finite intersections can be at most mn — 1.

Case 3. Suppose that J(x,y) takes on both positive and négative values,
and that P(x,y) and Q(x, y) do not hâve a common factor in their highest
degree terms. In this case we shall show that for some point (uQy v0) the équations

P(x,y) uQ, Q(x,y) v0 will hâve a common (non-real) complex
solution. The same will then be true in a neighborhood of (u0, v0) and in fact
there must be a pair of complex solutions, so that the number of real
intersections can be at most mn — 2,

To prove this statement, we consider a branch C of the curve J(x,y) 0
which séparâtes a région where J(x, y) > 0 from one where J(x, y) < 0.
If the image of C were a single point (u0, v0) it would mean that the curves
P(x,y) — uo 0, Q(x,y) — v0 0 hâve more than a finite number of
intersections, and hence that the polynomials P(x,y) — u0, Q(x,y) — vQ hâve a

common factor. That would in turn imply that the terms of highest degree in
P(x, y) and Q(x> y) also hâve a common factor, which was our Case 2. Thus
the image of C must be a curve F. The correspondence between G and F is

locally one-to-one at every point where either grad u or grad v is not per-
pendicular to G, But there must always be a point on G where one of thèse
is not perpendicular, since otherwise both u and v would be constant on G.
Let us assume for definiteness that grad u is not perpendicular to C at some

point, and choose a regular point of C for which this is true. By a rotation in
the x, î/-plane we may assume that the tangent to C is horizontal at this
point and that ux > 0. The curves u — c will fill out a neighborhood D,
and we may choose this neighborhood sufficiently small so that ux > 0 through-
out. Then each point of D lies above, below, or on C, along a unique arc of
a level curve u c. Let us suppose that J (x, y) > 0 above C and J (x, y) <0
below G. This means precisely that v must be decreasing as we approach C

along a level curve u c, either moving down from above or up from below.
Thus the image of this whole neighborhood lies above or on an arc of F. If
we take a point (u0, v0) on this arc, then it will correspond to a unique point
(#o> Vo) of C lying in the neighborhood D, while no point (u0, vx) with % < v0

will correspond to any point of D. However, if we allow the full complex
neighborhood N of {xo,yo) then there must always be an intersection of
P(x, y) î^, Q(x, y) vx lying in N for (t^, vx) sufficiently near (u0, v0) by
the theorem on continuous dependence of roots of polynomials on the
coefficients. Hence for those points lying below F there will be at least one non-real

complex root of P(x} y) %, Q(x, y) vt. This complètes the proof.
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Corollary. Inequality (1) is always strict if n > 2. This foliows immediately
from the proof of Theorem 1, using Theorem 3.

Final remarks. It is quite likely that a stronger version of Theorem 3 is true,
in the sensé that there may always exist an open set of points (uQ, v0) such that
the number of intersections of P(x, y) u0, Q(x, y) v0 is much lower than
mn, conceivably even min {m, n} which would be the best possible resuit.

It would be interesting to obtain results in the opposite direction, stating
that under certain conditions every point is covered at least a certain number
of times. For example, it seems likely that if J(x, y) > 0 everywhere, then the

map is a one-to-one map of the whole x, «/-plane onto the whole u, v-plane.
This is known to be true under the stronger assumption that J(x, y) c =£ 0

[3]. The analogous resuit is still not known in higher dimensions.
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