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£-degenerate singular intégral équations and holomorphic
affine bundles over compact Riemann surfaces. I.°)

by Helmut Rôhrl

It is well known [2] that the classical theory of Systems of Fredholm
équations can be developed by carrying out the following two steps :

(i) proving Fredholm's theorems for degenerate équations, i.e. équations
n

whose kernel is of the form Z Bv(oo1)Cv(x2)i Bv and Cv being square
matrices, r~1

(ii) approximating arbitrary kernels by degenerate kernels.
Since a degenerate Fredholm équation is équivalent to a System of linear
équations, this approach leads quickly to the desired results.

In this paper we shall deal with (systems of singular intégral équations in one
variable, which are then defined on a System 8 of (not necessarily disjoint)
curves on a compact Riemann surface X. The intégrais involved are therefore
of the form J K(x1, x2) &(x2, #1) where K(xlf x2) is the kernel of the singular

s
intégral équation and û(x2, xj is a CAUCHY-kernel on -X". Again, a singular
intégral équation whose kernel can be written in the form (i) shall be called
degenerate. However, since for Riemann surfaces X of higher genus the
CAUCHY-kernel Q is not unique but dépends on the choice of certain divisors,
one will hâve to speak of i2-degenerate (instead of simply degenerate) singular
intégral équations. Clearly, the dominant équation of a singular intégral
équation and the adjoint of the dominant équation hâve i2-degenerate kernels.
Since the discussion of the dominant équation and its adjoint represents the
main difficulty (see [7]) in the theory of singular intégral équations, a theory
of-fl-degenerate intégral équations is far from being trivial, contrary to the
classical case of Fredholm équations.

Yet it is possible (§ 3) to associate with a given fi-degenerate singular intégral
équation an équivalent transmission problem with values in a trivial vector
bundle over X (terminology as in [11]), provided the singular intégral équation
is regularizable and satisfies certain conditions (which are trivially fullfilled if
S is the disjoint union of simple closed curves). Since one can associate with a
transmission problem of the described type a holomorphic affine bundle over
X (see [11]) such that the holomorphic solutions of the transmission problem
correspond bijectively to the holomorphic sections in this affine bundle, one
gets finally (§ 4) a bijective correspondent between the set of integrable

°) This research was supported by the United States Air Force through the Air Force Office
of Scientifio Research.
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solutions of the original singular intégral équation and the set of holomorphic
sections in the affine bundle over X. This is somewhat surprising since in the
case of the RiEMANNJan sphère there are only denumerably many isomorphy
classes of holomorphic vector bundles (see [4]) while the set of i2-degenerate
singular intégral équations lias obviously cardinality X.

One of the advantages of this approach consists in the following resuit.
Introducing suitable families 93-> M of compact Riemann surfaces (see [5]),
families of CAuCHY-kernels (Qt:teM), families of Systems (St:t€M) of
curves, and families of matrices (Bvt : t e M) and (Gvt : t € M), one can in-
vestigate the corresponding family of £?rdegenerate singular intégral équation
and ask for solutions which dépend in the same way on the parameter t c M
as the above families do. There it turns out that a family 2B -> 93 -> M of
holomorphic affine bundles can be constructed so that the set of those solutions
of the intégral équation which dépend on t as desired corresponds bijectively
to the set of those families of holomorphic sections in Wt ->¦ 93* (terminology
as in [5]) which dépend on t in the same way. Therefore known results ([5],
[10]) on the existence of families of holomorphic sections in certain fiber
bundles lead immediately to similar results about solutions of families of
£?rdegenerate singular intégral équations.

In § 5 we détermine the vector bundle associated with the adjoint of an
i2-degenerate singular intégral équation in terms of the vector bundle
associated with the intégral équation itself. I turns out to be the dual of the pre-
vious vector bundle. Therefore the Riemann-Roch theorem for vector bundles
gives immediately two ofF.Noether's theorems on singular intégral équations.
The remaining one, stating necessary and sufficient conditions for the solubil-

ity of inhomogeneous .Q-degenerate équations, is a conséquence of Cauchy's
intégral formula resp. Cauchy's intégral représentation.

In § 6 we discuss briefly how the proof of F.Noether's theorems for gênerai
singular intégral équations can be reduced to the case of 42-degenerate singular
intégral équations. This furnishes then a new foundation of the theory of
singular intégral équations based on Plemelj's theorems and the theory of
affine bundles over compact Riemann surfaces.

Finally the previously developed method is applied to certain non-linear
singular intégral équations for which then an existence and uniqueness theorem
is derived.

§ 1. Auxiliary results

I. Given a compact Riemann surface X of genus g, the positive divisor
h h

D Z nKz°K of degree S nK g shall be called a normalization divisor ([6])
#C-1 K-l
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if dimo(— D) — 1, i.e. if every meromorphic function on X which is

holomorphic in X — {#J,..., x\) and has pôle order < nK at x°K, x 1,... ,&,

is constant. In case the support supp D {#J,..., #£} of D consists of a

single point, D is a normalization divisor if and only if this point is not a
Weierstrass point.

In generalization of the Cauchy-kernel on the RiEMANNian sphère

it can be shown ([8], [12]) that, given the normalization divisor D on X and a

point * € X — supp D, there exists a meromorphic differential form
Q(xli or2) of degree one on X X X along the first factor (i.e. in complex
coordinates ^ for the first factor and t2 for the second factor ofX x X the differential

form Q{xx, x2) can be written in the form /(^, t2)dt1 where ffa, t2)

is a suitable meromoiphic function of ^ and t2) having the following properties :

(i) Q(xly x2) has divisor

>Xx{*}-{*}xX + DxX-XxD-A
where A is the diagonal of X x X,

(ii) for every x2 i {*} ^ suppD the restriction of Q(xx, x2) to X X {x2} is

a differential form which has divisor

> {x2} X {x2} - {*} X {x2} + D x {x2}

andresidue + 1 at {x2} x {x2} (and hence residue — 1 at {*} X {#2})-

Q(xlix2) is called the Gaxjchy-kernel of X associated with D and *.
Clearly, Q(x1,x2) is unique. The existence of £i(xli x2) can be established

(see [8], [12]) by constructing for each x2 i {*} ^ suppD the unique
meromorphic differential form on X X {x2} which satisfies (ii) and then showing
that this gives rise to a meromorphic differential form on!x(I-{*}^ suppD)
along the first factor which can be extended to a meromorphic differential form
on X X X. The divisor can then be calculated explicitly.

(i) and (ii) lead to the following

Proposition 1.1: Let (£ be a piecewise smooth, compact arc in X which does

not meet {*} ^ supp D. Then for every continuons complex valued function f on
(E the intégral

is a meroTïwrphic function on X — (£ whose divisor is > * — D.
Denoting the canonical bundle ([3]) over X by Kx->X, a continuous

differential form on the piecewise smooth, compact arc (E in X is meant to be

a continuous section in Kx -> X over (E. With this notion we get as a dual of
Proposition 1.1.
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Proposition 1.2: Let (£ be a piecewise smooth, compact arc in X which does

not meet {*} ^ supp D. Then for every continuons differential form rj on (S> the

intégral
(Drj) (x2)

is a meromorphic differential form on X — (£ whose divisor is > D — *

Now let 93 -A- M be a difïerentiable (holomorphic) family of compact Rib-
mann surfaces of genus g in the sensé of Kodaire-Spencer ([5]). The restriction

of the product family 95 X 93 —>* M x M to the diagonal Am of M x M
is then in a canonical way a difïerentiable (holomorphic) family over M which

shall be denoted by 93 XAr33*-^*2f. Obviously, {n Xm^)"1^) ^""XW X
X jt"1^) holds. Now suppose that (Dt:teM) is a difïerentiable (holomorphic)

n
family of normalization divisors in 93-> M, i.e. Dt= S nK x°Kt is a nor-

malization divisor in rc"1^) for every te M and (x°Kt:t € M) is a differenti-
able (holomorphic) submanifold of 93 for each x 1,..., k. Assume further-
more that (*t:teM) is a difïerentiable (holomorphic) family of points in
93 -> M which is disjoint from supp (Dt : t e M). Then the previously indicated
construction of Q(x1,x2) together with Theorem 2.1 (Theorem 18.1 of
[5]) shows that for every tQ€ M there is a neighborhood U of t0 such that the
Caxjchy-kernel Qt of n~x(t) associated with Dt and *t dépends differentiably
(holomorphically) upon t € U. This and the uniqueness of the Cafchy-
kernel imply that Q% varies difïerentiably (holomorphically) with t e M. Summ-

ing up we get

Proposition 1.3: Let 93-> if be a differentiable (holomorphic) family of
compact Riemann surfaces of genus g, (Dt : t c M) a differentiable
(holomorphic) family of normalization divisors on $$-+M, and (*t:t M) a
differentiable (holomorphic) family of points on 9$->M which is disjoint from
(Dt : t e M). Then (Qt:t€ M) is a differentiable (holomorphic) family of
meromorphic differential forms on 93 Xm 93 -> M.

Given the difïerentiable (holomorphic) family 93->J^3 a differentiable
(holomorphic) family of piecevnse smooth, compact arcs (&t:t€ M) is a con-
tinuous mapping (£ : M x /-> 331) such that

(i) n o (£ prx canonical projection of M X / onto M)
(ii) I is the union of finitely many closed subintervals IQ, q 1,..., r, such

that <t\M x IQ is differentiable and both, (£|M x IQ and — | Jf X /c,
dépend differentiably (holomorphically) on te M.

x) I dénotes the closed unit interval {t:O<t< 1}.
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Given the difïerentiable (holomorphic) family of piecewise smooth, compact
arcs (dt : te M), the function / : U (£$ -> C is said to dépend continuously

t€M
(differentiably, holomorphically) on t e M if for every q 1,... r the
composition foÇ£\M x IQ has this property. A corresponding définition can be

given for a difïerentjal form î|onUK{, i.e. a section over U C* in the family
t€M t€M

$t -> 95 -> M of canonical bundles associated with 95 -> Jf.
With thèse notions, Proposition 1.1 and Proposition 1.2 generalize in the

obvious way tœfamilies. The précise formulation is left to the reader.

II. Let S be a closed snbset of the Riemann surface X and x e S. Then S
is said to be a star of smooth arcs at x if there exists a neighborhood U of x
and finitely many simple smooth arcs (£„ : I -> U such that

(i) (£v(0) x for every v

(ii)U <£„(/) £~ [7

(iii) (£„ (/) ^ (£,, (/) {a;} whenever vx ^v2.
The number of the arcs (£„ is called the order of the star at x.

8 is said to be locally a star of smooth arcs if for every x e S the set S is a

star of smooth arcs at x. Clearly, a piecewise smooth, simple arc can be inter-
preted as a set with the above properties, regardless whether the arc contains

cusps or not
By replacing X by a difïerentiable (holomorphic) family 95 -> M we can

talk about a differentiable (holomorphic) family of smooth arcs at voe S where
S is a closed subset of 95 : in this case the arcs (£„ are required to be differentiable

(holomorphic) families of smooth, compact arcs such that
(i) <£v(n(v0), 0) v0 for every v

X /) =S~ U
(iii) <£„ (#} X /) rs a^({t} X /) {<£„(*, 0)} whenever vt^v2.

Let £ : /-> X be an arc. Then (£(0) and (£(1) are usually called the end-
points of the arc. To assign to (£ an orientation means to distinguish one of
the endpoints of (£ as the initial point of the oriented arc. Now let the closed
subset S of X be a star of smooth arcs at x e S, the star being described as

above. Then an orientation of the star at x consists in assigning an orientation
to each of the arcs (£„. An équivalent description - which shall be used from
now on - ofan orientation can be gotten by assigning to each index v the integer
am(v) + 1 if a; is the initial point of (£v and the integer ox(v) — 1 is x
is not the initial point of (£„. With this notation, S ox(v) is called the total

v

orientation of the star at x and is denoted by \ax\. Thèse définitions carry over
immediately to families, in which case we require that for every v the
orientation of (£J {t} X / is independent of t c M.
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Given the star 8 of smooth arcs at x which is described as above, we can
find to every point x' c S ^ U a neighborhood Uf such
that 8 ^ Uf is again a star ofsmooth arcs at xf which
then is of order 2 at x'. An orientation of the star at
x induces in an obvious way an orientation of the star
at x1 which then has total orientation 0. Suppose now
that the closed subset 8 of X is locally a star of
smooth arcs and that for every point x € 8 an
orientation ax is given. Then the set 27= {ax : x c S}
of orientation is said to be cohérent if for any two
points x' and x" of 8 and the neighborhoods U' of
x1 and U" of x" which where used in defining ox, and

induce the same orientation on S in V ^ U".
As an immédiate conséquence of the various définitions of II. we get

Proposition 1.4: Let X be a compact Riemann surface, S a closed subset of X
which is locally a star of smooth arcs, and E a cohérent set of orientations on S.
Then there are finitely many simple, smooth, oriented arcs (£(1),.. &l) on X
such that

i

(ii) G(Ai) (/) ^ (J<V (/) is either empty or else a common endpoint of (£(Ai) as well
as (£(A2> provided Ax ^ A2

(iii) the orientation of (£(A) agrées with the one induced by E in each point of
(E(A).

// l is chosen minimal, then the arcs (£(A) are unique (up to order).
Clearly, Proposition 1.4 remains valid for families.
III. Finally we need a resuit concerning the déterminant of a certain matrix.

Lemma 1.5: Let Bx,..., Bn, Cl9... Cn be q x q matrices over the field
of complex numbers. Denoting the q X q unit matrix by 1 we hâve

det I 2 i'l~C* *>¦¦•> - 2 ") det(l— E BvCy)

\ -CnBu -CnBt,...,l-CnBj
Proof: In order to prove this identity, we may assume that det Gv ^ 0 for

v 1,..., n. Then we get
f 1 — CXBX,..., — QB^

det
"
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C^-B^-B,,..., -Bn

,-1 0, 0

/l 0 ,...,0
det ° ' * '••'0

\- B1C1,-B1C1-BiC2,...,l-ZBvCv

det (1 -ZBVCV).
V=l

§ 2. Plemelj's theorems

Let X be a Riemann surface and S a closed subset of X which is locally a
star of smooth arcs. Let / be a complex valued function on S. Then / is called
Hôlder continuons on S if for every point x e S there is a complex coordinate
t at x whose coordinate neigborhood is contained in the neighborhood U used

in § 1, II., (i) — (iii), such that for each v the restriction of / o ir1 to t(&v{I))
is Holder continuous in the usual sensé in some neighborhood of t(x).
Obviously, this définition is independent of the choice of the complex
coordinate t, Accordingly a complex valued function k on S X S is said to be

Hôlder continuons on S X S if for every v the restriction of koty"1 X 2"1)

to £((£„(!)) x t ((£„(/)) is Holder continuous in the usual sensé in some
neighborhood of (t(x), t(x))

Now let X be a compact Riemann surface with normalization divisor D
and Q the CAUCHY-kernel of X associated with D and * Let furthermore S
be a closed subset of X which is locally a star of smooth arcs and S a cohérent
set of orientations on S. In order to define the singnlar intégral

^ J HxJQfa,^) x2 c 8 (1)

where / is a complex valued function on S, we need the foliowing well known
([7], Appendix 1) resuit. Given x2 € S and the complex coordinate t at x2
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whose eoordinate neighborhood is contained in the neighborhood U used in
§ 1, II., (i) — (iii), there exists a positive real number e0 such that for every v
and for every positive real number e < e0 the set {x € U: \t(x)\ s} rs (£„(/)
consists of exactly one point. Since (£v is simple, this implies that for every arc
(£(A) in the splitting of 8 described in Proposition 1.4 and for ail e which are
sufficiently small the différence (£(A) — (£(A) ^ {x e U: \t(x)\ < s) is a eon-
nected subarc of (£(A). This subarc equipped with the induced orientation is
denoted by d^. With thèse notations we define the singular intégral (1) to be

l^ K,^) (1')

provided that this limit exists.
According to définition, the existence of (1') is a purely local problem,

whence one has to deal only with the géométrie situation as described in § 1, II.,
(i) — (iii). Using [7], § 12, (12.3) one sees from the argument in [7], § 12,

following formula (12.3) that the sufficient conditions for the existence of (1)
are given by

Proposition 2.1: Let X be a compact Riemann surface, Q the Catjchy-
kernel of X associated with D and *, S a closed subset of X which is locally
a star of smooth arcs and ivhich satisfies 8 ^ ({*} ^ supp D) 0 and S

{ax : x € S} a cohérent set of orientations on S. Let f bea Holder continuons
function on 8 such that

|ax\ f(x) 0 for every x € S (2)

Then the singular intégral (1) exists for every point x2e S.
Corresponding définitions and results hold for singular intégrais

-z-j J Q(x1,x2)tj(x2) xxe8

where t] is a Holder confcinuous differential form on S.
Let us consider fche géométrie situation
as described in § 1, II., (i) — (iii). For a

given point x* € S of order n we choose

e0 as before. Then {x c U: \t(x)\ < e0} —
n

— U (£v(/) ^ U consists of exactly n

connected components Ux,..., Un. Thèse
connected components shall be indexed
in such a way that the boundary of U con-

Fig. 2 sists of a part of the set {x e U : \ t (x) \ s0}
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together with (£„(!) ^ U and &V+1(I) ^ U where we set (£n+1 (^ (note that
this may require a reindexing of the (£„). Furthermore we assume that, when

going through {x e U: \t(x)\ s0} in the positive sensé starting out at (EJ/),
we meet Uly U2, • • •, Un in this order.

Using the orientation ox* at the point x$ of order n we define now integer
valued functions ov, v 1,..., n, as foDows (Un+1 is identified with U^

(i) if 7i 7^ 2, then for v 1,..., n and x eTjv r> ~UV+1 ^ 8 the function
<rv(a:) is defined to be crx*(v)

(ii) if n 2, then we set

- ^*(1) for «

a^(2) for *
*¦*(!) for a?

} - ^(2) for «€(£,(/) -{aî)
Now let / be a Holder continuous function on S. Then the function

is defined, provided S ^ ({*} ^ supp 2>) 0. Moreover, it is holomorphic
in a sufficiently small neighborhood of S. We shall hâve to investigate the
behavior of this function as we approach S.

Assume for the time being that x2 is a point of order 2 of S with total
orientation 0 and that the angle between the oriented tangents at (^ and &2 in
x* is différent from n. Then, given the complex coordinate t at x*, we get for x1

and x2 in a sufficiently small neighborhood of x*

where A (^, ^2) is a suitable holomorphic function of ^ and t2. Therefore well
known theorems ([7], § 16) imply immediately that there is a neighborhood V
of x* in X such that Qf can be extended continuously into Tj^ rs F, /i 1,2.
This extension restricted to S r\ V is Holder continuous ([7], § 19). Moreover,

denoting the extension of Qf to U^ ^ F by Q^f, [7], § 17, implies
the validity of Plemelj's formulas

In order to get the formulas (3) in the gênerai case too, we adjoin to the star
of smooth arcs consisting of (^,..., (£n a line segment (£q with one end point
in #* such that
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(i) the orientation of Gq at x* is given by — 1, i.e. ax* (0) 1

(ii) the angle between the oriented tangents at (£q and (£,,, v 1,..., n,
in x* is différent from n

(iii) (£o does not enter V^.
Assuming that / satisfîes the additional hypothesis (2) of Proposition 2.1 we
get for x2 e Up

f(Xl) Q(xl9 x2) + 2 -±-r f f(xx) Q(xly x2)
,»1 671% <?r

*0

o

Denoting by ox*(v) (£q the arc (£„ equipped with the orientation ovKO) (Tœ*(v)

and letting (£'v be the oriented arc gotten from the oriented arcs (£„ and
<V M (£o> we hâve

where fv coincides with / on (£„ and equals to the constant fonction f(x*) on
Êo. To the latter intégral, however, the previously discussed spécial case
applies, whence we get the formulas (3) in a rather obvious way for n > 2.
For the sake of maintaining the above notation we reduce the case n 1 to
the case n 2 by adding to the arc (£^ the previously described arc (£<, and
extending the définition of / to (£<> as above.

The local situation we dealt with so far can be globalized as follows (see also

[11]). For every point x e X we dénote by VL(x) the filter of neighborhoods
of x. The trace of VL(x) on X — S (see [1]) shall be denoted by VLs(%). Now

we form the set X of ail pairs (x, g) where # is a point of X and gf is a filter
that refines Us(%) and has a basis such that each élément of this basis is a

connected component of some élément of Us(%)- The mapping of X onto X
which sends (x,^) into x is denoted by pr. Given (x, 5) ^ X we dénote for

every F €% by F the set of ail éléments (xf, g') in X such that F cÇ'.
Defining 93(x, 5) to be the filter generated by {F:F e 5} we associate with

every élément of X a filter of subsets of X. As one can check easily there is a

topology on X such that the filter of neighborhoods of any élément (x} 5)
coincides with 33(#,3f)- Obviously, pr:X->X is a continuous mapping.
Now let (X5'.j e J) be the family of connected components of X — 8. Then
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the restriction of pr to pr~1(Xj) is a homeomorphism onto X5. The closure

Xj of pr~1(Xi) in X is both closed and open in X. Furthermore, pr(X^)
equals the closure X,- of Xi in X. Denoting the fîlter of subsets of X generated

by the set {F: F eg} by g, we call two distinct éléments (#,g) and (xr,%f)
neighbors if x x' c S and sup(3f, 3f') is strictly coarser than the filter of ail
sets containing x. This means - using the previous notation - that for a suitable
choice of the index v the set Uv belongs to one of the two filters g and 5',
while Uv+1 belongs to the other one. If Uv€^, then we say that (x, g)
preceeds (#,g'). Clearly, every élément (#, g), where xeS, has at most
one predecessor and at most one successor; it has exactly one if a; is a point of
order > 1. Denoting by Xp the set of ail éléments x in X which either hâve
a successor or else lie above a point of order 1 on S, we get a canonical mapping

(} : Xp-> X which sends every point x e Xp for which pr(x) has order > 1

into its successor and leaves every point ~x e Xp for which pr(x) has order 1

fixed. Clearly, fi is a continuous mapping which maps Xp onto itself. _
The previously defined functions av(x) are now transplanted onto X by

setting a(x) av(pr"x), provided ~x {prie,, g) e Xp and the set Uv is con-

tained in 5- Knally we define the function Qf on U pr~1(Xj) by (Qf) (x) —

(Qf)(prx). i€J

With thèse notations the previously treated local situation gives immediately
rise to the following generalization of Plemelj's theorem and formulas ([7]).

Theorem 2.2: Assuming that the hypothèses of Proposition 2.1 are fulfilled,

the function Qf can be extended continuously to X. Furthermore, for every

point le e Xp =_ r=_ _ _
(Qf) (fx) - (Qf) (x) a(x) f(prx)

(Sf) (0Z) + (Qf) 0) X J f(xx) Q(xlt pr ï)
hoids. **<*•*>

llemark 2.3: The generalization of the corresponding results of Plemelj's
is not complète without phrasing Holder continuity of the extension Qf on

Xj — pr~x (Xy). This, however, can be done in a rather obvious way using the
fact that apart from points above points of order 1 on S the projection pr
is a locally topological mapping from Xi — pir1(Xj) onto its image, which is
contained in S.
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Remark 2.4: Since the proof of Proposition 2.1 and Theorem 2.2 is purely
local, they can be carried over word by word to Holder continuous difEerential
forms rj on 8 which satisfy condition (2). Then we hâve as in Proposition 2.1
that the singular intégral

§ Q(x2,x1)rj(x1)
27)

exists for every point x2 e 8. Furthermore, denoting

-=—; j" Û(x2yx1)r}(x1)f x2eX-8ln% (5,2:)

by (ûyj) (x2) we gefc the extension property stated in Theorem 2.2 also for

Qr\. However, as far as the formulas contained in Theorem 2.2 are concerned,

we shall hâve to replace o(x) by — o(x) due to the fact the rôles of xx and
x2 in D(x1,x2) are now interchanged.

In case we deal with a family 33 -^> M of compact Riemann surfaces and
a closed subset 8 of 93 which is locally a family of stars of smooth arcs, we

define in exactly the same way as before the spaces 93 and 93,- and the mapping

2?r:93->33. Then 93 -^> M, where W ~n opr, is a family of spaces (Vt\teM)
and we define for every t e M the sets Vtp, the mapping (it, and the func-
tions at. Then the statements of Theorem 2.2 still hold for every t e M as we

replace Qf by the family (Qtf : t € M) of functions. In addition we hâve

Corollary 2.5: The family (Qtf :t € M) of continuous functions on (Vt:t € M)
constitutes a continuous function Qf on 93.

A proof of this corollary which of course is local in character can be found
in [11].

§ 3. 42-degenerate singular intégral équations

Let X be a compact Riemann surface, Q the CAUCHY-kernel of X associated
with the normalization divisor D and * 8 a closed subset of X which is locally
a star of smooth arcs, and E a cohérent set of orientations on $. Given a

q X q matrix A on 8, a q x l matrix g on 8, and a q X q matrix K on

8x8 such that every entry of A, g, and K is Holder continuous2), we ask
for Holder continuous q x 1 matrices f on S fulfilling

-V J Ki^zJHxJQixi.xJ^glzJ 3) (4)

2) In this case we simply speak of Holder continuous matrices on S.
3) It can be shown (see [7], § 51) that every integrable solution of (4) is Hôldeb continuous.
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The integer q shall be called the rank of (4).
The kernel K(xly x2) of the singular intégral équation is called degen-

erate - and (4) itself £?-degenerate - if there are Holder continuous matrices
Bly C^..., Bn, Cn on 8 such thatn,

K(x1,x2) ZBrixJCyfa) for xlfx2e8 (5)

In the gênerai case we subject (4) to the following requirements :

I 1) neither det (A{x1) -\- K(x1, xx)) nor det(iita) — K{xx, xj) vanishes

on S, i.e. the singular intégral équation is regularizable

I 2') \ox | K(xx, x2) 0 holds on 8 X 8.
As soon as we talk about «Q-degenerate singular intégral équations whose

kernel is given by (5), we replace 12') by
12) | ax | Cv(x2) — 0 for every v and every x2e S

We call n the height of the kernel K in the représentation (5).

Before investigating .Q-degenerate singular intégral équations we make few

gênerai remarks about such intégral équations.
Calling a complex valued function k(xl9 x2) on 8x8 degenerate if it

admits a représentation (5) with Bv and Cv being complex valued functions,
we see immediately that the kernel K (xly x2) of (4) is degenerate if and only
if every entry of this kernel is degenerate. Therefore we hâve

Proposition 3.1: // K(xlfx2) is degenerate, then K(x2fx1) as well as

Kt(x1, x2)A) are degenerate.

Denoting the classical CauchY-kernel — by QPi we hâve
xi "~ X2

Proposition 3.2: The QPi-degenerate intégral operators form a subalgebra of the

algebra of ail singular intégral operators.
This follows immediately from [7], (45.9) and (45.11).
In order to associate with the singular intégral équation (4) with degenerate

kernel a holomorphic affine bundle, we first transform the intégral équation
into a transmission problem5). For that purpose assume that / is a solution
of the intégral équation. Then we form for every v 1,..., n

(QFV) (x2) -^ J CyixJ /(»,) Ûta, x2), x2eX-S.
QFV is meromorphic in X — S and has divisor (i.e. each entry of QFV has

divisor) > * — D. Furthermore, Hypothesis I 2) implies that Theorem 2.2 is

applicable, whence we get for every v — 1,.. n and every x e Xp

*) Kt dénotes the transpose of the matrix K.
6) What follows is well known (see [7]) for the dominant équation and its adjoint équation.
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(QFV) (ffx) - (QFV) (x) a(x) Cy(pr H) f(pr x)

- 1 (6)
(QFV) (0x) + (QF,) (x) —r J^ Cv(x2) f(xj Q(x2, prx)

On the other hand, the intégral équation can be rewritten as

{A(prît) + Z Bv(prx) Cv(prx)} f(prx) +

+ ZB¥(prz){-Cv(prx)f(prx)+-±T J Cv(x2)f(x2) Q(x2
f=l 7T* (5,2:)

n
or equivalently, putting K+(x) A (x) + S Bv(x) Cv(x)

x) + ZBv(pr^) {(1 - o(x)) (ÛFV)

+ (l+a(x))(QFv)(x)}
Since det iL+(a:) does not vanish on S, we can substitute (7) into first set of
équations (6) which then can be rewritten as

(QFV) {fî) + (a(iï) - 1) Cv(prx) K~Hprx) E B^prx) (QFJ fix)
r1 <8/)

- (fi^v) (*) - (a{x) + 1) Ov(pra?) Z;i(pr x)SBlx{prx) (QFJ {x) +

+ a(x) Cv(pr~x) K~1(pr'x)g{pr~x)

Forming the nq X 1 matrix QF given by (QF)* ((ÔF^,..., {QFnY)
and abbreviating a(x) by a, Bv(prx) by Bv,Cv{pr~x) by <?„, Jï+(pr5) by
iT+, and g(pr x) by gr we can put (8') in the form

_
(QF) tfx)

- l)OnK?Bn/
(1 - {a + 1) Cjtf;1^, - (a + 1) Oii^B,, • • •, - (a + 1) C1 K?Bn\

-(o+l) CnK~+ Bl, - (a + 1) O.Z;^,..., 1 - (a + 1) On^5J

• (Û1-) (5) + a

In order to see that the factors of QF(p~x) and QF(x) are matrices with

7 CMH vol. 38
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déterminant nowhere zéro, we remark that both are either the unit matrix
or else equal to

-2 O1K^}JBl9 -2 0, K-*B2,..., - 2Ct

According to Lemma 1.5 the déterminant of this matrix equals

det(l - 2 S Kl*BvCv) det K~J • det K_

where K_(x) A(x) -2 Bv{x) Cv{x)

Now we put (8') in its final form and dénote for that purpose the affine
transformation of C"g which sends F* {F[,..., Fi), Fx,..., Fn e C, into

fl-2Cj {prie) K+Hprx) B^prH),..., - 2 G^prx) K+Uprlc) Bn (prx)\

l _ r- 2Cn(prx)K-i(prx)B1(prx),..., 1 - 2Cn(prx)K+l(pr x) Bn(pr x)J

(9)

\Cn(pr x) K+1 (pr x) g (pr x)/
by T(prie)F. Then (8") becomes simply

(QF) (ffx) T(pr1ïc)aCx)(QF) (x) (8)

where M"1 means the inverse of M in the affine group of Cnq.

We note immediately that the condition 4) of [11], § 4, for the problem (32)
of [11] is satisfied in our case whence the methods of [11] are applicable to our
situation (note that the holomorphic fiber bundle which is among the data for
the problem (32) of [11] reduces in our situation to the trivial vector bundle
ofrank nq overX).

Before we continue dealing with the relation between the singular intégral
équation (4) and the transmission problem (8) we should like to dérive from
(7) a necessary condition for the existence of solutions of (4). For that purpose
let x e S be a point of order > 2 for which \ax\ =0 holds (in this case x
has necessarily an even order). Then (7) implies that

Z Bv(prx) {(1 - <r(*)) QFv(px) + (1 + a(x)) QFV(Ï)} (V)

does not dépend on the choice of ^c epr~-1(x). If for every x €pr~x(x) the

relation a(x) + o(fà) 0 holds, then the first set of formulas (6) shows
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easily that (7) does not dépend on the choice of ~x c pr-x{x). However, if there

is an le epr~x(x) such that a(x) — a(^x), then a straightforward computa-
tion again involving the first set of formulas (6) shows thafc

n
Z Bv{prx) Cv(prx) f(prx) 0

v=l

Since we do not wish to impose conditions on the solutions of (4) we arrive at
the foliowing necessary conditions for the existence of solutions of (4)

I 3) for every point xeS of order > 2 for which ax — 0 holds and for which there

existe a point —
x € pr-1{x) satisfying a(x) — o(fix)

K(x, x) E Bv{x) Cv(x) 0

holds. "-1

We proved that every solution of (4) gives rise to a solution of the
transmission problem (8) which has divisor > * — D. Now assume that a mero-
morphic solution of the transmission problem (8) is given which has divisor
> * — D on X — S, i.e. a meromorphic nq X 1 matrix G on X — S for

which the matrix G on pr~x(X — 8) defined by G(x) G(prx) can be

extended continuously to X and whose extension satisfies the équation

Keeping (7) in mind, we consider for x c 8 and x e pr"x(x) the expression

- K?{x) i Bv(x) {(1 - o{z))G,(pî) + (1 + a(x)) Ov(x)} (7")

and claim that this matrix dépends only on prie x. This is obvious for

every point xeS of odd order since in this case I 2) implies G(ffx) G(x)
for ail x e pr~x(x). The same argument holds for every point x e 8 of even
order satisfying \<rx\ ^0. If x c S is of order 2 and |crj 0, then a direct

computation shows that (1") is independent of the choice of # €pr~l{x). As
remarked previously, (7;) and hence (7;/) has the required property if x is of
even order > 2, \ax\ 0, and if for every ~X€pr~l(x) the relation a(x) +
+ o(Px) 0 holds. In the remaining case, where a(x) o{{ix) holds we get
from (8) by a straightforward calculation

ZBv{x) Gv(f3x) (K_(x) K-?%
a(x) [K_ (x) K-?(x))*«-x)-* E Bv(x) Op(x) K^(x)g(x)

PZMl
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whence I 3) implies that also in this last case (7") does not dépend on the
choice of !c. _

As shown in [11] there is a local représentation of G in the form H (x) h(x)
where h is a nq X 1 matrix which is holomorphic in a suitable neighborhood
of the point in discussion, while H is a holomorphic mapping (notation as in
§ 1, II., and § 2) of U U^ into GA(nq, C) which restricted to each U^ can
be extended to a Holder continuous mapping of U^ into GA(nq, C). There-
fore (7") is a Holder continuous matrix on 8 which now shall be denoted by /.
Since (8) and (8') are équivalent, G satisfies the équation gotten from (8') by
replacing QFV by Gv. Consequently, using the above définition of / by (7*),
we get for v 1,..., n

GV(PX) - Gv(x) a(x) Gv(Pr x)

Since / is Holder continuous, we can define QFv as before and get then, using (6)

\Xy\p J/) — iXv\U/j — ùdJ:vypXj — ù££y\X)
or =__ — _=_=:_Qy(px) - QFv{px) Gv(x) - QFv(x).

This means that (Gv — QFV) (x) can be written as Hv(prHc) where Hv is a
continuous jx 1 matrix in -X" — supp D which is meromorphic in X — 8
and has pôles only in supp D. Hence Hv is meromorphic in ail of -X". Accord-
ing to our assumptions on G and due to Proposition 1.1, Hy has divisor
> * — D. Since D is a normalization divisor, we can conclude that H vanishes

identically. Thus G QF. In particular, G satisfies also the second set of
équations (6). However, by substituting (6) into (8') we corne back to (4).
Therefore a meromorphic solution of the transmission problem (8) which has
divisor > * ~ D gives rise to a solution of (4). One checks easily that this
sets up a bijective correspondence between the set of solutions of (4) and the
set of meromorphic solutions of (8) having divisor > * — D.

In order to get the above statement in the case of families we shall hâve to
define the notion ofa Holder continuous function which dépends differentiably
(holomorphically) on a parameter. Let 93 -> M be a differentiable (holomorphic)

family of compact Riemann surfaces and 8 a closed subset of 93 which is

locally a differentiable (holomorphic) family of stars of smooth arcs. Then the
complex valued function / on 8 is said to be Holder continuous and to dépend

differentiably (holomorphically) on te M if (notation as in § 1, II.) for every
point x e 8 there exists a coordinate neighborhood U such that

(i) fo(S,v restricted to n(U) X I is a continuous function which dépends

differentiably (holomorphically) on t e7t(U)
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(ii) / o (£v and its first partial derivabives with respect to t restricted to every
set {t} X I, t €7i(U), is Holder continuons with Hôlder coefficient
nniformly bounded in t and Holder exponent uniformly bounded away
from zéro.

In connection with this définition we should remark that in the case of
holomorphic dependence on t e M ib is sufficient to assume that statement (ii)
holds only for / o(£v and not for the partial derivatives of this function
(see[ll], §2).

A differentiable (holomorphic) family of singular intégral équations consists

a differentiable (holomorphic) family 93 -> M of compact Riemank surfaces,
and corresponding families of normalizaticn divisors (Dt : t e M), points
(*t:t e M), and stars of smooth arcs (St:teM) together wifch a family
S (Zt : t e M) of cohérent orientations, and the équations

At(*i) ft{xx) +\ J Kt{xx, x2) ft(x2) Qt (x2i xx) ftte), teM, (ét)

where the matrices A^x^), Kt{x1,x2)) and gt(x^) are Holder continuous
and dépend holomorphically (differentiably) on te M. It will be assumed that
for each t e M the conditions I 1) and I 2') are satisfied. As before we speak
of a {2rdegenerate singular intégral équation if

Kt(xl9 xi 2? Bvt{xx) Cvt(x2) (5t)

holds with Holder continuous matrices Bvt and Cvt which themselves dépend
differentiably (holomorphically) on t e M (note that the height n is assumed
to be independent of t € M). In this latter case we assume that for every
t e M the conditions I 1), I 2), and I 3) are satisfied. When we want to put
emphasis on the family 93 -> M we speak of a family of singular intégral
équations over 93 -> M.

The transmission problem previously associated with (ét) shall be denoted by

(QtFt) (ftï) Tt(prtz)«ï> (£?>,) (x) t*M. (8f)

In the terminology of [11], this constitutes a differentiable (holomorphic)
family of transmission problems as can be seen immediately from (9). Clearly,

every solution ft of (4J which dépends differentiably (holomorphically) on

t € M gives rise to a solution QtFt if the family of transmission problems (St)
which dépends differentiably (holomorphically) on te M. The latter simply

meansthat £2tFtoprt restricted to 93 — 5 is a meromorphic function which
dépends differentiably (holomorphically) on t e M. In addition, [11], Lemma 2.16)

•) This Lemma is also true for differentiable families of smooth arcs as can be checked easily.
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and the procédure and estimâtes of [7], § 16 show that (notations as in

§ 1, IL, and § 2) for every Hé e pr^(8) the restriction of QtFtoprt to
Uvt continuously extended to Uvt yields a function on (£„*(/) ^ Œ^+i,^/)
which is Holder continuous and dépends differentiably (holomorphic-

ally) on t.
Conversely, given a meromorphic solution Gt of (St) with divisor > *t — Dt

which dépends differentiably (holomorphically) on te M, we get by oui
previous construction a family ft of solutions of (4t). We claim that ft is Holder
continuous and dépends differentiably (holomorphically) on t e M. For this
purpose we consider the before mentioned local représentation Ht(x)ht(z)
of Gt. Hère, ht(x) is a holomorphic matrix which dépends differentiably
(holomorphically) on t. On the other hand, in [11] the matrix Ht(x) was
constructed from Tt(x) inductively by
(i) forming the limiting* values of QtTf\ T(? being exp-1^)
(ii)defining Tf+1) by

exp T?+» (exp Qtv T?>)-i• exV(Qtv ïf> + QttV+1 T?>) • (exp QttV

As mentioned above, (i) préserves the property of being Holder continuous
and depending differentiably (holomorphically) on t. (ii) obviously behaves in
the same way. Since (see [11], § 2) Ht is the uniform limit of the products

as k-+ oo

the limiting values of Ht also satisfy a Holder condition and dépend differentiably

(holomorphically) on te M, Consequently Gt has the same property.

Hence (1") shows that the solution ft of (4=t) associated with Gt dépends also

differentiably (holomorphically) on t e M.
Summing up we get

Theorem 3.3: Given a differentiable (holomorphic) family of Qt-degenerate

singular intégral équations over the differentiable (holomorphic) family 93 -> M
of compact Ribmann surfaces, there exists a differentiable (holomorphic) family
of transmission problems with values in the trivial vectorbuvdle (of suitable ranh)
over 93 -> M such that the set of those solutions of the singular intégral équation
which dépend differentiably (holomorphically) on t e M is in a bijective cor-
respondence with the set of those solutions of the transmission problem which
dépend differentiably (holomorphically) on t e M and hâve divisor > *t — Dt
for every te M. The rank of that trivial vector bundle equals nq where n dénotes

the height of the kernel and q the rank of the degenerate intégral équation.
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§ 4. The vector bundle assoeiated
with an jQ-degenerate singular intégral équation

It has been proved in [11] that, given a holomorphic family of transmission
problems over 33 -> M with values in a holomorphic vector bundle 333 -> 33,
there exists under certain, quite gênerai hypothèses (see [11], § 4, 3) and 4), a)

A

and b)) a holomorphic family of fiber bundles 333 -> 93 -> M such that the set
of holomorphic (meromorphic) solutions of the transmission problem is mapped

bijectively onto the set of holomorphic (meromorphic) sections in 333-> 937).

Clearly, the just mentioned requirements 3) and 4) are fulfîlled since in our
case 333-> 33 is the trivial vector bundle (or rank nq)\ the complex Lie group
which acts on 33 -> M over S is in our case the gênerai affine group GA (nq, C).
Since 333 -> 93 is the trivial vector bundle the hypothèses a) and b) are tri-
vially fulfilled. As pointed out in [H], the same resuit still holds when we
replace the holomorphic family of transmission problems by a differentiable
family of transmission problems. In this case, however, we end up with a

A

differentiable family of holomorphic affine bundles 933 -> 93 -> M and the
statement that the set of those holomorphic (meromorphic) solutions of the
transmission problem which dépend differentiably on t c M is mapped bijecti-

a

vely onto the set of those holomorphic (meromorphic) sections in Wt-> Vt
which dépend differentiably on t e M.

But we are looking for meromorphic solutions of the transmission problem
which hâve divisor * t — Dt, t e M. They correspond to those mero-

A

morphic sections in Wt-> Vt which hâve divisor > *t — Dt, i.e. which
A

when represented in complex fiber coordinates of Wt -> Vt hâve the property
that ail their components hâve divisor > *t — Dt. As in [3] we dénote by
{*t — Dt} the holomorphic Une bundle assoeiated with the divisor *t — Dt,
i.e. the holomorphic sections in {*e — Dt} correspond to functions which hâve
divisor > * t — Dt. From our hypothèses about 93 -> M and the families
(Dt : t € M) and (*t : t e M) we conclude easily that ({*t — Dt} : t € M) is a
differentiable (holomorphic) family of line bundles £ -> 93 -> M. From the

A

construction of 333-> 93 as given in [11] we take that except for an arbitrarily
chosen neighborhood U of 8 the transition functions for the bundle 333 -> 93

coincide on 93 — U with the transition functions of 303 -> 93. Therefore, by
choosing U and the open covering (Ut:iel) of 93 appropriately, we may
assume that

7) Note that the hypothesis of [11], Theorem 4.1, namely that 23 be a normal complex space,
is trivially fulfilled m our situation since 23 —> M is a family in the sensé of Kodaira-Spencer
([5]) whence 23 is a complex manifold.
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(i) the transition functions (At} (v), atj (v)) — where Ati has values in GL (nq, C)

and at3 has values in Cnq - in Ut^Vs which describe the bundle 2B -> 93

satisfy At3(v) 1 and ati(v) 0 whenever v € 93 — U
(ii) the local meromorphic functions dt in Ut describing the divisor (*É —

Dt:te M) and hence the Une bundle fi satisfy dt (v) 1 whenever v € U.
Thus the functions (dt (v)Ati (v)d~x (v), d% (v) atj (v)) are holomorphic in Ut r% Uo

and dépend differentiably (holomorphically) on t e M. Since they fulfill the cotn-

patibility relations they define a differentiable (holomorphic) family 2B-^ 93-> M
of holomorphic affine bundles. Clearly, the set of those meromorphic sections

in 393 -> 93 which dépend diflferentiably (holomorphically) on t e M and hâve
divisor > *t — Dt is mapped bijecfcively onto the set of those holomorphic
sections in 393 ~> 93 which dépend differentiably (holomorphically) on te M.
Summing up we get therefore

Theorem4.1: Given a differentiable (holomorphic) family of Qt-degenerate

singular intégral équations over the differentiable (holomorphic) family 93 -> M
of compact Riemann surfaces, there exists a differentiable (holomorphic) family
ÏÏ3 -> 93 -> M of holomorphic affine bundles such that the set of the solutions

of the singular intégral équation which dépend differentiably (holomorphically)
on t e M is in a bijective correspondence with the set of those holomorphic sections

in 2B -^ 93 which dépend differentiably (holomorphically) on t e M. The rank

of the affine bundle 3B->-93 equals nq where n and q hâve the same meaning
as in Theorem 3.3.

Corrollary 4.2: The space of solutions of (4) has finite dimension.

Proof:[Sl Satz 15.4.2.
If we pass from (4) resp. (ét) to the associated homogeneous intégral équation,

that is if we replace g resp. gt by the fonction 0, then we hâve to replace

the affine bundle 933 -> 93 by the one gotten from 2B -> 93 by means of the
canonical homomorphism GA(nq, C) -+GL(nq, C). For various purposes it
is important to know the degree of the vector bundle Wt-+ Vt, t e M, which
corresponds to the homogeneous intégral équation (4f). Using the notations of
§§ 2 and 3, the previous computation of det Tt(x), and [11], Satz 6.6, we get
in a straight forward way

Proposition 4.3: Let X be a compaœt connected Riemann surface of genus g

and W-> X the vector bundle associated with the degenerate intégral équation (4).
Then

_
deg W {g - l)nq + — Z<j<x> arg(£(X) (det K_. det Z71)
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In the formula contained in Proposition 4.3, (£(A), A 1, l, is the
splitting of S with minimal l as described in Proposition 1.4. Furthermore, for
the continuous function <p : (£(A) (/)->¦ QL(1, C), a,Tgc(\)<p is defined to be

(arg cp) (1) — (arg cp) (0)8) where arg <p : (£(A) (/) -> R is a continuous such that
(p \q>\ eta>Tg(p holds. Finally, cr(A) equals a(x) where 5; is any point lying
above (f(X)(/ — {0,1}) for which the filter defining x has a basis consisting of
sets which lie on the right side (with respect to the orientation of G^X)) of d^.

[5], Theorem 2.1, in conjunction with Theorem 4.1 leads immediately to

Theorem 4.4: Given a differentiable family of Qt-degenerate singular intégral
équations (4^) over 33 -> M. Assume that for every t e M the dimension dim^-L^
of the complex affine space Lt of solutions of (4^ is bigger or egual to 0. Then

1) dimcZ/f is an upper-semicontinuous function of t e M
2) if d — dimCjL^ does not dépend on t, then for every t0 e M there exists

a neighborhood U of t0 and d + 1 solutions ff\ ff> of (4t) which
dépend differentiably on t e U and form a basis9) of Lt for every t e U.

From Theorem 4.4, 2) it is clear that there is a differentiable affine bundle
over M whose differentiable sections over the open subset W of M correspond
bijecbively to those solutions of (4J which are defined for ail t e W and dépend
there differentiably on t.

In the same way [5], Theorem 18.1, and [11], Theorem 2.3, imply

Theorem 4.5: Given a holomorphic family of Qt-degenerate singular intégral
équations (4^) over 33 -> M. Assume that for every t € M the relation dimcLf > 0

holds. Then
1) for every integer j the set {t : dimcif > j) is an analytic subset of M
2) if d dimcLf does not dépend on t, then for every toe M there exists

a neighborhood U of t0 and d + 1 solutions ff\ ftd) of (4J which
dépend holomorphically on t e U and form a basis of Lt for every t e U.

Finally it should be remarked that in the case of homogeneous i3rdegenerate
singular intégral équations for which S is contained in the RiEMANNian sphère
one can define the so called component indices (see [7], § 127). As carried out
in [11] for the transmission problem, it can be shown that they are nothing
but the exponents turning up in the Grothendieck splitting ([4]) of the vec-
tor bundle associated with the singular intégral équation. Therefore the state-
ment of [11], Satz 6.9, holds also in the présent situation.

8) The orientation of (E^: I->X is assumed to be chosen in such a way that 0 is the
initial point of (§PK

•) A subset a Orf of a complex affine space L is called a basis if every élément of A
d d

can be written in exactly one way as E otp ap where a?€C, v 0,...,d, and E cl* 1 holds.
o o
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§ 5. Adjoint équation and dual bundle

Starting out from the singular intégral équation (4), the adjoint équation
is defined to be

4*<*iM*i) + -1; J K'fa, xj Q{xx, z,) r,(x2) 0 (4*)

where rj(x2) is a differential form on S. Since every integrable solution of
(4*) is Hôlder continuous (see footnote3)) we hâve only to look for Holder
continuous solutions rj of (4*). One sees very easily that (4*) satisfies the
condition I 1), provided (4) does. Moreover, Proposition 3.1 shows that (4*)
is jQ-degenerate if (4) is 42-degenerate; yet it might be that (4*) does not
fulfill the analog of I 2). If the original «Q-degenerate singular intégral équation
has kernel (5), then we write the kernel of (4*) in the form

£ (5*)

whence we shall hâve to make the additional assumption that

1*2) \ax | Bv(x2) 0 for every v and x2 e 8
2

Since (4*) satisfies I 3) whenever (4) does, we can apply the results of § 4 to
(4*). In passing from (4) to (4*) we hâve to interchange a and — a, Bv and
Cl, C9 and Blv, K+ and K\, and F and H. Therefore the transmission
problem associated with the adjoint équation turns out to be

(QH) (fx) T^(pr^)a(i)(DH) (x) 10) (8*)

where T* dénotes (T*)*1. Furthermore, Proposition 1.2 shows that QH has
divisor >Z>~-*on X — 8. Conversely, in the same way as in § 3 it can
be shown that every solution of the transmission problem (8*) which has divisor
> D — * on X — 8 gives rise to a solution of (4*).

The transmission problem (8*) calls for meromorphic differential forms on
X — 8. This means in the terminology of [11] that we are dealing with a
transmission problem with values in nqKx Kx® • •. ®Kx (ng-times).
Therefore the construction which associâtes with the transmission problem
(8*) a holomorphic vector bundle (see [11], § 4) leads in this case to the bundle

W* ® Kx -> X where W -» X is the vector bundle associated with the homo-

geneous équation (4). Thus the set of ail solutions of (4) corresponds bijectively
to the set of ail those meromorphic sections in W —> Kx which hâve divisor

10) Since we deal with homogeneous équations (4), T assumes values in GL(nq, C).
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> D —- * This and the remarks in § 4 leading up to the construction of the
bundle W-> X show that the vector space of solutions of (4*) is mapped
bijectively onto the vector space of ail holomorphic sections in the vector
bundle W* (g) Kx~> X. Summing up we get

Theorem 5.1: Let W->X be the vector bundle associated with the homo-

geneous Q-degenerate singular intégral équation (4) according to Theorem 4.1.
Then the vector bundle associated with the adjoint équation equals PF* ® Kx-> X.

Denoting the vector space of ail solutions of the homogeneous équation (4)

by L (of (4*) by £*) we get as an immédiate corollary of Theorem 5.1,
using Proposition 4.3 and the Rjemann-Roch theorem for vector bundles
over compact Riemann surfaces (see [3]).

Corollary 5.2 (Index Theorem):
i

dimcL - dimcL* Z a{X) arg^x) (det K'1 • det K_)
x

Obviously Corollary 5.2 corresponds to two of F.Noether's theorems on
singular intégral équations ([7], § 131, Theorem II and Theorem III). The
remaining theorem of P.Noether is thus

Proposition 5.3: The inhomogeneous Q-degenerate singular intégral équation
(4) has a solution if and only if for every solution r\ of the adjoint équation

holds. <*'r)

Proof: The necessity of this finite set of conditions can be proved as follows.

If (4) has a solution /, then (7) gives for prx=x, denoting a(x) by a

g(z) K+(x) f(x) + Z Bv(x) {(1 - or) QFv{fî) + (1 + a) ^
For the same reason we get for every solution rj of (4*)

rf(x) - £{{l + a) QHitfx) + (1 - a) QH\{x)} Cv{x)

and according to (6)

- orfix) Bv(x) QHltfx) - QH\(x)
Hence

Vt{x)g(x) =-£{{l + a) QHlifte) + (1 - a) QHl(x)} Cv(x)f(x)

+ v*{x) Z Bv{x) {(1 - a) QFv(p%) + {l+a) QFV (x)}
V-l
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A simple calculation leads then to

rf(x) g(x) - 2 a(x)Z{QHl(pz) DFv(px) - QHl (x) QFv(x)}

Therefore _ _
S rf(x)g(x) 2: J QW- QF

(5,27) j€J bdyXj _
where (Xs :jeJ) is the family of connected components of X — S. Since QH

has divisor > D — * and 42.F has divisor > * — D, Cauchy's intégral
theorem shows that the right side of the last équation vanishes.

In order to see that the converse is also true, we show that there is a family
of Holder continuous differential forms (£x : A e A) on 8 which dépend only
on the left side of (4) such that (4) has a solution if and only if

J C{(x)g(x) 0 for ail XeA.

After having established fchis auxiliary resuit, the proof of Proposition 5.3 can
be concluded very quiekly as carried out in [7], § 53.

Thus it remains to be shown that the above auxiliary resuit, which is usually
proved by employing reducing operators and Fredholm theory (see [7]), is
valid in our case. Hère we want to give a proof using only theory of functions
and thus establishing F. Noether's theorems for 42-degenerate singular intégral
équations exclusively within the framework of theory of functions. For this

purpose let N* be an nq x nq matrix such that

(i) each column of N* constitutes a meromorphic solution of the transmission
problem associated with the adjoint équation, i.e.

(ii) det N does not vanish identically

(iii) N(x) 0 for ail points x which lie above points of order ^ 2.
Such matrices exist due to Theorem 4.1 and well known statements about
holomorphic vector bundles over compact Bjemann surfaces. Then we get for

each meromorphic soluiton G of (8), putting pr x x,

a(x) {N(px) Gtfx) - N(x) G(x)}

+ *(*)) N(px) + (1 - a(x))N(x)} :

Cn{x)K?{x)g(x))

as can be checked easily. Due to (iii) and I 2), the right side of this équation
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dépends only on x. Hence we hâve for a suitable Holder continuous matrix

a(x) {N(^) G(j8«) - N(z)G(x)} Z(x)

Conversely, setting /g(x)1

we get by Theorem 2.2

o(x){H(Px)-H(ï)}

whence JV-1^) H (x) is a meromorphic solution of (8). Therefore the gênerai
meromorphic solution of (8) is of the form

~G(x) N-iÇx) (H(x) + L(prîc))

where L is meromorphic on X. In order to fînd ail those solutions 0 whose
divisor is > * — D, we may restrict ourselves to meromorphic matrices L
on X whose divisor is > Do where Do is a certain divisor that can be computed
easily from N and D. Assuming that L^x),..., Lm(x) constitutes a basis
for the vector space of ail those meromorphic matrices on X which hâve
divisor > DQ, we hâve to find complex numbers cx,... cm such that

N-i(x)(H(x) + cxLx(Vr x) + + cmLm(pr x))

has divisor > * — D. Necessary and sufficient for this is that certain
coefficients in the Laurent séries of this function vanish, i.e. that a certain in-
homogeneous System of linear équation in the c^'s has a solution. Since the
inhomogeneous terms of those linear équations are of the form J ¥(x)g(x)
where Ç(x) are suitable Holder continuous differential forms on S, the
necessary and sufficient conditions for the solubility of that inhomogeneous
System of linear équations are precisely of the form that we stated previously.
This finishes the proof of the remaining theorem of F. Noether.

Summing up we can say that we arrived at proofs for F. Noether's theorems
for jQ-degenerate singular intégral équations which use only résulta and
techniques of theory of functions.

§ 6. General singular intégral équations

Affcer having found proofs of F. Noether's theorems for fi-degenerate
singular intégral équations, one might ask whether it is possible to reduce the
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proofs of thèse theorems in the gênerai case to that for 42-degenerafce kernels,
much in the same way as in the theory of Fredholm équations. We shall
briefly outline that this is indeed possible and proceed for this purpose essen-

tially as in [2], III, § 3. Of course we shall restrict ourselves to singular intégral
équations (4) which are subject to the conditions I 1), I 2'), and

I* 2') | ax | K*(x29 xx) 0 holds on S X S

In addition we shall assume that for each x € S the relation \ax\ 0

holds; this relation, of course, implies both, I 2') and 1*2'). We want to show,
however, that the assumption | ax \ 0 for ail x e 8 is no loss of generality.
Since i^lo^l 0 we can imbed the oriented, 1-dimensional complex (S, E)

X€S

in a finite, oriented, 1-dimensional abstract complex (Sf, E') which satisfies
\gx,\ =0 for each x' e 8'; for this purpose one has only to attach finitely
many 1-simplices to (S, E) in a suitable way. (S'y E') in turn can be imbedded
in a compact Riemann surface Xr such that the imbedding of (S, E) in
(Sf, E') can be extended to a diffeomorphism of some neighborhood of S
in X to some neighborhood of its image in X1. Now the matrices A and K
which are defined on S resp. S x S shall be extended to Sf resp. Sf X S'
as follows. Let x be a 1-simplex of Sf which is not contained in S ; then its end

points t0 and tx are in S and | at \ =fi 0 and | at \ ^ 0 whence, due to 11) and

I 2'), det A(t0) i=. 0 and det *A\fà ^ 0 holds. Extend the matrix A to r
as a differentiable mapping of r into OL (q, C) which maps tQ into A (t0) and
tx into A^). This way we get a Holdeb, continuous matrix A' on S'. The
matrix K' on S' X Sf extending K is determined by the property that its
restriction to (8' —8) X 8' ^ Sf x (Sf —S) is the zéro matrix; K' isHoLDER
continuous due to I 2;) and 1*2'). Clearly there is a natural bijective correspond-
ence between the space of solutions of the original System and the System
formed by means of A', K', and ($', Z'), provided we use the same Cafchy
kernel in both cases. Since the indices for both Systems are the same we may
deal with the latter System instead of with the original one.

Defining the norm \A\ of the matrix A (a%j) by |A\2 E \a%}\2, we

observe firstly that every matrix K(x1, x2) of Holder continuous functions
which satisfies in a compact subset S' of C2 the inequality

\K(x[f xi) - K(4, 4)\ < H(\x[ - rcf |* + \xf2 - xf^) (10)

can be approximated uniformly by sums

E Bv{xx) Cv(x2)

such that the matrices Bv(xx)y Cv(x2), v 1,.. n, and E Bv{xt) Cv(x2)
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satisfy an inequality analogous to (10) with the same Holder exponent, but
the Holder coefficient} H replaced by aH where a dépends only on the geo-
metrie situation and not on the degree of approximation. For this purpose we
simply regularize each component of K (xx, x2) and approximate the resulting
O00-fonctions including their first partial dérivâtives as well as we want.

Secondly, a simple argument (see [7], §§ 49 — 51) shows that every solution

of (4) satisfies a Holder condition with Holder exponent hr —, pro-

vided ail given functions in (4) satisfy a Holder condition with exponent A.
Furthermore, denoting by H (h1) the complex vector space of those Holder
continuous q x 1 matrices on S which hâve Holder exponent hr, it is easy
to prove that (see [7], § 49) H (h1) being equipped with the norm

where Uv : v 1,.. N) is a covering of S by the coordinate neighborhoods
Uv of the complex coordinate tv, is a complex Banach space. Moreover, the
operator which asigns to feH(h') the functioîi (note that under the above
hypothesis the relation (2) is trivially fulfilled)

(Rf)(x1) A(x1)f(x1)+-X- J KfatXjfixlQixt,^), xl€SM (8,Z)

maps H (h1) into itself and is a bounded linear operator whose norm dépends
only on the géométrie situation and the Holder constants of A and K (see [7],
§ 49, and [11], § 1). In particular, if we approximate Si by operators given by

A(x1)f(x1)+-\ J ZBMixJCMixjnxjafa,^) (11)
711 (8,2) v**l

in such a way that the approximating matrices JB^ and C(^) satisfy the
previously stated conditions, then we arrive at a uniform bound for the norm
of the operators il and $t(m), m 1,....

Obviously, the approximating operators 5Vm) can be chosen such that each
of them satisfies the conditions I 1), I 2) (which in the présent situation is

trivially satisfied), and I 3), whence the results of the previous sections apply
to them.

Now the fundamental theorems of F. Noether can be proved in more or less

the same way as it is done in [2], III, § 3, in the case of Fredholm équations.
In particular, the argument of [2], pp. 118 — 119, can be repeated literally,
however replacing (gn, Qn) of [2], III, by ||gw||. From that follows as in [2],
III, §3, the validity of Proposition 5.3 in the gênerai case, provided the
homogeneous intégral équation 51/ 0 has only the trivial solution.
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In order to geht the remaining statements, one could work out a proof for
the gênerai CAUCHY-kernel Q. This, however, seems to lead to lengthy com-
putations and arguments. Therefore ifc is advisable to show that we can restrict
ourselves to a quite spécial form of Q from which we then dérive the desired

auxiliary results by an easy calculation.
In the discussion of the singular intégral équation (4) we are only interested

in properties of Q on S X S. This means that we may use a différent Cattchy-
kernel Q on X or even change the complex structure on X. Rewriting the
original intégral équation (4) in terms of the new CAUCHY-kernel Q, we hâve
to replace the kernel K(xlix2) by k(xx, x2) K(xlf x2), where k(xlfx2) is
chosen such that on S X S the relation Q(x1, x2) k(oc1, x2) Q'(xlt x2)

holds. This leads then to an intégral équation of the previously considered

type, provided Q''(x1} x2) has no zéro on 8 x S and k(xx, x2) is Hôldee
continuous on S X S.

It is well known that, given a compact Riemann surface X of genus g and

mutually distinct points #*,..., x*g+2 of X, there is a diffeomorphism of X
onto the Riemann surface X' defined by

t<* - (z - Oi). -(z - a2g+1) 0 (12)

which sends the point x* into the point ofX1 lying above ax, A 1,..., 2g-\-1,
and #*0+2 ùtà0 ^he point of X1 lying above oo. The points al5..., a2g+1 are

subject only to the condition of being mutually distinct. If we now choose

x*,..., x2g+2 in X — S, then the image of S in X1 will not contain any
of the ramification points of z : X! -» P1. Denoting the function

„> — '>- n
\Z a2g+i)

z — u>2 z — u>%q

on X' by s(x) where z z(x) is the image of x under the projection
z : X1 -> P1, one can check immediately that the Cauchy-kernel on X' to

oo and the normalization divisor D (a2) + + (a2g) equals

Moreover one vérifies easily that this CAUCHY-kernel has no zéros on S X S
since S does not meet the ramification points. Consequently we may assume
from now on that X is the Riemann surface defined by (12) and that i2(^, x2)

is given by (13).
In order to proceed wibh the proof of F. Noether's theorems, we remark

first that the space of solutions of the homogeneous singular intégral équation
Sif 0 has finite dimension over C. The proof of this statement is simply
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a répétition of [7], § 53, p. 140. Now let ipl9..., tpr be a C-basis of the vector
space of solutions of Rf 0. We want to show that for a suitable choice of
the Cauchy-kernel (13) the q x 1 matrices

Vi(»),..., Vrte)> s(x)y)1(x),...y s{x)y>r(x), xeS (14)

are linearly independent over C. For that purpose choose the sets

(n(Q) n(Q) n 1 r
of mutually distinct points in such a way that for every A 1,..., 2 g -\- l
the points a^, q 1,..., r, are in a sufficiently small neighborhood of ax
and that the sets {<4e),..., a^+1} are mutually disjoint. By replacing each

a\ in s(x) by a$ we get a function sQ(x) as used in the construction of the
Cauchy-kernel (13). We claim that for at least one index q the function s corres-
ponding to (14) are linearly independent over C. Assume that for some complex
numbers bQa, bfQa, q, a 1,..., r,

Vi(*) (b* + b'la 8o(x)) + + yrte) (Ko + Ko «ate)) 0 (15)

for ail xeS. Let us consider

^i,...,r a? c Z (16)

If (16) would not vanish identically, then (15) would imply that for each point
x on S which does not belong to the divisor of (16) Vite) • • • Wr(x) 0

holds. By continuity the ye's would therefore vanish identically on S contra-
dicting the assumed linear independence. Therefore the rank m of (16) is
smaller than r. We choose now the b^ and 6^ such that m is maximal. If
this maximal m equals 0, then for any choice of q the functions corresponding
to (14) will be linearly independent over C. If m> 0 holds, then we may
assume that

does not vanish identically. Then (15) implies the existence of rational functions

•, wm) •.., /*,rK,..., wm), x 1,..., m
such that r

y)K(x) E /^(«ite)»..., sm(x)) y^x), n=l,...im (17)

holds. Because the rank of (16) equals m, we hâve for [i m + 1 • • • > r

0 6., „
-27/«

8 CMH vol. 38
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This shows that both terms {...} of the preceding line hâve to be identically
zéro, because sm+1(x) has ramification points where neither of the terms
{ } has. Therefore using (17) we arrive at

0 i {6^! + Zf^s^x),..., sm(x))

whence 61>m+1 brfn+1 0 due to the linear independence of tpl9..., y>r.

A corresponding argument shows that also brlmJrl bfrm+1 holds. Thus
a suitable choice of the CAUCHY-kerael (13) makes the functions (14) linearly
independent over C, as claimed before.

The next step is to replace the approximating séquence operators 5l(m)

by a séquence of 42-degenerate operators $t{m) which has the properties pre-
viously stated for the séquence 5t(w) and fulfills the additional requirement
$Hm)y)Q 0 for g 1,..., r.

Since the q x 1 matrices (14) are linearly independent over C the Schmidt
orthonormalization process gives the existence of a non-singular 2r x 2r
matrix C with entries complex numbers such that

\

(^1(^2)» • • • > y)rMy8(X2)y)l(X2)y • • • »*(^)Vr(«l)) G' \dz(x%)\J -,» I .0 (i* \ «h *

holds, where 1 désignâtes the 2r X 2r unit matrix. Therefore we get a
2r X 2r matrix C with entries complex numbers such that

Putting

we note that |#ç(w) (a^) | converges uniformly on 8 to 0 as m tends to infinity,
due to the previously stated properties of the approximating séquence ${{m).

Furthermore we know that the matrices %Q{m) are Holder continuous on S with
Holder constants which are uniformly bounded. Defining now the q X q
matrix L{m) (x^, x2) on S X S by



jQ-degenerate singular intégral équations and holomorphic affine bundles 115

dz(x2)

\s(X2) tpr

(20)

the relation (18) implies that

— fni os,

1

Thus, using (19), we find that the operator 51<B1) + £(ro) where

^* (S,i:)

satisfies the équations

ft<»)%==0 for e=l,...,r, f»=l,...
In addition (20) shows that £(m) and therefore 5Vm) is i3-degenerate and that
il(m) satisfies the conditions 11) and 13) since L{m) (xx, xx) 0 on S. Switch-
ing from the original approximating séquence to the one which has just
been constructed we may now assume that the solutions Vi » * • • » Vr °f
Si f 0 are also solutions of 5l(m)/ 0.

We claim finally that the vector space of solutions of R{m)f 0 has for
sufficiently large m exactly dimension r over C. So far we know that this
dimension is at least r. If for infinitely many m this dimension were bigger
than r, then we could sélect a subsequence such that every intégral équation
of this subsequence has a solution space of dimension > r -f 1. Therefore
we could find for every m a solution ip^ of 5l(m)/ 0 which does not dépend
linearly upon %>•••> yr. Furthermore we may assume that for q 1,..., r

J
(8,F)



116 Helmut Rôhbl

hold. As can be seen very easily (see [2], III, § 1, and [7], §§ 45 and 51) the latter
condition implies that the yf^x form a uniformly bounded and equicontinuous
family. Hence Abzela's theorem shows the existence of a uniformly convergent
subsequence, whose limit ipr+1 is not identically zéro, is orthogonal to %>•••>
\pr, and constitutes a solution of Rf 0 which is impossible. Since the index
of a singular intégral équation as defined by the right side of Corollary 5.2
is an integer and since the séquence R{m) approximates 51 in the previously
stated mariner, the index im of 5l(w) equals the index i of 51 for sufficiently
large m. Therefore, denoting the space of solutions of R{m) f 0 (the adjoint
équation 5l(m)* / 0) by Lm (L^) and the corresponding spaces for 51 by
L (£*), we get from Corollary 5.2

i im dim€iTO — dimcZ^ dimciy — dimcL*

for sufficiently large m. Because the séquence 5l(m)* approximates 51* in.
the same way as the séquence Rim) approximates 51, we get dimcZ^ < dimc£*e
If, however, dimcL* < dimcL would hold for arbitraryly large m, then we
could interchange the rôles of R and 51* and thus find that the dimension of the
solution space of 51/ 0 had to be bigger than dimcL which is a contradiction.
Therefore Corollary 5.2 (Index Theorem) has been proved in the gênerai case.

It remains to be shown that Proposition 5.3 too is valid in the gênerai case.
The necessity of the conditions in Proposition 5.3 is essentially trivial (see

[7], § 53). The sufficiency can be shown as follows. According to our previous
construction we may assume that the approximating séquence is chosen in
such a way that dim€L* dimcL* r* holds for ail m. Furthermore we may
assume that for each n the matrix valued differential forms ^TO),..., rf^
constitute a C-basis of L* such that

/(¦ 0 if q # a
1 if q a

(ii) each séquence t]e{m), m 1,..., converges uniformly to rje.
Then the matrix differential forms %,..., rjr* form a C-basis von

If now^ r t >*•

holds, then for each g the séquence

(8,2)

converges to zéro, whence the séquence
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converges uniformly to g{x^. Moreover (i) implies that for q 1,..., r*

Thus Proposition 5.3 gives the existence of a solution f{m) of the intégral
équation $t{m)f g{m). An argument analogous to the one in [2] III, § 3,

permits then to pass to the limit in R{m) fim) g{m) and thus to establish the
existence of a solution of the original intégral équation 51/ g.

Therefore we hâve proved

Theorem 6.1: Assuming that the singular intégral équation (4) satisfies II)?
I 2'), and 1*2'), the statements of Corollary 4.2, Corollary 5.2, and Proposition
5.3 are valid for the singular intégral équation (4).

§ 7. Final remarks

The procédures of § 3 together with the results of [11] lend themselves to a
treatment of certain types of nonlinear singular intégral équations analogous
to the one developed in the preceding sections. Unfortunately, only little is
known about holomorphie sections in holomorphie fiber bundles other than
vector bundles over compact Riemann surfaces. This puts a severe limitation
on the applicability of this method to nonlinear singular intégral équations.

The singular intégral équation (4) which satisfies (5) is of the gênerai form
(see the argument following (6))

(21)

Assuming that / is a Holder continuous solution11) of (21) we introduce as

previously

and find as in § 3

f(pr~x)
^ ^

0(o(x){QF1((îz) - QF^x)},... ,a(z)(QFn(px) - QFn(x)} JïF^fiï)+ QFx(x),

Therefore we hâve for v 1,..., n

QFv(fâ) - QFv{x)

a(x)Cv(prx) 0(a(x) B

n) Contrary to linear singular intégral équations, (21) may hâve integrable solutions which
are not Hôldbb continuous.
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or

i - DF(z)
(1(p)\

<*(*) : 0{a(x){QFl{fix) - ûJ^a)},..., Û^(/î «) + QFX (*),

Under the assumption that
N) tfAere exista a complex Lie group G acting on Cnq as a group of complex

automorphisms, together with a Hôlder continuons mapping T : 8->G such
that for any two éléments y{1), y{2) in Cnq 12) the équations

y{1) T(prHc)a(i) • yM
are équivalent, _
any Hôlder continuous solution / of (21) leads via (22) to a solution QF of
the transmission problem _ __ _ _ _ _

G(ftx) T(prxfx) • (?(*) (23)

for which F is meromorphic in X — S and has divisor > * — D. If one
now imposes on 0 a condition analogous to I 3) — which is of course empty,
provided S is a disjoint union of simple closed curves —, then one can show
as in § 3, that every meromorphic solution of the above transmission problem
which has divisor > * — D gives rise to a Hôlder continuous solution of
the singular intégral équation (21). Therefore one arrives at an obvious gener-
alization of Theorem 3.3. Hence, using [11], one can again associate with (21)
a holomorphic fiber bundle over X with fiber Cnq and structure group G such
that the Hôlder continuous solutions of (21) correspond bijectively to those
meromorphic sections in the bundle which hâve divisor > * — D (see proof
of Theorem 4. l)13).

As mentioned previously there are virtually no gênerai theorems concerning
the existence of holomorphic sections in the fiber bundles we finally arrive at.
However, the following statement is true (for a similar, yet more spécial case

see [9]; the proof given there can be generalized so as to cover the situation

") We put for yecnq y* (y{9 y*n) 6 C« © © C* Cn*

18) The notation « meromorphic section in the fiber bundle which has divisor > * — D »

makes only sensé for the spécifie transition fonctions g^ constructed in [11], § 4, since the
transmission problem has values in a trivial vector bundle. Therefore this notion is not an
invariant of the fiber bundle, but only of the coordinate bundle.
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hère). Given a eovering (Ut: i e I) of P1 by open subsets whieh are homeo-
morphic to a disk, let fche holomorphic fiber bundle W -> P1 with connected
structure group G be described by transition function gt} in Ut r\ £7^ ; then
W->PX is holomorphically trivial, provided the transition functions g%5

assume only values in a (sufficiently small) neighborhood of the neutral élément
in G which dépends only on the given eovering (Ut: i e I). On the other hand,
one sees easily from [11], § 4, that the fiber bundle we are interested in satis-
fies thèse requirements, provided T assumes only values in a sufficiently small
neighborhood of the neutral élément of G. Therefore we get

Theorem 7.1: Suppose that 0 maps Hùlder continuons functions into
IIôlder continuons functions, that N) is satisfied, and that S is a disjoint union
of simple closed curves which are contained in P1. Then the intégral équation (21),
considered for X P1, has exactly one Holder continuons solution, provided the

transmission function T assumes on S values which are contained in a
(sufficiently small) neighborhood of the neutral élément of G which dépends only on
the choice of S.

It is clear that the whole argument of this section can again be carried over
to the discussion of families of nonlinear singular intégral équations. The détails
are left to the reader.

As an example of the type of intégral équation dealt with in this section,
we assume again S to be a disjoint union of simple closed curves. Then for
any complex Lie group G acting on Ca as a group of complex automorphisms
and for every Hôldbr continuous mapping T:8->G, the nonlinear intégral
équation

-£ï J fM £(*•, «i) + T(xJ (/K) + JL J
where / has values in Cg is of the type we hâve considered in this section.
Thus the above results apply to it.

University of Minnesota (IT),
Harvard University.
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