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An Integral Equation and a General Existence Theorem
for Harmonic Functions¥)

by Lo Sario

The purpose of the present paper is to show that a FrREDHOLM integral
equation can be used to construct on an arbitrary RIEMANN surface W a
harmonic function p that has preassigned singularities and that imitates the
behavior of a given harmonic function ¢ in aneighborhood of the ideal boundary.
Explicit upper and lower bounds will be given for the deviation of p from o.
Such bounds will be needed e.g. in the theory of complex analytic mappings
into arbitrary R1EMANN surfaces [17, 18].

§ 1. Aucxiliary funefions

1. Let W be a compact bordered R1EMANN surface with border « U5, U... US,, ,
where « and the §’s are disjoint sets of analytic JORDAN curves. Choose a point
zo€¢ W and a parametric disk D: r <1, r = |2 —2,| . Consider the class ¢
of harmonic functions g in W — z, such that

1 1
gIDz—é—u—log7+e(z), (1)
gloa=20, (2)
fdg*r =0, j=1,...,n, (3)

Bj

where ¢ is harmonic in D.
In the class G we single out the functions g¢,, g, and g,, defined by the
conditions

ago_ w__”

Sw=0on f=Up, (4)
g1| B; =c; (const.), 3 =1,...,n, (5)

I =hgo+ kg, (6)

h, k being real constants with » + k = 1.
We shall first establish an extremal property of g,, by evaluating the
DiricHLET integral D(g —g,,) over W. Denote by a, a,, a, the values

*) Sponsored by the U.S. Army Research Office (Durham), Grant DA-ARO (D)-31-124—
G 40, University of California, Los Angeles. Presented to the American Mathematical Society on
June 22, 1963.
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e(2z,) for g, 9o, ¢, respectively and set B(g) = fg dg*, B(g,g) = _fg dg*
for g, g e@.

Lemma 1. The function g,, minimizes B(g) + (kK — k)a wn G. Explicitly,
B(g) + (k —h)a = k*a; —h*ag + D(g —guz) - (7)
Proof. We start with

D(g —gn:) = B(9) + B(gn) — B(g: gnx) — B(Gax> 9) -

To evaluate
B(gn) = bk [B(g4, 91) — B(91, 90)]
we take a circle y: |z —zo| =7, <1 and write C(g, g) = fyg dg* for
, g € G. Then v
9.9 ¢ B(g) = h k[C(g0, 91) — C(91: 90)] -

Here we have oriented g and y so as to leave W and |z —z,| <r, to the
left, respectively. On denoting (1/2x) log (1/r) by ¢ we obtain

B(9n) = hk[Clo + €, 0 +€1) —Clo + €1, 0 + &)l
= hk [C(eo, @) — C(ey, )]
= hk [e1(z0) — €o(20)] = hk(a; —a,) .

In the same manner we derive the equations

B(g, gux) = k(a, —a),
B(ghk’ g) = h(a‘ “““ao) s
and conclude that (7) holds.

2. Now let W be a noncompact bordered RIEMANN surface with compact
border », and denote by £ a compact bordered subregion with border
aUpfigU...UB, o. Here « and the f’s are again disjoint sets of analytic

JORDAN curves, the border of any component of W — 2 being contained in
one set only. For the various 2, the f,,,9 =1,..., n,, are required to form

a consistent system of partitions ([1], p. 88). Specifically, for 2 c £’, the
partition of 8,, must be a refinement of the partition induced by that of g,.
The most important systems are the identity partition and the canonical
partition.

Let G be the class of harmonic functions g on W — 2z, defined by the con-

ditions (1), (2) and j‘ dg* = 0 for all 2 and j. The functions ¢qq, 910,
7.0

and g,,o in Q — 2z, are defined by obvious modifications of conditions (4)—(6).

We shall show that these functions converge uniformly in compact subsets to

unique harmonic functions gg, g;, g5 On W —2z, a8 Q— W .
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3. Let 2c Q' and apply (7) to g = goq- and g,, = goo. Since B, (g;0/) =
Bg,.(g;0:)) = 0 for ¢ = 0,1, we obtain

Do(goar — Goo) = Qg — Bggr -
Dy (g19) — 910) = @19) — 4,

Dg(go0 — 910) = @pp — a4g -

We conclude that the directed limits

Similarly

and

2->W
1 = 0, 1, exist. Consequently
lim Dy (g;0: —gia) = 0. (9)
Q->W

We reflect W, 2,2 across o« to form the doubles ﬁ’ !5 Q' ([1], p. 119)
and infer that the corresponding integral Dj of the harmonic extension
Jiar — Jio to Q of giar —Gio also tends to zero. By virtue of the triangle
inequality, D} 3, (90— gm.)-—>0 for any fixed 2, as 2, Q' mdependently of
each other exhaust W. Since dio=0 ona, one infers ([1] p.147) that g,,
converges uniformly on compact subsets of W — zo —z¢ (27 the reflection
of z,), hence on those of W — z,. We obtain the limiting functions g,, ¢,, and

g = lm g0 =hgo + kg, . (10)
Q->W

One can show that (7) remains valid on the noncompact W but we shall
not need this information.

§ 2. Linear operators

4. Let again W be a compact bordered RIEMANN surface with border
aUByU...UB,. Let f be a harmonic function on x and consider the class
H of harmonic functions « on W with

w|a=1f, (11)
fdu* =0, (12)
Bj
j=1,...,n. In H take the functions wu,, u,, u,, defined by
dug _»
an =0 on ﬂ'——lijﬂ‘, (13)

uy | B; = ¢, (const.), (14)
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Let A(u) = fudu*, B(u) = [udu*.
a B

Lemma 2. The function wu,, minitmizes the functional B(u) 4+ (k — k) A (u)
in H and the value of the mintmum 18 k? A(u;) — h? 4 (u,):

B(u) + (k —h) A(u) = k* A(u,) —h* A(ug) + D(w —up) . (16)

The proof is completely analogous to that of Lemma 1, with g¢,, g,, ¢x>
@y, @,, a replaced by u,, uy, uy, 4 (%), 4(u,), 4(u).

b. If W is noncompact with compact border «, one again considers a con-
sistent system of partitions of the boundaries 8,. The family H consists, by

definition, of harmonic functions » on W with » = f on o and 3]’ du* = 0
ie

for all 2, 4. In the same manner as in No. 3 one proves that A (u,,) decreases,

A (u,,) increases with increasing 2 and that the directed limits

A(u;) = lim 4 (u,g),
Q->w
t = 0, 1, exist. The integrals Dg,(u;;, —u,,) tend to zero and we have the
limiting functions u,, #, and

uhk = lim uhkg == h uo + k ’u1 . (17)
Q->Ww

Lemma 2 can be shown to remain valid for the limiting functions, but this
property will not be needed.

6. The operators L,, are defined by

Uny = Ly f (18)

with L,, L, standing for L,,, L,, respectively. They satisfy the conditions
Lipfloe=1, (19)

Ly (eify + cofs) = ¢y Lyifr + €3 Lifs s (20)

“I d (L fy* =0, (21)

min f £ L,;f < max f (22)

for compact W. By virtue of uniform convergence the same is true for non-
compact W.

The operator L,, has an integral representation in terms of g,,. If W is
bordered compact, we apply GREEN’s formula to u,, g; along g —a —vy,
and let y shrink to z,. The resulting equations wu,(z,) = [ f dg; give

Upy, (20) = Jo [ dgns* - (23)
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Because of uniform convergence of both u,;, and g,;, on a noncompact W
we have:

Lemma 3. On an arbitrary bordered RIEMANN surface with compact border « ,
Ly f (20) = § f dgis, » (24)
where o 18 oriented so as to leave W to its right.

7. The following is a general property of harmonic functions:

Lemma 4. Let E be a compact set on an arbitrary open RIEMANN surface W .
Consider the class of harmonic functions w on W with

mingu < 0, supwu =0. (25)
Then there exists a constant q, 0 << q < 1, independent of u, such that
u| B < gsupwu. (26)

In the more restricted class of functions w with sgn u | E # const. the
lemma implies ginfwu<u|E<qsupwu 27)
as can be seen by applying (26) to —u. Less sharply, maxg | v | < gsupg |« |.

Proof. If supwu = 0 or oo, there is nothing to prove. In other cases we
normalize by a multiplicative constant so as to make supwu = 1. For
v=1—u we have infyv =0, maxgv =1, hence v> 0 on W. We are
to establish the existence of a ¢’ € (0, 1) such that mingv = ¢'.

Without loss of generality we may assume that £ is connected, for if this
is not the case we first replace £ by a larger connected compact set.

Cover E by a finite number of disks D;,s=1,..., N, centered at z,,
such that slightly smaller disks D)= |z —z,|<<1—d, d> 0, already cover
E. By HARNACK’s inequality, v(z)/v(z;) for ze D] is in the interval (c, c1),
where ¢ = d/(2 — d). For any z, 2’ ¢ D; we have v(z)/v(2') € (c2, c~2) . There
is a point { e E where v({) = 1 and this point can be connected with any
z ¢ I by a sequence of points

$=20,215::452, =2, m= N, the pair 2, ,,2,(j=1,...,m)
being in some disk D;. Consequently ¢2V qualifies as ¢’.

8. On an arbitrary open RIEMANN surface W let Wo be a bordered compact

subregion with border «,. Let Wl with border «, ¢ W, be the complement
of a relatively compact bordered subregion of W. For a real-valued function

f € C on 4 let Lf be the solution of the DIRICHLET problem in W o. The operator
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L,,; acting on Lf | x, gives on W, the harmonic function Kf with
K=0L,L. (28)

The » th iterate of K is denoted by K™.
Let ¢ be the constant of Lemma 4 applied to the compact set «; on the
RiEMANN surface W,.

Lemma b. If sgn K* f |, % const., ¢t =1,...,n, then
¢*minf < K*f|lag<¢"maxf. (29)

For n = 1 this follows from (27) and (22). For each iteration we obtain
another factor g.

§ 3. An integral equation

9. Orient x4 and o, so as to leave W, N W, to the left and right respectively.

In Won W, let o be the harmonic function with conjugate w* = s such
that w|x, = 0, o | o= const., [ds = 1. Choose branches of s with the
property that the curves “1

0ot 2 =1o(8), o :2=12(8) (30)

are traced as s goes from 0 to 1. Let d/0n denote the normal derivative on
%o and «, interior to W,n W,.

Designate by g(z, () the GrREEN’s function on W, with the singularity.
at {. Given harmonic functions f,,f; on «4,«, respectively, the L-operators
have the following integral representations:

Ifo | t(6) = § o (tor)) 2292500 4, (31)
L fy] toa) = § f(ty(0) 2220 0D g, (32

We introduce the kernel

K(x, ?/) =.’1‘ ag(tO(g,)n, tl (8)) aghk(tl(a'g?)za to(x)) d8 (33)

0

K foto() =of K(z,y) fo(t(») dy - (34)

10. Given a harmonic function ¢ on W, and an operator L,,, we wish to
construct on W a harmonic function p such that p — o = L,,(p — o) on Wj.

and have
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Here W could be an open RIEMANN surface R, punctured at a finite number
of points z;, and W, could consist of neighborhoods D, of the 2z, and a neigh-
borhood Dpg of the ideal boundary g of R,. The harmonic function ¢ in D,
may have an isolated singularity at z;, and on Dp it may be an arbitrarily
behaving function as one approaches f. Thus we are dealing with the problem
of constructing on R, a harmonic function with given singularities and a
prescribed behavior near the ideal boundary.

We may assume that o |«, = 0, for otherwise we can replace ¢ by
¢ — L;,o. It is necessary that the flux { do* vanish, for so do [dp* and

jd(Lhk(p —0))*. ! !

' Our problem will be solved if we can find p|«,, for then p| Wy, = Lp
and p| Wy =0+ L,;p. On &y we have, by L,, L = K,

p=oc+ Kp (35)
or, more precisely,

P (to(2)) = o (te(x)) + OJ K(z,y)p(t(y)) dy - (36)

Thus we are dealing with a FREDHOLM integral equation. It is known that its
solution is p = 2° K*o provided the series converges uniformly. In fact, the
K-operator can then be applied term by term and gives Kp = 27 K"o = p —o.

11. For the convergence proof we first observe that, by virtue of GREEN’s

formula, fuds=fuds (37)
%o %1
for any harmonic function on W, n W, with | du* = 0. The functions

o, Lfy, L,.f,, and Kf, qualify as u. *1
It is easy to see that [Efods =0 (38)
*1
for all ¢+ = 0. In fact, for 2 = 0 this is so by assumption. Suppose then (38)
holds for ¢ =m — 1. Then j' Km1gds = 0. Here the integrand can be

replaced by L acting on it, whence j' LK™ 1gds =0. The operator L,,

can now be applied to the integrand, and (38) follows for ¢ = m.

We conclude that Kie,7 =1, 2, ..., is not of constant sign on «,. Lemma
5 gives to p|axy =27 K"0 |, the upper bound max, o /(1 —¢q) and the
lower bound min, ¢/(1 —gq). By the maximum-minimur principle the same
bounds hold for p| W,, hence for p|«, and p — o |, and a fortiori for
p — o on all of W,.
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We have established the following result:

Theorem. The solution p,,|xy =2y K™ o of the FREDHOLM integral equa-
tion (36) gives a harmonic function p,, on W such that p —o = L,, 0 on

W, and

minmn o ” W < max, o (39)
1—q = Pax | Wo= 1—gq

minan o max, o

0 Spu—o| W s 1 — q (40)

12, For L, and L, the existence of principal functions p,, p, has been known
[10, 1]and has applications to conformal mapping, extremum problems, capacity
functions, classification theory, kernel functions, and value distribution theory
(see Bibliography). The relation to integral equations is new and so are the
bounds (39), (40). These bounds only depend on min, ¢ and max, o, not on ¢
otherwise. This makes it possible to give bounds simultaneously for uniformly
bounded families of functions . In essence, if o | x4 is O(1), then so are p| W,
and p — o, all uniformly. Such bounds are needed e.g. in general value
distribution theory [17, 18].

The construction of principal functions p,, can also be carried out in locally
Euclidian spaces. This leads to extremum, capacity, and classification problems
in higher dimensions [19].
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