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A generalization of the homology and homotopy suspension1)

By T. Ganea

Introduction

Let p: E-&gt; B be a fibre map with fibre F 2?~1(*)&gt; where * is the base-

point in J5, let E U CF resuit by erecting a cône over the subset F of E, and
let r : E U CF -&gt; B extend p by mapping CF to the base-point. We may
eonvert r into a homotopy équivalent fibre map, and our first resuit asserts that
the fibre of r has the homotopy type of the join F* QB. This yields a new
proof of a theorem of Serre and enables us to generalize most of the classical
results [25], [2] concerning the homology suspension; the latter occurs upon
taking for p the standard fibration of the space of paths in B. Dually [6], let
d : A -&gt; X be a cofibre (inclusion) map with cofibre B obtained by shrinking
the subset A of X to a point, let f : X-&gt; B be the identification map, let F be
the fibre of /, and let e : A-+ F lift d. In view of the above resuit, duality
suggests that the homotopy type of the cofibre Ce of e is determined by those of
B and EA. However, this turns out to be false and the main results of the third
and fourth section only yield a description of Ce in low dimensions ; specifically,
with Fd standing for the fibre of d, there are maps A # Fd-&gt; Ce -&gt; Q (ZA bB)
which are (m + n — 1 + Min (m, n)) -connected in case A is (n — 1)-
connected and (X, A) is m-connected. This enables us to generalize for arbi-
trary cofibrations the well known i?i/P-sequence of G. W. Whitehead [24]
which, in the classical case, arises upon taking for d the inclusion of A in the
cône C A. The first homomorphism in the generalized séquence is induced by e,
the second is related to a certain generalization of the Hopf invariant, and the
third is given by a generalized Whitehead product.

The présent generalizations can be used to study iterated fibrations or
cofibrations. Starting, e. g., with a certain cofibration A -&gt; X -&gt; B, we obtain a
second one A-&gt; F -&gt; Ce which, in turn, yields a third, and so on; at each

stage our results yield relations between a cofibration and the next. The last
section of the paper studies this process with A-+ CA-&gt; ZA as original
cofibration. There results a séquence of spaces and maps

which is functorial in A and in which Fx is équivalent to QZ. The séquence is
used to solve some problems concerning the dual of Lusternik-Schnirelmann

l) This work was partially supported by NSF G-16305.



296 T. Ganba

category, and spaces of finite cocategory appear as generalizations of //-spaces
in a way similar to that in which nilpotent groups generalize the Abelian ones.

The above séquence gives rise to a spectral séquence, and many of the results
in [26] and fil] can be dualized; in particular, the Hopf invariant of a cofibra-
tion described in § 4 readily yields the géométrie interprétation of the first
differential, as does the Hopf construction of a fibration in 1.4 for the dual
case. However, we hâve not yet obtained ail the relevant results (e. g. the dual
of Lemma 2.2 in [11]), and omit détails hère.

Thanks are due to M. G. Barratt, I. Berstein and P. J. Hilton for their
interest and stimulating discussions.

1. Extending flbrations

Ail spaces in tins paper are provided with a base-point generally denoted by
*, and ail maps and homotopies are assumed to préserve base-points. A triple
F X-E i&gt; B is a fibration if p has the covering homotopy property for any
space and F p~x (* ; i is the inclusion map. Any map / can be converted into
a homotopy équivalent fibre map p yielding the diagram

» i pQY—? F —» E -^ Y
in which

E {(x, V)*X x 7^ | /(x) ,(l)}f p(x, n) i?(0),

J p^f*) cIxPF,i inclusion map,

3 (co) &lt;*&gt;), /(«, ij) x, h(x) (a;, r?J.

(2)

PY is the space of paths in Y emanating from *, QY is the loop space,
rjx(8) f(x) for ail 8*1, and A is a homotopy équivalence satisfying poh /
and hoj^±i. The triple QY-&gt;F-&gt;X is the fibration induced by / from
QY-+PY-+Y. We shall call F the fibre of / and sometimes dénote it by Ff,
noting that no real ambiguity occurs since the map /~1(*) -&gt;F defined by h

is a homotopy équivalence in case / is already a fibre map. Next, we may
embed Y in the space Y \JfCX obtained by attaching to Y the non-reduced

cône over X by means of /. The subscript / will frequently be omitted; the

points of CX are denoted by sx, the base-point is 1*, and X is embedded in
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CX by x -&gt;- 1 x. The reduced cône C0X may equally well be used, yielding the
cofibre Cf of /. The identification map a : Y U GX -&gt; i7X shrinks the subset

FLI/* (resp. Y if we use the reduced cône) to the base-point and yields the
reduced suspension of X, with points denoted by {s, x}. The join X* Y is
taken as a quotient space of X x / X Y ; its points are denoted by (1 —s)x-\- sy
and the base-point is |* + |*.

Theorem 1.1. Let SF\ F^E^B be a fbration in which B has the homotopy

type of aC W-complex. Let r : E \J CF-+ B extend p by mapping CF toihe
base-point and let Fr be the fibre of r. Then, there exista a weak homotopy
équivalence w: F*QB-+Fr.

Proof. Since r \ E p and r(CF) *, by (2) one has

Fr {(a, p)€E x PB | p(a) p(l)} U (CF x QB).

We shall define w as the composite of three maps of which the first results by
halving the join, the second is given by an extension CQB -&gt; PB of the identity
map of QB, and the third is suggested by the translation of fibres along paths in
the base. Let A : {(a, P)eE X B1 \ p(a) 0(O)}-&gt; j^ be a lifting map for
SF\ X assigns to any path fi in B and any acE lying over /?(0) a path in E over
j8 starting at a [8], For any path £, let |s and — £ be given by |g(£) £(s t)
and — $(t) |(1 — f). Let w be the composite

x Ci2JS UCfx £J3^JF xPBUCF x

in which the last three spaces are subspaces of CF x CQB, CF X PB,
and (E U CF) X PB respectively, and

wx((l —s)x + sa)) (Min (1, 2 —2s)x, Min (2s, l)eo),

(«a;, a&gt;t) for (1 —«)(1 — t) 0,

Since its composite with the identification map F x I X QB-+ F*QB is
continuous, so is w. Similarly, w1 is continuous; it is also bijective and the
composite of its inverse w^1 with any map of a compact Hausdorff space is
continuous. This is enough for wx to be a weak homotopy équivalence. Next,
since B has the homotopy type of a C TF-complex the domain and range of the
map s : (CQB, QB)-&gt;(PB, QB), given by e(tco) œt, hâve the homotopy
type of C If-pairs [16]; this, the free contractibility of CQB and PB, and the
relation e(co) co, readily imply that e is a homotopy équivalence of pairs.
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Therefore, w2 is a homotopy équivalence. In order to discuss wz, recall [8] that
there is a homotopy Ht: ET^&gt; E1 with

#oM A(«(0), pool), Hx 1, poHt[&lt;x\ poa, (3)

and define functions

F xPBUCF x QBÎlF xPBUCF x
7

Vi (sx, fi)

y, («a, /S) - (*fff[- A(a, -0)](1), fi).

Then y0 t&gt;oti&gt;3, ç&gt;j 1, yo== ti?3ot;, y^ 1. However, wz,v,(pt,yt may
fail to be continuous; nevertheless, by standard results on identification spaces,
their composites with maps of compact Haxjsdorff spaces are continuous.
Therefore, wz induces isomorphisms of homotopy groups and w is, as asserted,
a weak homotopy équivalence.

Remark 1.2. We shall dénote by j the composite of w with the projection
Fr-&gt;E U CF&apos;. Without altering the homotopy class of j we may replace
X(x, co28)(l) by X(x, (o)(2s), and obtain

f X(x, to)(2s) if 0 &lt; 2s &lt; 1,
s)x + sco)= {

\ (2 — 2s)X{x9 û))(1) if 1 &lt; 25 &lt; 2.

To interpret this resuit, notice that the homotopy h8: F x QB -&gt; E given by
h8(x, co) X(x, o))(s) connects iopr with ioq, where pr:FxQB-&gt;F
is the projection whereas the map q: F x QB-+F, given by q(x, co)

X(x, eo)(l), expresses the opération of QB on F associated with the
fibration JT&apos;p]. Next, let e : E U CF-&gt; E U C0F shrink the segment /* to a

point, and let j0 eoj, r0 ro g-1. We may obviously regard the triple

E U CFl&gt;B (4)

as a fibration, and the same remark applies to the triple

X U CqFXB (5)

provided also F and J5 hâve the homotopy type of CW-complexes in which

case e is a homotopy équivalence. We shall, however, continue to write j and r
even when using the reduced cône CoF. The above results are closely connected

with [5].
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The définition of j is valid even if B fails to hâve the homotopy type of a
C PF-complex, and j satisfies a naturality law expressed by

Proposition 1.3. Suppose the rows in the commutative diagram on the left

F—&gt;E—&gt;B F*QB -^ EUCF
\f \g \h J/*û*., \gUCf

F&apos;—? E&apos;—? B&apos; F&apos; * QB&apos;
—^-&gt;

E1 U CFf

are fibrations. Then, wiih j and j1 given by 1.2, the diagram on the right homotopy-
commutes; in particular, the homotopy class of j is unaffected by the choice of a
lifting map,

The proof uses homotopies satisfying (3); we omit the détails.
The natural map F : F*QB -&gt; E(F X QB) shrinks to a point the two ends

of the join and the segment through the base-point. The Hopf construction
corresponding to the opération q: F x QB-* F yields the composite EqoV.
Define —\:EX-&gt;EX by —1 &lt;«, x} &lt;1—s, x} and —a (—l)oor.
Then:

Theorem 1.4. Homotopy-commutativity holds in the diagram

F*QB &gt;E\JCF

• a
V Eq *

F*QB—&gt; E(FxQB)—^ EF

Proof. The resuit follows easily from 1.2 noting that

a(E)= *9o(sx) &lt;s,x&gt;, F((l — s)x + sa&gt;) (s,(x,co)}.

Let d\QB-&gt;F be given by d(œ) g(*, — o&gt;), and let S.F-+QEF
be the natural embedding defined by S(x)(s) (s, x}.

Proposition 1.5. There is a map F such that the diagram

rQ(E\jGF)&lt;—QB
\Qo \d

QEF &lt;— F

homotopy-commutes and QroFc^.1; in particular, if B has the homotopy type
of a CW-complex, there is a weak homotopy équivalence Q(F* QB) x QB-+

U GF) and the homotopy séquence of F* QBÙE U CFUB splits.
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(1-35)*
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Ganea

,—o&gt;)(1)

— 3s)

if
if
if

0

1

2

&lt;3s

&lt;3«

&lt;3s

&lt;1,

&lt;2,

&lt;3,

is easily seen to behave as asserted. We note that, by (3), its homotopy class is
unaffected by the choice of a lifting map.

The main purpose of the next resuit is to introduce some maps needed later;
rj and rjk are the obvious inclusions whereas cr, cr&apos;, and ak are the obvious
identification maps (Je 0, 1, 2).

Proposition 1.6, There are maps y&gt;, tpf, and a homotopy équivalence £ yielding
homotopy-commutativity in the diagram behw, where r&apos; extends r in the obvious way.

ri a SiE ^ E\JCQF &gt; ZF ZE

y,
Z(F*QB)

\ I1
(JEVCQF)\JfC0(F*QB)— ?&quot; B —^ C9 ^* ZE

I-

-1
I&quot;

X.
Z(EUC0F) &gt;Z(El)C0F)—?

Prooî. Let y) &lt;5, x} (1 —s)i(x) so that a0oy) —Si. A homotopy ht

Connecting rj0or with ^o cr is easily found, and £ is defined in terms of a, rj0, ht

as in [19; 2.2], It is a homotopy équivalence since, upon replacing B by the

mapping cylinder B1 of r, £ is converted into the natural homeomorphism
B&apos;jE U CQF-&gt; {B&apos;fE) I (E U C0F/E)9 where XjA is the space obtained by
shrinking to a point the subset A ofX. The map yj

&apos;

corresponds to (5) in the way
y) corresponds to SF\ since roj is only null-homotopic, one has

| co(2*Min(25, 1)) if 0&lt;2t&lt;l9
yf &lt;*, (1 —8)x + so)&gt; { (6)

\(2 — 2t)j((l—s)x + 8œ)if l&lt;2t&lt;2.

2. Homology properties of extended flbrations

Throughout the paper we use reduced singular homology groups over the

integers, and omit the tilde to simplify notations. We first show that a well
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known resuit of Serbe [21] readily foliows from 1.1 and the relative Hurewicz
theorem in the form given by J. H. C. Whitehead.

Proposition 2.1. Let J7~: F^E^B bea fibration. If B is (m — l)-connected
and F is (n — l)-connected, then p% : Hq(E, F)-&gt; Hq(B) is monomorphic for
q &lt; m + n and epimorphic for q &lt; m + n(m &gt; 1, n &gt; 0).

Proof. Suppose first that B has the homotopy type of a C PF-complex. The
connectivity assumptions imply that F*QB is (m + n — l)-connected, and
the homotopy séquence of the fibration (4) reveals that the map r is (m -f- n)-
connected. To obtain the resuit, we apply to r the Hurewicz-Whitehead
theorem (E U CF is certainly 0-eonnected and n1 0 is not needed to pass
from homotopy to homology) and then identify Hg(E U CF) with Hq(E, F).
If B fails to hâve the homotopy type of a C TF-complex, we replace the original
fibration by the one it induces on the singular polytope of B.

The next resuit yields a useful exact séquence and gives information on the
Hopf construction EqoV associated with J7~. We use the notation of 1.6.
Assuming F, E, B to hâve the homotopy type of C TF-complexes, passing to
homology in 1.6, and using 2.1, we see that

y&gt; is homology (m + 7&amp;)-connected, (7)

y)f is homology (2m + n)-connected. (8)

We identify Hq{EX) with Hq_1(X) in a natural way, write H ZqoV and
Z fo^; : Z(F*QB) -&gt; Cy,, and prove

Theorem 2.2. Under the assumptions of 2.1 and if F ,E, B hâve the homotopy
type of C W-complexes, the diagramH^C^ H Q

l
IN-.1(F*QB)-I:2 Hx-^ZF) -^ HN^(Cv) -*-

in which N 2 m + w araï î7 is ^e transgression, commutes and has exact rows.

Proof. Exactness of the top row follows from 1.1 and 2.1 upon replacing
Hq((E U C0F) \JiC0(F*QB)) by Hq(B) for q &lt; N in the homology séquence
of the cofibration F * QB -&gt; E U Co F -&gt; {E U CoJ) U, O0 i^* flJS). Thus, T
coïncides with ^o(r^)-1 followed by the identification Hq(S{F*QB))-&gt;
Hg-i(F*QB). Commutativity in the third and second square follows from
1.6, whereas in the first it follows from 1.4. To prove exactness in the bottom
row, introduce the diagram
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H,(F*QB)

in which the bottom row is the homology séquence of the cofibration
EF-+ Cv-&gt; Cv and ê is the identification. By 1.6 one has a2 ° Z~Ea o — 1 o Ej ;

on a double suspension one has —\C^lE(—1) so that Eao(—1)
(— I)o27(r~27(— a) and, by 1.4, we obtain o2oZ~EH. The naturality
of# implies #o (EH)^ C&amp;-1 H^ and, as is well known, &amp;o a2* d. Exactness
in the bottom row of 2.2 now foliows easily from that of the bottom row in the
preceding diagram.

Let now X and Y be arbitrary spaces. We shall need the séquence

x # F (9)

where X V Y is the subspace (X x *) U (* X Y) of X X Y, J is the inclusion

map, X ^ Y results from J x F by shrinking X V Y to a point, and
Q is the identification map. X b Y is the fibre of J; by (2), it may readily be

identified with PX xQYUQX xPY and, then, L{S, rj) (|(1), rj(l)).
The map W is given by

— (£ Min (1,2-2*)»

and arguments similar to those referring to wx and w2 in the proof of 1.1

reveal that W is a weak homotopy équivalence if X and Y hâve the homotopy
type of C TF-complexes.

In the next resuit C, stands for E U CoF, A is the diagonal map, and

v (t, (1 —s) x -f- scoy (Jt, xy 4r co(s).

Theorem 2.3. Let F-^E-^B be a fibration and suppose F, E, B hâve the

homotopy type of CW-complexes. Then, homotopy-commutativity holds in the

diagram
j r r\x w1

F*QB—? C{ —? B -^ Cr &lt;-z— E(F*QB)

Jr*l Jr
Ci BxB &amp; v

&apos;[w

CvbB

QCP*QB
\

BxB

J ^° Q

where ip&apos; is adjoint torp, x expresses the coopération of UF on Ct-, and # is induced

by the second square. Furthermore, yi&apos;*l is (m -\- n — 1 + Min (m, w))-



A generalization of the homology and homotopy suspension 303

connected and ê, xp1, xp # 1, v are N-connectée if B is (m — \)-connected and F
is (n — l)-connected (N 2m + n,m&gt;l,n&gt;l).

Proof. The map r is given [7] by

«2a, x&gt;, *) if 0 &lt;2« &lt; 1,
r(a) (*,a) and r(sx) I

(*,(2« — l)x) if 1 &lt; 25 &lt; 2,

xp
• stands for the composite F-+QSF -+QCP, and it is easily seen that

iï(b) rjo(b) #b,ê(ta) Max(0, 2t — l)a # p(a), &amp;(tsx) *.

Homotopy-commutativity is easily checked in the first three squares.
Letting v&apos; &lt;t, (1 —s)x + sco} Min (1,2— 2t)i(x) # co(s) yields a map
vf:Z(F*QB)-*C9#B which, by 1.6 and (6), is easily seen to satisfy
v1 ~ (xp # 1 o v and v&apos; ~ &amp; o xp

&apos;. The connectivities of xp
&apos; * 1, xp 4^ 1, and xp

&apos;

are easily computed using (7) and (8), and noting that their domains and
ranges are 1-eonnected. Expressing v as the composite

Y1/ JP-x- f} ï?\ ^ Y1/ W Z/i -H- C\ T)\\ ^ W ZT* 44- V/~) ï?\ ^ V/ JP 44- Z?\ ^ Y1 JP 44- DZ (jF * Un) —&gt; Z (Z (-T ii1 U±&gt;)) -&gt; Z (jp ir Zi^i)) —&gt; 2/ (JP iT1 i&gt;) —&gt;Z,Jf ir x&gt;,

we easily find its connectivity which, by commutativity in the last square,
yields that of &amp;.

Remark 2.4. Consider the fibration QB-&gt; PJS-&gt; B and the diagram

QB*QB—!-+ PB\JCÛB-^-&gt; B

—aoj t s
QB*QB &gt; ZQB &gt; B

where B &lt;s, w} co(s). The right square homotopy-commutes and, if 1? has
the homotopy type of a OTF-complex, a and rj0 are homotopy équivalences.
Therefore, by 1.2, the bottom row is équivalent to a fibration, a resuit first
proved in [2]. The map q is now given by loop multiplication and Cv has the
homotopy type of B ; 2.2 yields the exact séquence associated with the homo-
logy suspension, and 1.4 and 2.3 yield the classical interprétation [25], [2] of
the homomorphisms in the séquence.

Remark 2.5. The connectivity of a join is given in [15; Lemma 2.3]; an
inductive form of the proof, involving (9) but bypassing the Kxtnneth formula,
is also available, Similarly, the connectivity of a join or reduced product of
maps can be computed by means of the Ktjnneth formula or analysing the
cofibres as in [19; Satz 21].
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3. Lifting eofibrations

Let A-+X-+B be a cofibration, i. e. a triple in which A is a subspace of
X, B results from X by shrinking A to a point, and the pair (X, A) has the
homotopy extension property; d is the inclusion and / the identification map.
Introduce the diagram

p i d Qp
B E

i

F &lt; QB &lt;-±- QE

A &lt;^- Fd ?JL QX

(10)

in which the first square on the left and the top row resuit by converting / as

in (1) into a homotopy équivalent fibre map. The fibration F\eJ+B will
be denoted by SF. Since d is an inclusion, its fibre Fd can be identified to
{£cPX | |(l)€-4} and the projection eQ is given by eo{£) £(1); also,
dQ(a)) m. We define e(a) (d(a), *) and ç&gt;(|) /of, denoting loop
multiplication and inversion by + &amp;nd —. The diagram is essentially dual to
the upper part of that in 1.6 and e lifts d to F.

Lemma 3.1. The third square in (10) homotopy-commutes and the other squares
commute. If A is (n — l)-connected and (X, A) is m-connected (m &gt; 1, n &gt; 2),
then e and q&gt; are (m -\- n — l)-connected provided A, X, B hâve the homotopy

type of C W-complexes.

Prooî. The first part is easily checked; the second foliows by the 5 lemma
from the Blakers-Massey theorem [4 ; Th. II] (which can be derived from
2.1 as in [17]) recalling that h is a homotopy équivalence.

We seek a suitable approximation to the fibre F e and to the cofibre Ce

F U C0A of e. In the diagram below, ex is the projection, k the inclusion,
and V the folding map.

Theorem 3.2. Let AXx^B be a eofibration in which A, X, B hâve the

homotopy type of CW-complexes. Introduce the diagram

k e st
Ce &lt; F &lt;— A «-i- Fe

i FxQB A\J A (H)

AbFd
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where g expresses the opération of QB on F associated with J7*. Then, the middle

square homotopy-commutes and there resuit maps fx and v yielding homotopy-
commutativity in the other squares. Furthermore, if A is (n — l)-connected
(n &gt; 2) and (X, A) is m-connected, then fi, is (N — l)-connected for m &gt; 1

and v is {N — 2)-connected for m &gt; 2, where N m -j- n + Min (m, n).

Proof. We may assume (cf. [7; Prop. 3.10] whose conventions differ
slightly from ours) that q((x, /S), co) (x, — œ + jî), where we first traverse
— co and then /?. Therefore, and by the first part of 3.1, the middle square
homotopy-commutes; sélect a definite homotopy ht : A V Fd-+ F Connecting
eo V o (1 V £o) to oo(ex &lt;p)oj. By means of ht we may construct as in [19;
2.2] a map fi

&apos; such that the diagram
k

Ce&lt; F

commutes. Since A and, as follows from [16], also Fd hâve the homotopy type
of C TF-complexes, the identification map Q2 is a homotopy équivalence [19;
Satz 16] with a map Qf as homotopy inverse. We define ju, fi

&apos;

o Qf and obtain
homotopy-commutativity in the left square of (11) since Q Q2°Q\. Using ht
again, a map v yielding commutativity in the right square of 11) is easily found.

In order to compute the connectivities, notice first that :

B is m-connected, Fd is (m — l)-connected, F is (n — l)-connected. (12)

Next, introduce the diagram

c i jpnrjpJU rVy
&lt; Mi \J Oui&apos; r~ ^ X&gt;

A*Fd —&gt;¦ F*QB

Z(AxFd)

zn ^-: — -^ zf ^- za

!&apos;¦

1- a

in which ; and r are given by 1.2, y \ X h and y \ C0A Coe, f extends
/ by mapping C0A to the base-point, a and o&quot; shrink E and X to a point, F and
V are natural maps as in 1.4, g is the inclusion map, and l is the composite

{E U C0F) U C0(X U C0A)-+ZF U CQSA-&gt;E{F U C0A)
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in which the first map is induced by — a and Co(— a&quot;) whereas the second
results upon identifying C0ZA with ZC0A in the obvious way. It follows from
3.1 and (12) that

e * &lt;p is i^-connected. (14)

Also, by 2.2 and (12), the top séquence in the diagram

i. r T
^Hq(F*QB)-^ Hq(E U C0F) —^&gt; Hq(B) —? Hq^(F*QB)-^...

...^ H,(CY) ^-Hq(E[)C0F)^HQ(XUC0A)*— Hq+1(CY) +-...

is defined and exact for q &lt; 2 m -\- n -\- \. One has roy f and f^ is,

obviously, isomorphic in ail dimensions. Therefore, y^ is monomorphic and r*
is epimorphic for ail q &gt; 0. By exactness, it follows that g^ is always epi-
morphie whereas j^ is monomorphic for q &lt; 2 m + n, and routine arguments
now reveal that

goj is (2m + n + l)-connected. (15)

Also, h being a homotopy équivalence readily implies that

l^ is isomorphic in ail dimensions. (16)

Since log Zko(—or), by 1.4, by the naturality of V and V, and by
homotopy-commutativity in the left square of (11), one has

logojo(e*cp) c^LZpoZQoV1.

Since ZQoV is well known to be a weak homotopy équivalence, by (14),

(15) and (16) we see that Z\i is iV-connected and the connectivity of jlc follows

upon noticing that A # Fd and Ce are 1-connected.

Finally, the connectivity of v follows from that of jli noting that the map

A\/ Fd-&gt; A is ra-eonnected and applying the &quot;relative J. H. C. Whitehead
theorem&quot; given in [17; Th. 1.8 (I)]. The assumption m &gt; 2 is needed in order

that Fd be 1-connected, as required in [17; Th. 1.8]. Thus, 3.2 is completely
proved.

We close this section by describing the behaviour of e : A -&gt; F under
suspension.

Proposition 3,3. There exista a homotopy équivalence oc such that the composite
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where ipis as in l.Q,is homotopic to the identity; in particular, there is a homotopy
équivalence ZF-&gt; ZC e V ZA and, if A, X, B hâve the homotopy type of C W-

complexes, the homology séquence of A-+F -+C e splits.

Prooï. By [19; Satz 2] the map /&apos; in (13) has a homotopy inverse /&quot; and the
left square in the diagram

E —*

* d1

X —«¦X\JC0A-^

c
f.

ZA

where r)0 and d&apos; are inclusions and h&apos; is the projection, homotopy-commutes.
There results a map a yielding commutativity in the right square. Since h! and
f&quot; are homotopy équivalences so is oc [19; Hilfssatz 7], and 3.3 is easily checked

using explicit expressions for the maps involved.

Remark 3.4. For the cofibration A -&gt;C0A -&gt;ZA, the projection
£0 : Fd-&gt; A and the inclusion d : QB-&gt; F in (10) are homotopy équivalences.
Using e0 and do(— 1) as identifications, e and &lt;p are converted into the natural
embedding S : A-&gt; QZA, and, in (11), go(e x (p) into Mo (S X S), where
M is the loop multiplication.

Remark 3.5. Theorem 1.1 does not dualize: the homotopy type of the
cofibre Ce is not determined by those of B and EA. Thus, as pointed out by
M. G. Barratt, if A 8*&gt; V S* V S&amp;+Q and Af S? x S*, where Sn is
the n-sphere, then ZA and ZA &apos; hâve the same homotopy type whereas, if p
and q are even, the cofibres QZA/A and QZA1 \A&apos; hâve non-isomorphic
intégral cohomology rings.

4. The Hopf invariant oî a cofibration

The purpose of this section is to provide an alternative approximation to the
cofibre Ce. We maintain the notations of the previous section.

For arbitrary spaces X and Y, consider the composite

M : û(X xY)-&gt;QXx DY^^i Q(X V Y) x Q(X V Y)-&gt; Q(X V Y)

in which the first map is the obvious homeomorphism, the last is given by loop
multiplication, and i : X-&gt; X V Y, j : 7-&gt; X V Y are the inclusions. With
the notations introduced in (9), it is well known that, in the séquence
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QL QJ d

Q(X bY)T=± Q(X VY)^=± Q(X xY) —&gt; X b F,
T M

one has QJoM ~ 1 so that d ~ 0, and the properties of fibrations yield a
unique homotopy class of maps T such that

QLoT + MoQJ~ 1, ToQLc^Ll, To (1 — M oQJ) ~ T. (17)

We also need the map

0:Xb 7-&gt;û(Z# Y) givenby 0(f ,ij)(0 f W # fl(0-

Let now C: A-+X-+B be a cofibration and let LA cooperate on B
through %\ B-+ZA \/B [7], We define the &quot;délicate&quot; and &quot;crude Hopf
invariant of (?&quot; as the composites

Jf^ qb ^A Q(SA \JB) -?L Q(SA b B),
JF Q0jf : qb —&gt; Q(EA b B) —&gt; Q*(ZA # B).

This is obviously consistent with previous generalizations of the Hopf invariant
[12; § 3], and the map JZbelow is related to the relative Hopf invariant
introdueed in [23]. Define

G: A # Fé-+Q*(ZA # B) by G(a # ««(«) &lt;1 -t, a} # /of («).

Theorem 4.1. Let G: aXxI+B be a cofibration in which A, X, B hâve the

homotopy type of countable CW-complexes. Then, there exista a map JTyielding
homotopy-commutativity in the diagram

^ Ce — F#d e

[g [^ U
+ Q0 * S» \Q0 S»

Q*(ZA #J5) &lt;— Q(EA b B) &lt; QB

Furthermore, STis (m-\- n — 1 + Mm (m, n))-connectée if A is (n — l)-connected
and {X, A) is m-connected (m &gt; 1, n &gt; 2).

Proof. There is [7; p. 11] a homotopy h8 : X-&gt; ZA V B with

M*) (*&gt;/(*))&gt; *i X°f&gt; h8od(a) (&lt;«,a&gt;, *).

We also need the maps

a: BXZA\I BVXZA and êiX ^
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and recall [7; Th. 3.1&apos;] that there is a homotopy

&amp;8: B-&gt; B satisfying #0 ê, êx 1.

To define J7~, introduce the diagram

e k
A — F — C6

\D \jrM * T
Q{ZAxB)—&gt;Q(SAyB)—&gt;Û(ZA b B)

in which l(a)(s) «1 —s, a},*) and

Xop(3s) if 0 &lt; 35 &lt; 1,

D{x,p){s) Mf(s) if 1 &lt;3«&lt;2,

3s)) if 2&lt;3s&lt;3.

The left square is obviously homotopy-eommutative, by (17) one has To M~ 0,
and there résulta a map J7~yielding homotopy-commutativity in the right
square. By (17), the map

9 D —MoQJoD\F^Q(EA\/B)
satisfies 9 (1 — MoQJ)oD ~ QLoToD ~ ÛLo JTo jfc, so that

To&lt;2&gt;~^ok (18)

and also 9* ~ Io J7&quot;* o 2*4, where 9* and JT- are adjoint to 9 and J71 Passing
to loop spaces and then composing with T, we obtain

ToQQ^QSr-oQZk. (19)

To prove homotopy-commutativity in the left square of 4.1, define a map
H:E(A xFd)-+ZAbB by

&gt;,#o/ofow) if 1 &lt; 55 &lt;4, 1 &lt;2t &lt;2,

{jov9êofoi;ow) otherwise,

where the real funetions m v, w are given by

u u(«, Q 2 — 2f + (2* — 1) Max (2 — 55, 0, 55 — 3),

v v(s,t) Max(l — 2t, 0) + Min (2t, 1) Max (1 —55, 0, 5s —4),
w w(5,J) Max(l—2«,0) + Min(2«,l)Max(l—55,0,Min(55 —2,1)).

21 CMH vol. 39
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The définition of H is suggested by a null-homotopy of JoQ- in ZA x B
and, when dealing with H, we shall tacitly use the fact that (tf(6),#(6))
X(b)eZA V B for any beB. As is easily seen, LoH is homotopic to the
composite

S(A x Fd)
Z(&lt;ex&lt;p) Z(FxQB)

so that, passing to loop spaces, composing with T, and then applying (19), we
obtain

Therefore, inspection of (13) reveals that QHc^iQZ, where

Z : E(A X Fd) ^£ Z(A # #d) -^t TC, -^ 27^èJ5.

Define &amp;u:A*Fd-+ Q{ZA # B) by

f &lt;ro/of(l — 2t) ##o/of(l — 2^ + 2«5^) if 0&lt;2^&lt;l,

l&lt;2 —2t,a&gt;#01_llo/oÉ(*) if 1&lt;2^&lt;2,

where ^ (1 — *)a + $|. Then, it is easily seen that 0X and &amp;0 are respec-
tively homotopic to the composites

A*FêJ^ Z(AxFd) JL ZAbB -^
and

V ZQ G-
A*Fd—k Z(AxFd) —t r(^#F)

where O% is adjoint to G and F&apos; is the natural map. Passing to loop spaces and

replacing, as we may, QH by QZ we obtain

Since A, X, B hâve the homotopy type of countable GTF-complexes, ZQoV
is a homotopy équivalence so that the left square homotopy-commutes in the

diagram

Q*(ZA # B) &lt; QZ{A # Fd) * A # F4

fit I

\

qst- * s
Û(EAbB) &lt; QZCe &lt; 0,
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To obtain homotopy-commutativity in the left square of 4.1, it only remains
to notice that, with 8 standing for the natural embedding, the right square
also homotopy-commutes whereas G QG&apos;oS and ST=- QS7&quot;*o8.

To prove homotopy-commutativity in the right square of 4.1, notice that

I((Toco(2s),
*) if 0 &lt; 2s &lt; 1,

(*,&amp;oa&gt;(2s — 1)) if l&lt;2s&lt;2,

whereas,since d(co) (*,(o),QJoDod ishomotopicto the map i2jB-&gt;.Q (27.4 xB)
given by a&gt;-&gt; (aoa),*). This readily implies (1—MoQJ)oQ%c^L&amp;od
which, by (17), (18) and the définition of Jfy yields the desired resuit.

Finally, G may be expressed as the composite

A # Fd-&gt; Q*Z*(A # Fd)-&gt;Q*(ZA%ZFd) Q^l)^r\ Q*{ZA # B)

in which &lt;p
* is adjoint to &lt;p, and it is easily seen that G is (m-{-n-\- Min (m, n —1 -

connected. Also, by 3.1 applied to the cofibration SA V B-&gt;ZA xB-&gt; ZA # JB,

it follows that 0 is (m -f- n + 1 + Min (m, n))-connected. By commutativity
in the left square of 4.1, the connectivity of JTnow follows from that of [à as

given in 3.2.

Remark 4.2. It is well known that Q(ZA b B) is homotopically équivalent

to the &quot;cojoin&quot; of ZA and B, i. e. the space P(ZA V B; ZA, B) of ail
paths in ZA V B which start in ZA and end in J3. In this sensé, the right
square in 4.1 can be regarded as dual to the diagram obtained upon replacing
F*QBby the actual fibre Fr of r in the top row of 1.4 ; the left vertical in 1.4
should then be replaced by the weak homotopy équivalence w of 1.1 which
appears as dual to the (m + n — 1 + Min (m, n))-connected map JTof 4.1.
This duality becomes actually more striking if the results of 4.1 are expressed in
terms of the cojoin. For traditional reasons however, we prefer to use Q (ZA b B)
and the présent generalization of the Hopf invariant.

For the final resuit of this section, we need a third map closely related to JF.
Let J7^ resuit as in (5) from the fibration J7~ obtained in (10) by converting /
into a fibre map. Introduce the composite

where y and f are defined in (13) and in the proof of 3.3. One has

roy&apos; f&apos;ofî±l and Qr&lt;&gt;r~ 1, (20)

where F is defined in 1.5. Therefore, if B has the homotopy type of a G W-
complex, 1.2 yields a map
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J¥&quot;:QB-+Q(F*QB) such that Qyf —T}~Qjo3Fn&apos;; (21)

by 1.3 and the remark concluding the proof of 1.5, the homotopy class »

is uniquely determined. We now write W — ocoyj and T &lt;xorj0, where oc is

given by 3.3, then pass to loop spaces in 2.3, and obtain the diagram

Qj ®r
Q(F*QB) -+ îiCi &lt;

_&gt; QB

1) lûT /\Qâ
Q(QEA*QB) QiZFMCi) Qx/O(BxB)

\ûW Q{Ze\fyr)\\Q(W\/r)/ 1^(^X1)
QL 1+ /QJ

Q{EAbB) +=± Q{EA\JB) &lt;

» Q(EAxB)
T M

where W* is adjoint to W and Ct E U Oo^7.

Proposition4.3. U7idertheassumpti(msof3.2,oneha^J¥&apos;c^.QWoQ(W&apos;* Y)o3f&quot;

and QWoQ(W&apos;*l) is (m + n + Min(m,n — l))-connected.

Proof. Commutativity in the right square in the proof of 3.3 yields
T a&quot; o f so that, by well known properties of coopération,

JoX~(T x l)oA.

Commutativity in the second square of (10) and the naturality of
(27e v y&apos;)°x — r°yl so that&gt; by 3-3 and (2°)&gt;

Pinally, using 1.5 and the définition of tp given in 1.6, it is easy to see that

MoQ(Tx l)oQâ~Q{Wyr

By (17) and (21), the three preceding relations yield

and the first resuit follows from the définition oi3£&gt; homotopy-commutativity
in the left square of 2.3 and hence of the preceding diagram, and (17). The

connectivity follows from 2.3.
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5. The generalized EHP séquence

Recall first that the generalized Whitehead product of two maps / : EX-&gt;Z

and g : E Y -&gt; Z is a map [/, g] such that the composite

E(X x Y) -^&gt; E(X # Y) -^ Z

represents the commutator (/&apos; -f- g&apos;) + (—/&apos; —g&apos;) of

/&apos; : E(X x Y) -^V EX -^&gt; Z and p&apos; : E(X x 7) -^ EY -^ Z

in the group n(E(X x Y), Z). As in [3; 6.9], the construction of [f,g] is
valid if X and Y hâve non-degenerate base-points and then, by [19; Folgerung,
p. 333], the homotopy class of [/, g] is uniquely determined by those of / and g.
Define R:EQZ-&gt;Z by R {s, co&gt; a&gt;(*), and let f:X-&gt;Z, g : Y-&gt; Z
be arbitrary maps.

Lemma 5.1. // X and F Aave the homotopy type of countable C W-complexes,
there existe a homotopy équivalence # yielding homotopy-commutativity in the

diagram
V /Vg L

Z &lt;— Z\l Z &lt;— XV Y &lt;— XbY
u

[RoEQf,RoZQg1 I

Z *

Proof, Since QX and Q Y also hâve the homotopy type of countable C W-
complexes [16], the weak homotopy équivalence

EQ o V : QX * Q Y -&gt; E(QX xQY)-&gt; E(QX # Q Y)

has a homotopy inverse A. Define &amp; WoA, where the homotopy
équivalence W : QX *QY-&gt;X b Y is as in (9). One has

Ao— V°(fVg)°LoW and hx [RoEQf, RoEQg]oEQoV,

provided the values of ht((1 — s)Ç + syj) on the quarters of 0 &lt; s &lt; 1 are

/of(1 ~t + ést)9 gorj(és - 1), /of(3 -es), 00,(1 — « + (4-4^)0.
The resuit now follows easily.

With the notation of 3.2, let Fk be the fibre of Je, let e&apos; lift e to Fk, and let e0
be as in (10). Define

d&apos;(a)) (*,o&gt;) and i»&lt;«,*# «&gt;(*) =*(1 — «) # &lt;5(1 — *)•
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Theorem 5,2. Let G: A^X-^B be a cofibration in which A, X, B
hâve the homotopy type of countable CW-complexes. Then, homotopy-commutativity
holds in the diagram

[R.RZDbo]
A &lt; — E(QA^QFd)

Furthermore, e&apos; is (m-\- 2n — 2)-connected and t% is (m -f- n — 2 + Min (m, n))-
connectée if Ais(n — l)-connected and (X, A) is m-connected (m &gt; 1, n &gt; 2).

Proof. With the notation of 3.2 one has

e^vC^L V°(l V e0)oL. (22)

Replacing in (10) the original cofibration by A-&gt; F-+Ce and then by
A\/ Fd-+A x Fd-&gt;A# Fd, we obtain maps

e and 0f:AbFd-+Q(A # Fd)

which, by naturality and commutativity in 3.2, satisfy

Qfio0r~&lt;p&apos;ov. (23)

As in 3.1, one has 3&apos;o (— q&gt;f) ~ e&apos;oe1 so that, by (23) and (22),

3&apos;o^c (— 0&apos;) ~ e&apos;o V o (1Ve0) oL : A b Fd-+Fk. (24)

The map 0f is given by 0&apos;(oc, è)(t) &lt;x(t) # à(t) and, letting

^((1 — s) oc + sô)(t) (x((t + u — tu)Mia (l9 2 — 2s)) # ô(tMin(2s, 1)),

we obtain Ho 0foW and H1!^lU in the diagram
W

QA * ÛFd A b Fd

where W is as in (9) and U((l — a)» + sô)(t) &lt;x(l — s) # ô(t). Thus

defined, U coincides with the composite
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Z(QAxQF)iZ(QA#QF)Q(A#F)QA*QFd

and, by the définitions of A and # in the proof of 5.1, we obtain

91 ~ (— 17) o A ~ (— 0&apos;) o W o A — 0f) o 0.

Therefore, by (24) and 5.1, we hâve

(—&lt;p&apos;)o0~e&apos;oVo(l V e0) oio^e&apos;o [JR,

Finally, the connectivity of e&apos; follows from 3.1 and that of S7S is easily com-
puted.

We conclude this section with a resuit which is, to a certain extent, dual to
2.2. Introduce the diagram

a
F &lt; QB

î .-&apos;î

A -* Fd

A sA sA (25)

Fk + A «i-5- Ft

Q*{ZA b B)

ûd
QF &lt; QF &lt; Q*B

in which dly 32, s2 hâve obvious meanings whereas ail other maps, except £,
hâve been defined in connection with (10), 3.2, 4.1, 5.2; f is induced by the
top square and, since h in (10) is a homotopy équivalence, an argument dual
to that in 1.6 reveals that £ is, in turn, a homotopy équivalence. The diagram
homotopy-commutes. By 4.1 and then by 3.1 applied with A-&gt;F-&gt;C6 as
original cofibration, it follows that

Z=zQJ7&apos;o(—&lt;p&apos;)oÇ is (m + n — 2+ Min (m,n))-connected

if A is (n — l)-connected and (X, A) is w-connected. We identify tzq(QY)
with nq+1 (Y) in a natural way, dénote by E, L and P the homomorphisms
induced by e and by the top rows in 4.1 and 5.2 respectively, and prove
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Theorem 5.3. Let A-+X-+B be a cofibration in which A, X, B hâve the

homotopy type of countable C W-complexes. If A is (n — l)-connected and (X, A)
is m-conneeted (m &gt; 1, n &gt; 2), then the diagram

where N m + n + Min (m, n), commutes and has exact rows.

and
Prooî. According to 4.1 we may replace G~* ° (^^)^ by f*~l° -

The top séquence results upon using the maps e&apos; and /u of 5.2
3.2 in order to replace nq(Fk) and nq(Ce) for q &lt; N — 2 by nq(A) and
7iq(A # Fd) in the homotopy séquence of the fibration Fk-&gt; F~&gt; Ce. Com-

mutativity in the first square (from the right) follows from 3.1 and in the second
from 4.1; to prove it in the third, it suffices to notice that, in (25), one has

e/o£0oe2~9/o(—ç?&apos;)of. To prove exactness in the bottom row, introduce the
diagram

where the bottom row is the homotopy séquence of the fibration F^^ -&gt; Fd -&gt;

QB and &amp; is the identification. Inspection of (25) reveals that Z o 92 ^
QSToQko(~l)oQd so that, by 4.1, Zod2~— Q3F. The naturality of
#implies ê~xo (QJPj^o^ J2&gt; and, as is well known, 92*°$&quot;A- Exactness
in the bottom row of 5.3 now follows from that of the bottom row in the pre-
ceding diagram noting that ^oZ^ is isomorphic for q &lt; N — 3.

Remark 5.4. For the cofibration A-+ CQA~&gt; EA one has m n and

N 3n if A is (n — l)-conneeted (n &gt; 2). As noticed in 3.4, e can be identi-
fied to the natural embedding A -&gt; QSA whereas 9 and e0 are homotopy
équivalences. Hence, replacing Fd by A and e0 by the identity map, and writing
H for the composite

E

9*1,

H

we obtain the exact séquence

P
# A)—&gt;7i
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where, according to 5.2, P coïncides with [R, R]* o ÏTi^o # ; as before, # is the
identification nq_¥1(Y)-&gt;nq(Q Y). This is, essentially, the well known EHP-
sequence of G. W. Whitehead [24] in the slightly more gênerai form given by
Barcus [1]. Obviously, it could be rewritten for generalized homotopy groups.

6. Nilpotency and cocategory

Let A be any space. Define a séquence of cofibrations

ek:A-^Fk^Bk (k&gt;0)

as follows. (?0 is the standard cofibration A -&gt; C0A -&gt; EA. Assuming Qk to be

defined, let Fk+X be the fibre of fk and let ek+1 : A -&gt; Fk+1 lift ek as in (10).
Define Fk+1 as the reduced mapping cylinder of ek+1, let ek+1 be the obvious
inclusion map, and let Bk+1 and fk+1 resuit by shrinking the subset A of
Fk+1 to a point. We also need the fibre Dk of efc, with projection ek : Dk -&gt; A.
The results of the preceding sections refer to Fk+1 and ek+1 ; obviously, they
apply equally well to Fk+1 and ek+1, and will be used when passing from

Définition 6.1. The cocategory of A, cocat A, is the least integer k &gt; 0 for which
there is a map r : Fk -&gt; A such that r o ek c^L 1 ; if no such integer exists,
cocat A oo.

Remark 6.2. Interpreting Fk as a functor and ek as a natural transformation,

we see that the above définitions yield a lefb structure in the sensé of
[18] on the category of based topological spaces. A previous définition [9;
2.1] of the dual of Lusternik-Schnirelmann category may be restated as
follows : cocat A ~ 0 if and only if A is contractible, and cocat A &lt; k + 1

if and only if there exists a fibration F -&gt; E -&gt; B such that F dominâtes A
and cocat E &lt; k. Its équivalence with 6.1 is easily proved using the next
resuit, in which cocategory is as in 6.1.

Lemma 6.3. If isa fibration, then cocat F &lt; cocat E + 1.

Proof. Suppose cocat E k and introduce the diagram
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in which j is the projection and r is given by 6.1. The pair (Fk (E), E) has the
homotopy extension property so we may assume that roefc= 1. Henee, by
the naturality of ekt por oFk(i) oek * and there results g satisfying
poroFk(i) gofk. Therefore, por°Fk(i)oj ~ 0 and there results s&apos; with
ios&apos;c^LroFk(i)oj sothat,since ?°e*+i efc, iosfoek+1c?±i. Let q: Fx QB-+F
express the opération associated with the given fibration. By [7; Th. 4.2] there
is a map u: F-&gt;QB such that

Qo((s&apos;oeUi)Xu)oA~l;F-+F9 (26)

where A • F-&gt; F x F is the diagonal map. It follows from 3.3 that there is a

map v : Ffk+X(F) -&gt; QB with vo e&apos;k+1 ~ u. Define

^&gt; ^+i(^) X FUi(F)^ FxQB-^ #

Then, by (26), one has s o ek+1 ~ 1, i. e. cocat F &lt; k + 1.

Next, let q&gt;:QA$rQA--&gt;QA dénote the adjoint to the Wbitehead
product [J?, R] defined in § 5. Let

&lt;pQ 1 and &lt;pk+1 : (QAf+* ^%? QA # QA -^ QA,

where X^h) is the i-fold reduced product inductively defined by X(1) X and
X(*+!) X # X(*\ Define nilJ[ as the least integer k &gt; 0 such that ç&gt;fc ~ 0 ;

if no such integer exists, nil A cx&gt;. The construction of ç? is valid if A, hence

QA, has a non-degenerate base-point and the preceding définition is then
équivalent to that introduced in [3]. As a motivation, recall [3; § 2] that

nil A sup nil tc(EX, A) sup nil n(X, QA),

where nil 0 dénotes the nilpotency class of the abstract group G, and X ranges
over ail based topological spaces.

Lemma 6.4, If A is a countable CW-complex, then for every k &gt; 0 there

is a map Xk such that q?k is homotopic to the composite

If A is (n — \)-connected (n &gt; 2), then Xk is (k + 2)(n — \)-connected.
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Proof. We may obviously assume that Do A and e0 1, so that 6.4
holds true for k 0 with Ao 1. Suppose 6.4 is true for some k &gt; 0 and
introduce the diagram

Ov,.« Qê 8
bDk)&lt; QZ{QA^QDk)&lt; QA

8&apos;

where / û(Vo(l V ek) oi), gr QZ{1 #Qek), and A=l#,Q€fc; /S and
S&apos; are the natural embeddings, vk+1 is given by 3.2 and &amp; by 5.1. The left
triangle homotopy-commutes by 3.2. Next, by 5.1 and the naturality of the
generalized Whitehbad product, one has

Vo(l V O°i°*- [^» Ro£Qek] [R,R]oZ(l #Qek).

Commutativity in the second square is obvious. Finally, homotopy-eommu-
tativity in the right triangle is granted by the induction hypothesis. Obviously,
Q [R, U] o Sf &lt;p, and the first resuit foliows upon defining

XM QvMoQ&amp; o S o (1 # Xk).

Next, it is easily seen that

Dk is (k + 1)(^ — l)-connected.

Also, by 3.2, vk+1 is ((k + 3)(n — 1) + l)-connected, and the connectivity of
Afc+1 follows easily from that of Xk recalling that # is a homotopy équivalence.

Prom 6.4 and 6.1 it is easy to dérive the following two known results [9;
Th. 2.12], [10; Th. 1.4]:

Proposition 6.5. nil A &lt; cocat A.

Proposition 6.6. cocat A &lt;k if A is an (n — l)-connected CW-comptez
such that nq{A) 0 for q &gt; (k + l){n — 1), (n &gt; 2, k &gt; 0).

Let TF-long A dénote the least integer k &gt; 0 for which any (k + l)-fold
Whitehead product [oclf..., [&lt;xfc,^fc+1]...], with ^€^.(^1), q{ &gt; 1, van-
ishes. We prove

*
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Theorem 6.7. Let A be an (n — \)-connected countable C W-complex (n &gt; 1)

and let k&gt;0. If nq(A) 0 for q &gt; (k + l)(n — 1) + n9 then cocat A &lt; k

if and only if nil A &lt; k. If nq(A) 0 for q &gt; (k + l)(n — 1) + l, then
cocat A &lt; k if and only if TF-long A &lt; k.

Proof. If n 1, we hâve [9; Th. 2.15], without assuming countability,
nil nx{A) nil A cocat A. Let n &gt; 2. Let R : EQDk -&gt; Dk satisfy
R &lt;s, co} co (s). If &lt;pfc ~ 0, then, by 6.4 and the naturality ofR, ek oR oE lk^L 0.
Hence, there is a map s : H-^A such that so^^l, where rj : A~&gt;H is the
inclusion map and H A U C0E(QA)(k+1) results upon attaching the cône
by means of ekoRoEXk. The map 0 1 U C0(RoEXk) : H-&gt; A U C0Dfc,
where C0Dk is attached by means of efc, and the extension r : A U C0Dk -&gt; .Ffc

of ek, given by 1.1, obviously satisfy ro0orj ek. It follows from 1.1 and
6.4 that the composite ro0 is ((k -\- 2)(n — 1) + 2)-connected and an
obstruction argument yields a map t : Fk -&gt; A satisfying t o r o 0^ s. Hence,

*oefc~l and the first resuit is proved. Next, (DA){k+1) is ((k + l)(n — 1) —1)-
connected and its (k + 1)(^ — l)-dimensional homotopy group can be

identified to the (k + l)-fold tensor product in the left bottom corner of the

diagram w
7ln(A) ®

The top row is given by the (k + l)-fold Whitehead product, 0 is the homo-

morphism induced by &lt;pk, and the verticals are given by a natural isomorphism
7tq+1(A)-&gt; 7tq(QA). It follows from a resuit by Samelson [20] that the
diagram commutes up to a sign, so that 0 0 if W 0. Since nq(QA) 0

for q &gt; (k -\~ l)(n — 1), an obstruction argument now implies cpk ^ 0 and
the second resuit follows from the first.

Remark 6.8. It follows from [14] that cocat A &lt; 1 if and only if A is an

H-space, and 6.5, 6.6, 6.7 generalize well known results on 17-spaees; the
first part of 6.7 generalizes a theorem by Sugawara [22], and the second

dualizes an unpublished resuit by I. Berstein on Lusternik-Schnirelmann
category.

As a final resuit, we express n1(Fk(A)) in terms of n1(A). Recall that the
lower central séries of a group n consists of the commutator subgroups n{n) of

n, given by rc(0) n and n{n+1) [n, n{n)\.
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Theorem 6.9. Let A be a connected C W-complex with fundamental group n.
Then, for every k &gt; 0, ek : A -&gt; Fk(A) induces an epimorphism of fundamental
groupe under which 7t1(Fk(A)) is isomorphic to 7iJ7t{k).

Prooî. Suppose first that m n 1 in 3.1. Then, Fd is 0-connected, 2.1
implies that A U CFd -&gt; X is homology 2-eonneeted, and a 5 lemma argument
reveals that the same holds for £Fd-&gt; B. Since EFd and B are 1-connected,
applying the Hurewicz-Whitehead theorem and then passing to loop spaces
we see that QEFd-&gt;QB is 1-connected. Since Fd-&gt;QZFd is 1-connected,
it foliows that &lt;p is 1-connected, and a 5 lemma argument reveals that also e

is 1-connected. An obvious induction argument now reveals that ek is 1-connected

for ail k &gt; 0. Obviously, cocat Fk (A) &lt; k so that, by 6.5, nil 7t1(Fk (A))&lt;k\
therefore, the kernel E of the epimorphism induced by ek contains n{k). To

prove the converse, let F be a connected aspherical C TF-complex with
fundamental group nln{k), and let g : A -&gt; Y induce the canonical homomorphism
7t-^njn{k). One has nil Ti/n^) &lt; k so that, by [9; Th. 2.15], cocat Y &lt; k
and there results a map r: Fk(Y) -&gt; Y such that r o ek{Y) 1, hence

r o Fk(g) o ek g. This obviously implies E c n{k), and 6.9 is proved. The
crux of the matter is Lemma 5.4 in [13] which implies 2.15 in [9].

University of Washington
Seattle, Washington
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