On Finitely Generated Fuchsian Groups.

Autor(en): Marden, Albert
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 42 (1967)

PDF erstellt am:
17.07.2024

Persistenter Link: https://doi.org/10.5169/seals-32132

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

On Finitely Generated Fuchsian Groups ${ }^{1}$)

by Albert Marden

We will prove the following two theorems.
Theorem 1. Let G be a finitely generated Fuchsian group in the unit disk 4 . Then a) $\Omega=\Delta / G$ is a Riemann surface of finite topological type, and b) Δ is ramified over at most a finite number of points $\left\{p_{i}\right\}$ of Ω. Conversely, if G satisfies a) and b), then G is finitely generated.

Theorem 2. G is finitely generated if and only if every fundamental region P has a finite number of sides.

Definition. A fundamental region P for G is a connected open set in Δ which satisfies the following conditions.

1. Every point in Δ is equivalent under G to a point in $\bar{P}(=$ relative closure in $\Delta)$.
2. No two points in P are equivalent.
3. Each component of the relative boundary of P in Δ is an open Jordan arc or a Jordan curve and is the union of possibly infinitely many closed Jordan arcs, called sides (two sides can intersect only at a common end point).
4. The sides of P are arranged in pairs $\left(s_{i}, s_{i}^{\prime}\right)$ where $(i) S_{i}\left(s_{i}^{\prime}\right)=s_{i}$ for some $S_{i} \in G$, (ii) $S_{i} \neq S_{j}^{ \pm 1}$ for each $j \neq i$ with at most a finite number of exceptions, (iii) each side of P appears once and only once in the set $\left\{s_{i}, s_{j}^{\prime}\right\}$.

Theorem 1 is well known and is fundamental in the theory of Fuchsian groups. By the use of variational methods it has been proven by Ahlfors [1] (in a more general form), Bers [2], and Earle [3]. From a more general point of view it is a consequence of a theorem of Selberg [8]. Theorem 2 is also known provided P satisfies the additional hypotheses that (a) its sides are non-Euclidean line segments, and (b) only a finite number of images of P under G meet any given compact set in Δ. In this form, a proof has recently been given by L. Greenberg [5]. M. Heins' proof [6] requires that P also be convex (in this paper Heins also proves Theorem 1). The first proof of Theorem 1 and of Theorem 2 in the case of Poincaré normal polygons was given by Fenchel and Nielsen [4].

The purpose of this paper is to give direct, elementary proofs of Theorems 1 and 2 which are much shorter than those referred to above, and in the case of Theorem 2, more general as well. In fact our definition of fundamental region is, in a sense, the weakest one for which Theorem 2 is true: If P does not satisfy the principal condition 4

[^0](ii) then Theorem 2 is false in general. Our proofs are purely topological in character and make use of some elementary properties of surfaces of finite topological type. We will show that Theorem 1 b is a simple consequence of the fact that a cycle in the exterior of a region which is homologous to a cycle in the interior is homologous to a cycle on the boundary. And Theorem 2 is a consequence of the fact that if there are infinitely many mutually disjoint simple closed curves not ~ 1 on a surface of finite type, then two of them bound an annular region.

Proof of a). Suppose A_{1}, \ldots, A_{m} generate G and let π denote the projection $\Delta \rightarrow \Omega$. Assuming 0 is not a fixed point of G, denote by [$0, A_{i}(0)$] the non-Euclidean line segment from 0 to $A_{i}(0)$ (actually any arc will do) and set $\alpha_{i}=\pi\left(\left[0, A_{i}(0)\right]\right), 1 \leq i \leq m$. We claim that the curves $\left\{\alpha_{i}\right\}$ generate the fundamental group of Ω with origin at $\pi(0)$ and consequently that Ω is of finite topological type.

If τ is a closed curve in Ω with initial point $\pi(0)$ there is a lift τ^{*} of τ in Δ with initial point 0 and end point $\tau^{*}(1)$. We may write $\tau^{*}(1)=B_{m} B_{m-1} \ldots B_{1}(0)$ where each B_{j} is some $A_{i}^{ \pm 1}$. Consider the $\operatorname{arc} \tau^{*}$ in Δ from 0 to $\tau^{*}(1)$ obtained by joining the non-Euclidean line segments $\left[0, B_{m}(0)\right],\left[B_{m}(0), B_{m} B_{m-1}(0)\right], \ldots,\left[B_{m} \ldots B_{2}(0)\right.$, $\left.B_{m} \ldots B_{1}(0)\right]$; each of these segments projects onto some curve $\alpha_{i}^{ \pm 1}$. Since τ^{*} is homotopic to $\tau^{\prime *}, \tau$ is homotopic to $\pi\left(\tau^{\prime *}\right)$, that is τ is homotopic to a product of the α_{i}.

Proof of b). Let Ω_{0} be a relatively compact subregion of Ω containing all the curves α_{i} such that each component of $\partial \Omega_{0}$ is a dividing cycle and no component of $\Omega-\Omega_{0}$ is compact. We claim that Δ is not ramified over $\Omega^{\prime}=\Omega-\bar{\Omega}_{0}$.

Assume to the contrary that Ω is ramified of order $t \geq 2$ over $p \in \Omega^{\prime}$. Let c_{p} be the oriented boundary of a disk about p in Ω^{\prime}, d_{p} a Jordan arc from $\pi(0)$ to c_{p}, and β the closed path from $\pi(0)$ along d_{p} to c_{p}, around c_{p} once, and back to $\pi(0)$ along d_{p}. We may assume that β does not pass through points over which Δ is ramified and intersects the curves α_{i} only a finite number of times.

Let β^{*} denote the lift of β from $0 ; \beta^{*}$ is a Jordan arc but not a closed curve in Δ. We have seen above that β^{*} is homotopic to an arc β^{*} such that $\beta^{\prime}=\pi\left(\beta^{\prime *}\right)$ is a product of curves α_{i}. Consider the closed curve $\gamma^{*}=\beta^{*} \beta^{*-1}$ and a relatively compact, simply connected region K containing γ^{*} with $\pi(\partial K) \cap c_{p}=\phi$ (the points $\pi^{-1}(p)$ are isolated in Δ). Remove from K the at most finite number of points which lie over p and denote the resulting region by K_{1}.

The collection of disjoint simple closed curves which comprise the components of $\pi^{-1}\left(c_{p}\right)$ in K_{1} form a homology basis for K_{1}. Hence γ^{*}, viewed as a singular cycle, is homologous to a linear combination of these curves. In $\Omega-\{p\}$ this implies that $\gamma=\pi\left(\gamma^{*}\right)=\beta^{\prime} \beta^{-1}$ is homologous to $n t c_{p}$ for some integer n, possibly zero. In other words the cycle $(n t+1) c_{p}$ in $\Omega-\Omega_{0}$, with $n t+1 \neq 0$ since $t \geq 2$, is homologous in $\Omega-\{p\}$ to the cycle β^{\prime} in Ω_{0}. Therefore $(n t+1) c_{p}$ must be homologous to a cycle in $\partial \Omega_{0}$ in contradiction to our choice of Ω_{0}.

The proof of the converse of Theorem 1 is standard and will be omitted.

Proof of Theorem 2. Let P be a fundamental region. Since G is generated by the transformations which pair the sides of P, the sufficiency is immediate.

Assume then that G is finitely generated but that P has an infinite number of sides. \bar{P} is not compact in Δ for otherwise there would exist a sequence of points $\left\{z_{j}\right\}$ on distinct sides s_{j} of P which have a limit $p \in \Delta$ such that the sequence of conjugate points $\left\{z_{j}^{\prime}\right\}$ on the conjugate sides s_{j}^{\prime} also has a limit $p^{\prime} \in \Delta$. If N is a neighborhood of p and N^{\prime} of p^{\prime} then for infinitely many distinct $S_{j} \in G, S_{j}\left(N^{\prime}\right) \cap N \neq \phi$, in violation of the discontinuity of G. In addition P is simply connected for otherwise there would be a relatively compact component of $\Delta-\bar{P}$ which would contain an image of P.

The hypotheses also imply that $S_{i}(P)$ is adjacent to P along s_{i}. Hence if $j \neq i, S_{j}(\bar{P})$ cannot intersect s_{i} at an interior point unless $S_{j}=S_{i}$.

In the remainder of the proof all arcs drawn in a region $\bar{R} \subset \bar{P}$ will be understood to be Jordan arcs which are contained in R except for their end points. In addition we can choose, and will only deal with, an infinite sequence of pairs $\left\{\left(s_{i}, s_{i}^{\prime}\right)\right\}$ such that $S_{i} \neq S_{j}^{ \pm 1}$ for all $j \neq i$.

Case 1. There exists an $\operatorname{arc} \tau$ in \bar{P} which divides P into two regions P_{1}, P_{2} with the following property. There exists an infinite number of points $\left\{z_{i}\right\}$ in \bar{P}_{1}, each z_{i} an interior point of a side of P, but no two points on the same side, such that the conjugate points $\left\{z_{i}^{\prime}\right\}$ are in \bar{P}_{2}.

Draw arcs γ_{1} in \bar{P}_{1} from z_{1} to z_{2} and γ_{1}^{\prime} in \bar{P}_{2} from z_{2}^{\prime} to $z_{1}^{\prime} \cdot \gamma_{1}$ divides P_{1} into two regions at least one of which, say P_{11}, contains infinitely many points z_{i} in its boundary, and γ_{1}^{\prime} divides P_{2} into two regions one of which, say P_{21}, contains infinitely many points conjugate to those z_{i} in \bar{P}_{11}. Eliminate all z_{i} which are not in P_{11} and which do not have their conjugates in P_{21}. Draw the arcs γ_{2} in \bar{P}_{11} from z_{3} to z_{4} and γ_{2}^{\prime} in \bar{P}_{21} from z_{4}^{\prime} to z_{3}^{\prime}, etc. Thus we can find two infinite sequences of mutually disjoint arcs $\left\{\gamma_{i}\right\}$ in \bar{P}_{1} and $\left\{\gamma_{i}^{\prime}\right\}$ in \bar{P}_{2} such that γ_{i} is an arc from $z_{2 i-1}$ to $z_{2 i}$ and γ_{i}^{\prime} an arc from $z_{2 i}^{\prime}$ to $z_{2 i-1}^{\prime}$.

In addition by a suitable choice of subsequence we may assume that either property A holds for all γ_{i}, γ_{j} or property A holds for no γ_{i}, γ_{j} in the infinite sequence $\left\{\gamma_{i}\right\}$:

Property A. γ_{i} separates γ_{j} from τ or γ_{j} separates γ_{i} from $\tau(i \neq j)$
To prove this apply the following procedure inductively. Assume that by relabeling, all the arcs $\gamma_{j}, 0<j \leq n$, have property A with respect to all the arcs in $\left\{\gamma_{i}\right\}$, $1 \leq i \leq \infty$, but none of the arcs $\delta_{j}, 0<j \leq m$, has property A with respect to any of the arcs in $\left\{\gamma_{i}, \delta_{k}\right\}, 1 \leq i<\infty, 0<k \leq m(m, n \geq 0)$. Consider γ_{n+1}. If infinitely many arcs in $\left\{\gamma_{i}\right\}$ have property A with respect to γ_{n+1} (the arcs $\gamma_{i}, 0<i \leq n$, do), eliminate those arcs in $\left\{\gamma_{i}\right\}$ which do not, relabel, and move on to γ_{n+2}. If this is not the case, eliminate the finite number of arcs in $\left\{\gamma_{i}\right\}$ which do have property A with respect to γ_{n+1}, set $\delta_{m+1}=\gamma_{n+1}$, relabel, and move on to the new γ_{1}.

Consider the sequence of mutually disjoint simple closed curves $\left\{\alpha_{i}=\pi\left(\gamma_{i} \cup \gamma_{i}^{\prime}\right)\right\}$ in Ω. No α_{i} can be homotopic to 1 in $\Omega-\left\{p_{i}\right\}$. For otherwise $\gamma_{i} \cup S_{2 i}\left(\gamma_{i}^{\prime}\right)$ is a simple
closed curve through $z_{2 i-1}$ and $z_{2 i}$ and hence $S_{2 i-1}=S_{2 i}$, which is impossible. Therefore since $\Omega-\left\{p_{i}\right\}$ has finite topological type, there exist three of the curves α_{i}, say $\alpha_{1}, \alpha_{2}, \alpha_{3}$, such that α_{1} and α_{2} bound an annular region K in $\Omega-\left\{p_{i}\right\}$ and α_{3} separates the contours of K. We can also choose K so that $\pi(\tau) \cap K=\phi$.

The arcs γ_{1}, γ_{2} divide P_{1} into three regions. If two of these regions lie over K then γ_{3} is contained in one of them, but not in the other, so that γ_{3} satisfies property A with only one of the arcs γ_{1}, γ_{2} in contradiction to our selection of $\left\{\gamma_{i}\right\}$. We conclude that γ_{1} and γ_{2} bound a region R in P_{1} which lies over K and contains γ_{3}.

In $P_{2}, \gamma_{1}^{\prime}$ and γ_{2}^{\prime} bound one or two regions which lie over K. One of these regions contains γ_{3}^{\prime} and therefore γ_{3}^{\prime} bounds a region R_{1}^{\prime} with, say, γ_{1}^{\prime} which lies over $K\left(\pi\left(R_{1}^{\prime}\right) \subset K\right)$. We can draw an $\operatorname{arc} \delta^{\prime}$ in R_{1}^{\prime} from z_{3}^{\prime} to one of $z_{1}^{\prime}, z_{2}^{\prime}$, say to z_{1}^{\prime}, such that δ^{\prime} does not separate γ_{1}^{\prime} from γ_{3}^{\prime} in R_{1}^{\prime}. In R draw an $\operatorname{arc} \delta$ from z_{1} to z_{3} which does not otherwise intersect γ_{3}.

In the annular region $K_{1} \subset K$ which is bounded by α_{1} and α_{3}, the simple closed curve $\beta=\pi\left(\delta \cup \delta^{\prime}\right)$ does not separate α_{1} and α_{3}. Hence β is homotopic to 1 in K_{1} which we have seen above, is impossible.

CASE 2. No such τ exists. In this case draw an $\operatorname{arc} \gamma_{1}$ from z_{1} to z_{1}^{\prime}. There exist infinitely many points $\left\{z_{i}\right\}$ such that γ_{1} does not separate z_{i} from z_{i}^{\prime} in P. Draw γ_{2} from z_{2} to z_{2}^{\prime} which is disjoint from γ_{1}. Again there are infinitely many points $\left\{z_{i}\right\}$ such that neither γ_{1} nor γ_{2} separates z_{i} from z_{i}^{\prime}. Thus we can find an infinite sequence of disjoint arcs $\left\{\gamma_{i}\right\}$ such that γ_{i} runs from z_{i} to z_{i}^{\prime}.

The simple closed curves $\alpha_{i}=\pi\left(\gamma_{i}\right)$ are mutually disjoint and hence, as above, there are three of them, say $\alpha_{1}, \alpha_{2}, \alpha_{3}$, such that α_{1} and α_{2} bound an annular region K in $\Omega-\left\{p_{i}\right\}$ and α_{3} separates the boundary components of $K . \gamma_{1}$ and γ_{2} divide P into three regions, one or two of which lie over K and of these, one contains γ_{3}. Hence one of the pairs $\left(\gamma_{1}, \gamma_{2}\right),\left(\gamma_{1}, \gamma_{3}\right),\left(\gamma_{2}, \gamma_{3}\right)$, say $\left(\gamma_{1}, \gamma_{2}\right)$, bounds a subregion R of P which lies over K. Interchange z_{2} and z_{2}^{\prime} if necessary so that α_{1} is homologous to α_{2}. Draw an $\operatorname{arc} \delta$ in \bar{R} from z_{1}^{\prime} to z_{2}^{\prime}; then α_{1} is homotopic to $\pi(\delta) \alpha_{2} \pi(\delta)^{-1}$. But then the arc $S_{2}\left(\delta^{-1}\right)$ in $\Delta-P$ from z_{2} must terminate at z_{1} which implies that $S_{2}=S_{1}$, a contradiction.

Remark. If P also satisfies hypothesis (b) a much simpler proof can be given. The sequence $\left\{z_{n}\right\}$ can be chosen so that $\left\{\pi\left(z_{n}\right)\right\}$ approaches an ideal boundary component I of Ω. By using the fact that if α is a simple closed curve surrounding I then $\pi^{-1}(\alpha)$ divides P into a finite number of components, the arcs $\gamma_{i}, \gamma_{i}^{\prime}$ of Cases 1 and 2 can be chosen directly so that the curves α_{i} approach I in such a way that α_{i} bounds an annular region A_{i} in $\Omega-\left\{p_{i}\right\}$ with α_{i+1} that doesn't contain α_{j} for $j>i+1$. It follows that the pairs $\left(\gamma_{i}, \gamma_{i+1}\right),\left(\gamma_{i}^{\prime}, \gamma_{i+1}^{\prime}\right)$ (just the former in Case 2) each bound a region in P which lies over A_{i}, since α_{i+2} cannot be connected to α_{i} without crossing α_{i+1}. The proof is now completed as above.

BIBLIOGRAPHY

[1] L. V. Ahlfors, Finitely generated Kleinian groups, Amer. J. Math. 86 (1964), 413-429.
[2] L. Bers, Automorphic forms and Poincaré series for infinitely generated Fuchsian groups, Amer. J. Math. 87 (1965), 196-214.
[3] C. Earle, Reduced Teichmüller spaces, Trans. Amer. Math. Soc., to appear.
[4] W. Fenchel and J. Nielsen, Discontinuous Groups of non-Euclidean Motions.
[5] L. Greenberg, Fundamental polygons for Fuchsian groups, to appear.
[6] M. Heins, Fundamental polygons of Fuchsian and Fuchsoid groups, Ann. Acad. Sci. Fenn. Ser. A, 337 (1964), 1-30. Bull. Amer. Math. Soc. 69 (1963), 747-751.
[7] J. Lehner, Discontinuous Groups and Automorphic Functions, Mathematical Surveys 8, Amer. Math. Soc., Providence (1964).
[8] A. Selberg, On discontinuous groups in higher dimensional symmetric spaces, Contributions to Function Theory, Bombay (1960), 147-164.

University of Minnesota
Received July 27, 1966

[^0]: ${ }^{1}$) Supported in part by the National Science Foundation under grants GP 2280 and GP 3904.

