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The Extremal Property of Certain Teichmiiller Mappings

by G. C. SETHARES

Introduction

Let ¢#0 be a regular single valued analytic function.defined on the unit disc
A={|z|]<1}. For each 0<k <1 it is well known that a quasiconformall) mapping f
of A onto itself exists which solves the Beltrami equation

py =k — (1)

except at the zeros of ¢. Here y, denotes the complex dilatation f;/ /, where f, and
[ are the complex derivatives

fz = %(fx"' ify)s f2= %(fx’}' ify)'

Such an f will be called a Teichmiiller mapping corresponding to ¢. It is immediate
that f has the constant dilatation K=(1+k)/(1—k). A quasiconformal mapping of
the unit disc onto itself is known to have continuous boundary values, hence we may
consider the class C (f) of all topological mappings of 4 onto itself that agree with
f on the boundary d4. In C(f) there is at least one function whose maximal dila-
tation is a minimum, for the set of all quasiconformal mappings of 4 onto itself with
maximal dilatation bounded above by K is a normal family whose limit functions
either belong to the same family or reduce to constants (AHLFORS [1]). Such a map-
ping is called extremal quasiconformal in the class C () or more simply extremal.
An extremal mapping will be called unique extremal if it is the only extremal mapping
in C (f). The purpose of this paper is to determine conditions on the regular function
¢ which guarantee that a corresponding Teichmiiller mapping is extremal or unique
extremal.

Much is already known concerning this problem. Indeed, the “Grotzsch extremal
problem” (GROTZSCH [2]), which eventually led to the development of the theory of
quasiconformal mappings, can be formulated in such a way as to show that if a

schlicht and single valued branch of [,/ ¢(z)dz can be chosen which maps 4 onto a
rectangle then any Teichmiiller mapping corresponding to ¢ is unique extremal. That
a Teichmiiller mapping need not be extremal is seen by the following simple example.

1) Quasiconformal is also to mean topological and sense preserving. Of course if f solves the
equation (1) it must necessarily be sense preserving since k < 1 implies that the Jacobian J (f) =
| £z|2 — | fz|2 is positive almost everywhere.
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Let @ map 4 conformally onto the upper half plane and let F(z)=Kx+iy, K>1.
It follows that f=® !, F. & is a Teichmiiller mapping corresponding to ¢ = &'2 which
is not extremal, for if G(z)=Kzthen g=®~!,G. P is conformal and agrees with f on
04. Finally, let us show that a Teichmiiller mapping may be extremal and yet not
unique extremal. K. STREBEL [3] has shown that the mapping F(z)=Kx+iy mini-
mizes the maximal dilatation in the class of all mappings of the region

R={Imz <0} U{|Rez| <1}

onto S=F(R) that agree with F on the boundary dR. If ® and ¥ are conformal
mappings of 4 onto R and S'respectively, then f=¥ ~!, F.® is a Teichmiiller mapping
corresponding to ¢ =®'? which is extremal. However, if

F(z) for Imz>0
Kz for Imz<0,

G(z)={

the mapping g=¥ ~'.G. P also has the maximal dilatation K and moreover g agrees
with f on 04.

The original reason for studying extremal problems of this nature was to determine
the “most nearly conformal”” mapping in a given class C which, according to the
most common criterion for ‘“most nearly conformal”, is a mapping in C whose
maximal dilatation is a minimum. Subsequent developments have given a new signifi-
cance to such extremal problems, the most pronounced being the role they play in
the study of the “space’ of closed Riemann surfaces. The first indication of this
application is to be found in the deep and surprising result of TEICHMULLER [4] which
can be stated as follows. In a given homotopy class of topological mappings R—S,
of two closed Riemann surfaces of genus g>1, there is a unique quasiconformal
mapping f whose maximal dilatation K is a minimum. Moreover, there exists an
analytic quadratic differential ¢ on R, unique up to a positive factor, such that if z
is the local uniformizing variable the equation (1) is satisfied with k=(K—1)/(K+1).
Making systematic use of this theorem AHLFORS and RAUCH [5, 6] have succeeded in
showing that the Teichmiiller space of closed Riemann surfaces of genus g> 1 permits
a complex analytic structure which, under certain simply stated analyticity require-
ments is unique.

In his earlier work [7] TEICHMULLER presents a formulation of the general extremal
problem. In addition to several general statements which together give a loose formu-
lation of the problem, he includes specific conjectures such as the aforementioned
theorem and also sets forth several possible theorems as suggestive of what might be
expected in the form of specific results. The problem of determining conditions on
@ in order that a corresponding Teichmiiller mapping f be extremal is thus seen to
be one possible interpretation of the following general problem stated by Teichmiiller.
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“Let a sufficiently regular topological mapping of the circumference |z|=1 onto
itself be given. It is desired to continue this to a quasiconformal topological mapping
of the circle |z| <1 onto itself in such a way that the maximum of the dilatation
quotient becomes as small as possible.”

Teichmiiller proceeds to suggest the problem of determining how regular the
boundary correspondence should be in order that it be continuable at all to a quasi-
conformal mapping and furthermore that it be continuable to an extremal mapping
which is, in the above sense, a Teichmiiller mapping. Of course explicit necessary and
sufficient conditions that the boundary correspondence be continuable to a quasi-
conformal mapping have since been given by BEURLING and AHLFORS [8], but the
second part of the problem is still an open question. Indeed, it is not even known
whether an arbitrary boundary correspondence of a quasiconformal mapping is
continuable to one with constant dilatation.

Concerning the problem of the present paper Teichmiiller asks whether the
condition (f,l¢|dxdy<oo is sufficient in order that a corresponding Teichmiiller
mapping be extremal. In 1962 K. STREBEL [3] succeeded in giving a partial answer
to this question as well as to the case where the integral is infinite. The specific
problem considered by Strebel is that of determining geometric properties of a surface
R lying ‘““above” the z-plane such that the horizontal stretching F of R, defined by
z—Kx+iy, is extremal in the class of all topological mappings R— F (R) which
agree with F on the boundary JR. In a later work [9] STREBEL succeeded in giving
an unconditional affirmative answer to Teichmiiller’s question. In all that follows
it will therefore be assumed that

ffl(pldxdy=oo.

4

Many of the techniques employed by Strebel in both of the aforementioned works
are used here. Especially, the entire technique of using horizontal paths, as set forth
in section 1.3, is due to Strebel. Certain essential preliminary considerations will be
presented in Section 1. In Section 2 a basic theorem which is central to all subsequent
considerations is stated and proved. Section 3 is concerned with the problem of
determining explicit conditions on ¢ which imply that a corresponding Teichmiiller
mapping is extremal. These take the form of growth conditions on ¢ and each such
result is shown to have a formulation in which the growth condition is required only
in a relative neighborhood of a single point on the boundary 04. The main result of
Section 4 is a uniqueness theorem for extremal Teichmiiller mappings. This theorem
is used to deduce a simple characterization of regular functions ¢, possessing at worst
poles on 04, with respect to the property that corresponding Teichmiiller mappings
are unique extremal.
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The author wishes to take this opportunity to express his sincere gratitude to
Professor L. V. AHLFORS who, during the course of this research, not only gave
generously of his time in discussing the work, but also made many important sug-
gestions that to a great extent made possible the results contained herein.

1. Preliminary Considerations
1.1. The local mapping

Let z, be a point of the unit disc 4 for which the regular function ¢ does not
vanish. Then choose a neighborhood U of z, so small that a single valued and schlicht

Z'=x"+iy’ and K>1, the composition F. ¢ satisfies up.o=k®/|@| in U with k=
(K—=1)/(K+1). Now two quasiconformal mappings of U, having the same complex
dilatation almost everywhere in U, differ by a conformal mapping of the image
domains (see e.g. LEHTO and VIRTANEN [10]). Hence, if f:4—-4'={|w|<1}isa
Teichmiiller mapping corresponding to ¢, with the same k, the mapping

Y=Fop,f ! (2)

is a conformal mapping of f(U) onto Fo @(U). If one continues @ along a path y in 4
that avoids the zeros of ¢, (2) yields a corresponding continuation of ¥ along f (7).
It follows that the relation ¥'- f,=F, - @' is valid for corresponding branches @ and V.

But then ¥’ is determined except for its sign since this is the case for (D'=\/ 5
Hence, Y = ¥'? in single valued and not zero in the disc 4’ punctured at the images,
under £, of the zeros of ¢. Furthermore, since f ~! is sense preserving and since F
is simply a horizontal stretching it follows easily from (2) that f maps the zeros of
¢ into zeros of Y of the same order. Direct calculation from (2) gives

v

pp-1=—k — (3)

4
except at the zeros of . We have shown that the inverse of a Teichmiiller mapping
is again a Teichmiiller mapping.

At points of A that are not zeros of ¢ we obtain the formulas

’ /!

P P
fz=%(K+1)q7;a fz=7(K“1)‘¥7,- 4)

The Jacobian of fis then J(f)=|f.|>~|f:|>*=K|o|/|¥] except at the zeros of ¢,
hence for a measurable subset G of 4 we obtain the relation

” ||/z|dudv=1<” lol dxdy. (5)

J(G) G
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1.2. The metric \/l(p(z)l |dz|

On A4 let us consider the metric defined by ds=\/ I:;(Ejl |dz|. It is well known

(AHLFORS [1]) that an arc on which ./ ¢(z)dz has a constant argument and which
does not turn back on itself should it contain a zero of ¢, represents the unique
shortest line between any two of its points. Such an arc on which ¢(z)dz*>>0 is
called a horizontal arc and one on which ¢ (z)dz* < 0 is called a vertical arc because

any branch of j'\/ ¢(z)dz maps horizontal arcs onto horizontal segments and
vertical arcs onto vertical segments. The distance between two points z, and z; of
A will be denoted by d,(z,, z;), the area of a subset G of 4 by |G|, and the length
of a path y by |y|,. Analogous statements and notations hold also for the metric

on 4’ defined by /|| |dw].
From the equations (4) it is seen that, avoiding the zeros of ¢, the Teichmiiller
mapping f has the infinitesimal representation

— 1 — —
Jydw = i“fk(\/"’ dz + k/@ dz) (6)

where the signs of the square roots are chosen appropriately. This representation
exhibits the geometrically obvious fact that f maps geodesic arcs, that is, arcs on

which ./ @(z)dz has a constant argument, into geodesic arcs and in particular hori-
zontal and vertical arcs into horizontal and vertical arcs respectively. Moreover, it
follows from (6) that for any path y in 4 the inequalities

¥l < 1f My < Kl (7

are valid with the lower bound for | f(y)|, being attained when y is a vertical arc
and the upper bound being attained when y is a horizontal arc.

1.3. Area integrals

In that which follows it will frequently be necessary to express a double integral
as an iterated integral whose paths of integration are subsets of horizontal and vertical
arcs. To this end let G be an open subset of 4 of finite p-area. For each ze G for which
¢ does not vanish denote by y, (respectively ,) the longest horizontal arc (respectively
vertical arc) in G, containing z and free of the zeros of ¢. From G choose a sequence
{z,} of non-critical points of ¢ which are everywhere dense in G and foreachn=1,2,...
set

G,= U 7.
2€Pz,
Now let C be a closed Jordan curve lying in G, and let z, be interior to C. A horizontal
arc y passing through z, and extended in both directions cannot intersect itself since
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this would contradict the uniqueness of a shortest line between any two of its points.
It follows that y must meet C in at least two distinct points z* and z". If z’ and z”
belong to the same horizontal y, in G, then z,€G,, for otherwise y+ y, would be a
self intersecting horizontal arc. But, if z’ and z” belong to different horizontals in G,
then y and B, would yield two shortest lines between a pair of points on g, which
is contradictory. It follows that G, is simply connected.

Since G, is simply connected and free of the zeros of ¢ a single valued branch
Z'=9(2) of [/ ¢(z)dz can be chosen in G,. If a#b are two points of G, lying on the
same horizontal in G, we have Re [®(b)— ®(a)]#0 since | \/ ¢(z)dz is real and not
zero. If a and b lie on different horizontals in G,, say aey, and bey;, we obtain

Im[®(b)—P(a)]=Im [%./¢(z)dz#0. Hence, & is also schlicht in G,. It follows that

|G,,|,,,=” dx' dy’ = f f dx' dy’ .

@ (Gn) ® (Bz,) P (vz)

But then, if dx; denotes the differential of arc length \/ l@(z)||dz| along p, and if dy,
has the same meaning along f, we obtain

Gl = | [ iy ®)

ﬂzn Yz

From the way in which the G, were constructed it is not difficult to see that
G —{zeros of ¢}=|JG,. Indeed, let z, be a point in G for which ¢(z,)#0 and choose

a neighborhood U of z, on which a single valued and schlicht branch @ of j'\/ a_z—)dz
can be defined. Next, let C be a circle lying in @(U) with its center at ®(z,) and choose
w interior to C such that ~'(w)=z; belongs to the dense sequence {z,}. It is now
immediate that z,eG;. The opposite inclusion is trivial. If for each n we set
E,=G,— U™ ' G; we obtain G — {zeros of ¢} as the disjoint union

G — {zeros of ¢} = |J E;.
1

Now zeG;N G, clearly implies that y,=G; G ;. This fact together with the relation
(8) allows us to write

IE,), = f 92l dys
Bn

where we have set f,=p, NnE,. Finally, setting =) {f,, we have

fflwldxdy=ffdx1dy1 9)

G B 7z
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as was desired. Since a Teichmiiller mapping f maps horizontals and verticals into arcs
of the same type we also have

Y| dudv = du, dv, (10)
JJmaae= | |

(@ S (B) S (v2)

where du, denotes the differential of arc length along f(y,) and dv, has the same

meaning along f(f).
From the preceding considerations we may write

vl = | 1421 J do”

o = zZ| = N

’ | dz’
Yz

®(v:)

dx'.

Integrating over ®(f;) and applying the Schwarz inequality we obtain

2 d¢—1
dy'] £
(J i ) H dz
@ (E;)

’
D (B;)

2
dx' dy' J] dx'dy < m|Ej,.

P (Ey)

It follows that |y,| < oo except possibly for a subset of B; of zero measure and hence
also except for a subset of f of zero measure. Thus, for almost all ze f one can speak
of the ends of y,. From the relation

Gl, = f p2lodyy < o0
p

it also follows that |y,|, < oo except for a subset of B of zero measure. Deleting from
p all z for which either |y,|= o0, |y,|,= 00, or y, has an endpoint at a zero of ¢, and
again calling the remaining set 8, the relations (9) and (10) continue to hold. In the
sequel this will always be assumed to have been done.

2. A Basic Theorem

The central theorem of this thesis, which exhibits sufficient conditions for a
Teichmiiller mapping to be extremal or unique extremal, is formulated and proved
in the present section. All results of the subsequent sections will be seen to depend
on it. We begin by fixing some notations that will allow for a compact and easily
applied statement of this theorem. First we remark that ¢ #0 again denotes a regular
single valued analytic function on 4 and ¢, f, ¥, k, ... are related as in the preceding
section.

Let {S,} be a sequence of open subsets of 4 such that, for each n, the boundary
0S, is a union of countably many smooth arcs. For each » define I', to be that part
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of 4ndS, remaining after all horizontal arcs are deleted. We further assume that S,
satisfies the following three conditions.

(1) ISyl <00, n=1,2,....
(i) |S,l,»>© as n—oo.
(iii) I, =|l,l, <0, n=1,2,....

Next, let 4 be a K-quasiconformal mapping of 4 onto itself that agrees with f on 0 4.
For each n let there exist numbers B, ,..., B, and a subdivision I',=I", +---4+T,_
(each I',, is again a union of countably many arcs) such that

dy(f(z), h(z))<B,, zel,, i=1,..,s. (11)

Now fix n and let  and {y,} be as in the equation (9) where S, plays the role of
the open set G. As a generic notation we take y,, = f(y,) and y,,=h(y,). The following
lemma will be essential for the proof of the main theorem.

LEMMA 1. For almost all zep, if y, has j; () of its endpoints in T, , i=1,..., s, then

[Ywly < 1ly + X Ji(2) By, (12)
i=1

Proof. If Y., j;(z)=2 the inequality follows from the relation (11) and the fact
that y,, represents the shortest line between its two endpoints. Now let z, be an end-
point of y, that does not belong to I',. Since we consider only horizontals whose
endpoints are not zeros of ¢ it follows from the way in which I', was defined that
zo€04. Furthermore, since the lemma requires the inequality (12) only for almost all
ze B, it may be assumed that z, is an interior point of 05, dA. If for each r>0 we

define C,={lw—f(zo)l=r} nf(S,)

it follows that C, connects y,, and y,, for all sufficiently small . An application of the
Schwarz inequality yields

IC,12 = (f\/lT/;Ird())2<rnf|¢|rd().
C- C.

Then, for r,>0 we have

ro

IClE
. r<n| |yl rdddr <=lf(S,), <.
0

0 C,

This shows that there exists a sequence r,,—0 for which |C,_|,—0. Hence, for arbitra-
rily small r there exist arbitrarily short arcs connecting y,, and y,,. This together with
the fact that y,, represents the shortest line between any two of its points implies that
the inequality (12) also holds for the cases ) ;_,j;(z)=0, 1.
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and i=1,2,...,s let T,=h(S,)—f(S,) and

THEOREM 1. For each n=1,2,...

lngzlrnil'z)
(1.a) If both Y I, B, and |T,| are o(|S,|) as n— oo then K<K.

(1.b) If both 3 I, B, and |T,| are o(1) as n—oo and if in addition K=K and

S,—A then f=h.
Proof.3) Successively applying (5), (10), and the remark immediately following

KA =15 )= ( | b dvl)z - ([ dyl)z.
B

£
For each i=1,..., 5 let j;(z) again denote the number of endpoints of y, lying in I',,.

Lemma 1 and the fact that § is a union of vertical arcs yield

flvwl dy, < f ly.l dy, +f Y ji(z) By, dy,
i=1
B B B

(7), we obtain

<f|v:v\dy1 +2 3 1,B,.
i=1
B

Hence, 2
KZIS,,12<< f mldyl) r L, (13)
B

where the following order relations for L, will follow as soon as the first term on the
right side of (13) is shown to be O(|S,|?) as n—o00:

L,=0(S,)* if Y 1,B, =o0(S,)
. (14)
L,=o(lS,) if Y I,B,=o0(l).
i=1
Avoiding the zeros ¢ we may consider the local mapping w=ho®~'(z’). Now

ldw| =

hzd/+hfd-r
o Ty

is well defined almost everywhere. But then, since A~ !(y,)=7, is a horizontal arc,

and since dz’'=dx’ along &(y,), we obtain
|

lywl = j Jl

D (7z)

hz+h,—,d ,
— + —|dx.
o 9

2) That is, |I's,| . In the sequel subscripts indicating distance, length, and area in the various

metrics will be dropped whenever the metric under consideration is clear from the context.
3) This proof is a direct generalization of Strebel’s proof for the case |4|o << . Indeed, taking

S» = 4 for every n, the proof reduces to that given by Strebel.
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It follows that

lewl dy, ='[ z‘ dx,dy, = J

Squaring and applymg the Schwarz inequality we obtain

<!|)’:«'d}’1) J\J (‘h |© — |h; i )W’l dxdy Jf |h"|'2""Th*l*2“|<P’ dxdy. (15)

With k=(K—1)/(K+1) and noting that | u,| <k we may write

I
1+ ‘(plﬂh 21+l + 2Re[|@uh
K

p 2
o 1 _ Lo d g ~2<k R[le ":D
1 — |yl 1 — |l 1 -k ¢

Hence, the second integral on the right side of (15) has the upper estimate

K|S, - H (15 —Re (%u;.)) lpldxdy. (16)

n

lo W dxdy

The first integral on the right side of (15) is just |A(S,)| which obviously satisfies
|h(S,)|<K]S,|+]|T,|. This remark, together with the bound (16), and the fact that
k>Re((l¢!/@)us), shows that

( [ dyl)z _0(IS,2), n— .
B

It follows that the relations (14) are valid. Combining results we obtain

K*|S,I* < (KISl + lTnl)(flsnI —-” (k Re(‘zl )) lpl dx dy) + L,

Sh

<KKI|S,)* +K|S,||IT,| + L, (17

The first part of the theorem follows by dividing (17) by |S,|* and letting n— oo.
Now assume that the hypotheses of (1.b) are satisfied. An obvious manipulation of
the first inequality in (17) gives

lol L,
o[ < i,

Sn

The right side of this relation is o(l1) as n—oo. Since S,—4 it follows that
k—Re((l¢!/@)us) vanishes almost everywhere in 4. From this we obtain
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Uy =k l—(’i—‘, almost everywhere.
¢
We have shown that fand 4 satisfy the same Beltrami equation. It follows that they
differ at most by a conformal mapping of 4’ onto itself. This must be the identity
mapping because of the agreement of £ and 4 on d4.4)

3. Extremal Teichmiiller Mappings

In this chapter the extremal property of Teichmiiller mappings f for which the
corresponding regular functions ¢ satisfy certain growth conditions will be exhibited.
In each case it will be seen that the growth condition is required only in a relative
neighborhood of a point of 4. For convenience the boundary point will always be
taken as z=1. To facilitate the discussion we define, for each ¢>0, the set

N,={zed:|z - 1] <p}.

Again, let & denote a K-quasiconformal mapping of 4 onto itself that agrees with
f on d4. In order that Theorem 1 be applicable it will be necessary to estimate
d(f(z), h(z)). This can frequently be accomplished with the use of a distortion
theorem due to TEICHMULLER [11], which for our purposes we state as follows. Given
K, >1 there exists a number 0<g(K;)<1 with the property that every K,-quasi-
conformal mapping of 4 onto itself that fixes each point of 4 moves the origin by
a distance at most equal to ¢(K,). First, consider a regular function ¢ which, for some
0> 0, satisfies the inequality

lo(2) < 1/(1 —|zI*)?, zeN,. (18)

Next, choose 0 <, <g so small that for all zeN,,, N, contains the non-euclidean line
segment joining z and f ~'ch(z). Now, the non-euclidean distance D between two
points z, and z, in 4 is defined by D(z;, z,)=inf |, (|dz|/1 —|z|*), where the infimum

is taken over all paths y, lying in 4, and joining z, and z,. Hence, it follows from (18)
d(z, f 'oh(2)) < D(z, f'oh(z)), for zeN,,.

Since non-euclidean distance is invariant under Mobius transformations of 4 onto
itself, and since f~'oh is K K-quasiconformal, the Teichmiiller distortion theorem
stated above shows that D (z,f 'oh(z)) is bounded above by B=[¢¥® dx/1—x?,
for all ze A. It folllows that

d(f(z),h(z)) <KB, for zeN,,.

4) This is the only use made of the condition that & agrees with f on the entire boundary 24.
The proof of (1.a) requires only that fand 4 agree on U @4 N 0Sx.
n
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Even if ¢ does not satisfy (18) one can always write
lo(2)l < M*(2)/(1 - |2I°)?,

Then if y(z) denotes the non-euclidean line segment joining z and f ! - hA(z) it follows
immediately from the preceding considerations that

d(f(z), h(z)) < KB max M({), zeN,,.
Lev(2)
It is in this form that the above result will be applied in what follows.

THEOREM 2. With r=|z| let ¢(z)=0(1/(1—r)) as r— 1. Then f is extremal.

Proof. As remarked in the introduction, only the case |4],= o needs to be con-
sidered. For each 0<g<1 set S,={|z| <¢}, I',=0S,, and [,=|I",|. Assuming, as we
may, that |¢(z)|<1/(1—r) we obtain

|dz| 2no
A N =ri /e

Next, for zoeI', we seek an upper bound for d (£ (z,), h(2o)). Let C={D(z, zo) < B}
where B is the bound on D(z, f ~'ch(z)) given by the Teichmiiller distortion theorem.

Setting M (z,)=maxzeC \/ 1 —|z| it follows that
d(f (zo), h(z0)) < B

where we have set B,=2 KBM (z,). In order to determine M (z,) choose ¢ sufficiently
close to one so that C does not contain the origin. Then there exists a unique {eC

such that M (zo)=\/ 1—|¢|. We may write

l, <

e

B=J|M|_ 1oglL U =1E)

=2 2% 2 +10)"
1€

Solving for 1 —|{| we obtain

(1+0)e 22+ (1— o)

It follows that B,/, is bounded. Similar considerations show that

2(1 -0
l -9, =min(l —|z|)=.. ——
Ql zeC( I l) (1+Q)eZB+(1"‘Q)
Setting T,=h(S,)— f(S,) we may then write
2mey

u*(n\ffﬁﬁf
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Direct calculations show that the integral increases to 4 Bn as ¢— 1. Since both B,/,
and | T,| are bounded the conclusion follows from Theorem 1.a.

In order to give a local formulation of Theorem 2 we first observe that if 4 has
infinite ¢@-area then at least one boundary point, say z=1, has the property that
|N,|=c0 for every ¢>0. Let ¢ be a function with this property and assume that
lp(2)|<1/(1—r) in N,, for some g, >0. Now choose a sequence r, increasing to one
with 1—r;<p,. Then set S,={|z|<r,} n{Rez>r}, I, =0S, n{Rez=r}, and
r,,=o0S,—I,,. We observe that the chord Rez=r, has finite ¢-length. It then follows
by reasonings similar to those in the proof of Theorem 2 that the conditions of
Theorem l.a are satisfied. We state this result as a theorem.

THEOREM 3. Let |[N,|=co for every ¢>0 and for some g, >0 let |p(z)|<1/(1—r)
in Ny . Then f is extremal.

During the early stages of this research it was shown that a Teichmiiller mapping
fis extremal if the corresponding regular function ¢ possesses a second order pole
at a point of d4. The proof depends entirely upon the existence of positive numbers
m, M, and g, such that if we take the double pole to be at z=1, then m<|(1 —z)* ¢(z)
| <M for all z belonging to N, . This suggests the following more general problem.
Let A(g) be defined for all ¢>0. Next, set ¢=|1—z| and assume that ¢ satisfies the
relations

m<lo()lA(Q) <M, zeN, (19)
where m, M, and ¢, are all positive. What further conditions should 1(g) satisfy in
order that the single requirement (19) implies that a Teichmiiller mapping f corre-
sponding to ¢ is extremal? The remainder of this section will be concerned with this
problem. We begin by proving the following theorem which exhibits one such set of
conditions on A(g). First, for every 0< ¢ <pgy, set

F(Q)-—-fi(e)eda-

THEOREM 4. Let ¢(z) satisfy (19) where A(@) is a monotonc function such that
F(9)—> oo as ¢—0. Further assume that

lim F(SQ) - F(Q) —
o Flo)

0 (20)

for every 0<s<1. Then f is extremal.
Proof. For every 0< < ¢, set S,=N,,—N, and y,=A4N0IN,. Then let 6, denote
the angle between the chords joining z=1 to the endpoints of y,. In view of (19)
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we have
Q1

1Sl =m0, | Ae) ede =m0, F(o).

[
= Il <me/M /(o).

Next, let B be the bound on D(z,f ~'oh(z)) given by the Teichmiiller distortion
theorem and let 0<g<g be defined by D(1—g, 1 —g)=B. Setting T,=h(S,)—f(S,)
and choosing ¢, sufficiently small, it follows that the part of f ~'(T,) lying outside
of N,, has finite ¢p-area 4. But then, in view of (19), we obtain

21)

ITI=KIf (T)<AK+MKG,[F@)-F(@]. (22)

In order to estimate d( f(z), h(z)) on 8S, choose z €y, and set z,=f ~'oh(z,).
It is not difficult to see that |z, —z,|<C (¢—¢@) for some constant C that does not
depend on g. Indeed, if g<g'<1 is defined by D(1—¢’, 1 —g)=B it follows that
|z, —z,| <@’ —¢. Furthermore, from the equations B=D(1—g, 1 —g)=D(1—¢',1—9)
we obtain ¢’ — @< C (¢—§) where C=(e2?—1)/(1—e~2B). Now set d,=[; \/A(e)de.
By making use of (19), the monotonicity of A(g), and the relation |z, —z,| < C(¢—9),
we easily deduce the estimate

d(zl,zz)s\/ﬁf\/m—)\da <c/Md,.

Again using the monotonicity of 1(g) we may write

lyd, < 1o /M/3@ [ /(@) de < C.TF@) - F(@) @

where C, is a constant which is independent of g.

Combining the relations (20) through (23) it follows that there exists a sequence
0,—0 such that both 4, /, and |T, | are o(|S,,|) as n— 0. If, for n=1, 2,..., we set
I, ,=v,, and I',,=7,, the conditions of Theorem l.a are seen to be satisfied. This
completes the proof.

An interesting special case of Theorem 4, in which the condition (20) is replaced
by an explicit growth condition on A(g) can now be deduced. First, let us show that
the condition

im 108 F (@) _ "

24
250 logl/e 29
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implies that (20) holds. To see this we observe that (20) fails to hold only if there
exist positive numbers a, g,, and ¢ such that

F(to)
F(0)
For 0<g<tg, we may write ¢=t"p where n is a positive integer and where
100 < 0 < 0. In view of (25) we have F(g)>(1+a)" F(g¢) from which fact we obtain
F log(l +a t
@) _los(1+a), too
F(go) log 1/t 0
The desired conclusion is now immediate.
Now let A(g) satisfy the following growth condition.

>1l+4+a, 0<p<g. (25)

log

1
A(Q)—o< 2”), 0—0, foreveryd >0. (26)
Q

It is not difficult to see that (@) must also satisfy (24). Indeed, if (24) fails to hold
there exists a positive number o such that F (g)>1/¢" for all small ¢>0. Fix 0<d<a
and choose ¢, >0 so that A(¢)<1/¢**? for 0< ¢< ¢,. Then for all sufficiently small

¢ we obtain
['3]

1 do 1/1 1
<0< gt=5(G )
Q ( ) Ql-*-& 5 Qé Qf

e

which is contradictory since d <a. We may now state the following corollary to
Theorem 4.

CoRrOLLARY. Theorem 4 continues to hold if the requirement (20) is replaced by
either (24) or (26).

We conclude this section by showing that the condition (20) of Theorem 4 cannot
be arbitrarily relaxed. This can be seen as follows. First, map 4 onto the right half
plane H by means of the transformation {=(1+2z)/2(1—z). Given 6>0 we can
choose a single valued branch of z' = ¢%? that maps H conformally onto the wedge V
defined by —dn/4<argz’' <dén/4. (Of course if 6>8 the wedge must be viewed as a
surface lying above the z’-plane.) Let & denote the composition z—{—z'. Then
@=2'? is given by

52 (1+ z)”
Taking A(@)=(1/0)**? it follows easily that all conditions of Theorem 4 are satisfied
except for the condition (20). But, STREBEL [3] has shown that the horizontal
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stretching, F (z")=Kx'+iy’, of such a wedge V is not extremal in the class of mappings
V—F (V) that agree with F on 0V. Itfollows that f=® !, F, ®, which is a Teichmiiller
mapping corresponding to ¢, is not extremal.

4. Unique Extremal Teichmiiller Mappings

The object of the present section is to present a uniqueness theorem (Theorem 5)
for extremal Teichmiiller mappings. From this theorem we will deduce a simple
characterization of regular functions ¢, possessing at worst poles on d4, with respect
to the property that corresponding Teichmiiller mappings f are unique extremal.

4.1. Distortion of plane regions. Let R be a region of the z-plane whose boundary
is a union of countably many arcs, let S=F (R) where F(z)=Kx+iy, and for each
y set R,={zeR| Imz>y}. Next, let H be a K-quasiconformal mapping of R, into
S that agrees with F on R, N dR and which also satisfies H (R,,)= F (R,,) for some

y12Y,. Finally, for each y>y,, let y,={zeR| Imz=y}. We define M (y) and d (y)
as follows:

M(y)= sup Iy, ?
Yoy <y 28
d(y) = sup [ImH(z) — y|. S (26)

STREBEL [3] has shown that d(y)</KKM for y>y, if M is such that
M (y)SM <o for every y=y,. A slight modification of Strebel’s proof gives the
following lemma for the general case.

LEMMA 2. d(y)s\/EI? M (y+d(y)) for every y=>y,.
Proof. Fix y>y, and assume that H (y,) meets the horizontal Imw=y, for some

¥,>y. It must be shown that yz—-yg\/k_fM (»2). (Noting that H (R,,)=F(R,,)
it will easily be seen that the case y, <y can be treated in the same manner.) For
0<dy<y,—y, define '={y,|y<n<y+A4y} and I''={H (y,)ly,€I }. For measurable
e=0,

L(g)= inf deSJde;

ynel
n n

hence, integrating from y to y+ A4y, squaring, and then applying the Schwarz in-
equality, we obtain

M(y,)

Al) <
(<=

(29)

where A(T") is the extremal length of the family of curves I'. In order to estimate
(A'") we define ¢ as follows:
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1 fy+dy<Imw<y,

e(w)= 0 otherwise.

Since H=F on 0R, N 0R it follows that H (y,) must meet the horizontal Imw=y,
for every y,eI'. Hence, the g-length of H (y,) is at least 2(y, —y—4y) and the g-area
of the region swept out by the curves in I'’ is at most KM (y,)(y,—y—4y). It
follows that

4(y, — y — 4y)

M= KM(y,)

(30)

Set 4y=(y,—y)/2. By making use of (29), (30), and the fact that A(I'"")<KA(I') we

obtain y,—y<./KKM (»,) as was desired. This completes the proof.
If, for every y>y,, we set R,=R, — R, it follows from Lemma 2 that

IH(R,) < |F(R) + 2 /KRM?(y + d (). (31)
Remark. By making use of the inequality (31) it can be shown that the condition
M?*(y+d(y))=0o(IR,)) as y- o (32)

is sufficient to conclude that K< K. The proof would simply be a rewording of the
proof of Theorem 1.a and will not be repeated here. Using this fact, many regions
R can be exhibited for which K<K. Suppose, for example, that R is bounded by
curves x= +t"+o(t"), y=t"+0(t™), with t >0 and 0 <n<m.It is not difficult to show,
for sufficiently large y, that |R,|=|R,,—R,|>C, y""*™/™ and M (y)<C,y"™ where
C;, C,>0 depend only on m and n. Setting j=y+d (y) and using Lemma 2 we may
write: ﬁ—ys\/KI?M () </ KKC,7"™ Noting that 0<n/m<1 we obtain <2y,
for all sufficiently large y, hence M (7)< C,(2y)"'™. It follows that the condition (32)
is satisfied.

Returning to the main theme of the present section, let it be assumed that K=K
and also that M (y)<M < oo, for every y=>y,. With y;=H (y,), we may write

Kl <1j) = [ 10, + Hi dx. (33)

Yy
Since H is K-quasiconformal we have |H, + H;|>< K J (H) almost everywhere. Hence,
squaring (33) and applying the Schwarz inequality we obtain

K%Wswyswawax
Yy

Dividing by |y,| and integrating gives, by virtue of (31), the inequalities
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2
K|F(R)| < f Ilv;ll dy < K|F(R) +2K*M?>. (34)

Given &> 0 there exist arbitrarily large values of y for which |y,|<K|y,| +e¢. For,
if this were not the case, for some £¢>0, there would exist a number y, such that
ly; > Kl7y,|+e, for all y=y,. It would then follow from the second inequality of (34)
that 2Ke(y—y,)<2K*M?* for all y>y,. This is of course contradictory. In particular,
we have shown the following. Given a positive sequence ¢,—0, there exists an in-
creasing sequence y,— oo such that d (y,) <, for every n. The following lemma is now
immediate

LEMMA 3 (STREBEL). Let T,={we H (R,)|Imw>y}. Then given a positive sequence
¢,—0 there exists an increasing sequence y,— oo such that

IT, | < KMeg,.

4.2 The uniqueness theorem

LEmMMA 4. For some real number n> — 1 and some complex number a#0 let

=0(1), z-1. (35)

(log(1 —z))' 1-z

Then there exists a ' >0 such that a single valued and schlicht branch of | \/ ¢(z)dz
can be chosen in N,.

Proof. Let g, >0 be such that ¢(z)#0 in N, . Then choose a single valued branch
® of [\/¢(z)dz in N,,. Setting

() = J(Jq)( Tl ’Z)))dz e

we may write

d(z) =~ an(log(l—z))1+"+n(z), zeN,

01"

If @(z) is not schlicht in N, for every ¢’ >0, it follows that there exists a double
sequence z;, z;—1, z;# z{, for which

()~ n(z) = ——[og(1 = ))"** — (log(1 —2) ' (36

Now set a;=log(1—2z;) and b;=log(1 —z;). Let the pairs (z;, z;) be labelled so that
|b;]<|a;]. By making use of (35) we easily obtain, for each i, the inequality
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n(zi) — n(z)

Z;y — Zj

< Mja)” (37

where M < oo does not depend on i. It then follows from (36) and elementary properties
of the mapping log(1—z) that b;/a;—1. With

l — (bi/ai)’hLl
1 —(bi/a;)

-

we may write
;.H- 1 _ bn+ 1

lal i l = lai - bzl lailn'{ﬁ

By virtue of (36) and (37) we have

ai—-b,-

’
Zi—zi

L<M.

But 1,—»n+ 1>0 as i— oo whereas the first factor is unbounded. We have thus achieved
the desired contradiction.

THEOREM 5. Let zy,..., z, be points of 04 such that excising an arbitrary neighbor-
hood of each z; from A results in a region of finite @-area. Let a,,..., o, be non-zero
complex numbers and let t,,..., t, be real numbers such that —1<t,;<0, for i=1,..., s.
Then f is unique extremal if ¢ also satisfies, for each i=1,..., s, the growth condition

Jo) —0(l), z-7. (38)

(log(z; — 2))* z;—z

Proof. Assuming, as we may, that z, =1 the condition (38) is easily seen to imply
that ¢ satisfies the hypothesis of Theorem 4. Hence, we need only prove the unique-
ness. The method of proof will be as follows. For each positive integer » a neighbor-
hood of each of the z; will be excised from 4. Letting S, denote the remainder of 4,
it will then be shown that the conditions of Theorem 1.b are satisfied. The typical
case will be exhibited for z; =1.

By Lemma 4 there exists a ¢ >0 such that a single valued and schlicht branch,

z'=®(z), of |\/¢(z)dz can be chosen in N,. Moreover, we may write

oy

®(z) = —
@=-7

(log(1 — 2))'** +n(z), zeN,

where 7(z) is bounded. Let R=®(N,) and on R define F(z')=Kx'+iy’. Since
0<1+1¢ <1, it follows that R is contained in a semi-infinite parallel strip. We may
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assume that o is such that this strip is not horizontal.5) Then, for some M < o0, the
lengths of the horizontals of R are bounded by M.

Now let 4 be a K-quasiconformal comparison mapping for f. Choose 0 <’ <gsuch
that N, and h(N, ) are free of the zeros of ¢ and y respectively. Then 4 can be lifted
to a K-quasiconformal mapping of ®(N,) into S=F(R). Call this mapping H.
Assuming, as we may, that the parallel strip extends indefinitely into the upper half
plane, Lemma 3 guarantees the existence of a sequence y,— oo for which |T, |-0.
The sequence y, =@~ '(y,. ) of horizontals in 4 thus determines a sequence D, of
neighborhoods of z; =1 such that the part of #(4 — D,) that lies in f(D,) has y-area
tending to zero. Certainly an analogous situation holds for each z;, j=1,..., 5. We
then have the following situation. For each j=1,..., s there exists a sequence y; , of
horizontals in 4 such that, for each n, y; , excises a neighborhood D; , of z;. Further-
more, |h(4—D; )0 f(D; )| ,~0asn—c0. Setting S,=4—Jj- D; , it follows that
| Tl =1h(S,)— f(Sa)ly—0 as n—oo. Also, since 4ndS, is composed entirely of
horizontal arcs, we have [,=|I",| =0.%) The theorem now follows from Theorem 1.b.

Remark. Taking into consideration the footnote (6) it is not difficult to show that
fis extremal in the class of all mappings of 4 onto itself that agree with f only on some
open arc of 04 that contains one of the points z;. More generally, it can be shown
that f is extremal in this larger class of mappings if ¢ satisfies the hypothesis of
Lemma 4. Indeed, let N, be a neighborhood of z=1 on which a single valued and

schlicht branch @ of |./¢(z)dz can be defined and set R=®(N,). If the real number
n in the statement of Lemma 5 is positive one readily checks that R is a region of the
type described in the remark following the proof of Lemma 2. If —1<n<0 it follows
from the proof of Theorem 5 that the condition (32) is satisfied. In either case the
conclusion is immediate.

THEOREM 6. Let ¢ be regular in A and meromorphic in the closure A. Then a
corresponding f is unique extremal if and only if all poles of ¢ are of order not exceeding
two.

Proof. If ¢ has only simple poles then 4 has finite g-area. For this case the unique
extremal property of £is known. On the other hand if ¢ possesses second order poles,
but no poles of higher order, then ¢ satisfies the hypotheses of Theorem 5. This proves
the sufficiency part of the theorem.

Now let ¢ possess a pole of order n>2 which, for convenience, will be taken at
z=1. In N,, for some ¢>0, we may write ¢(z)=(1—2z)""g(z) where g(z) is regular
and non-vanishing in the closure N,. Let

5) If ¢ is replaced by i = €29 then a; is replaced by e%¢a1. But f(2) = f(e®2) is a Teichmiiller
mapping corresponding to 3 and clearly f and f are extremal or unique extremal together.

6) We remark that to this point we have only used the agreement of A and f on s boundary
arcs, each containing one of the z; in its interior.
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o
®(z) = — 1__—""72-(1 —2)'7"2 4+ 5(2), zeN,

denote a single valued branch of z’ =j\/ ¢(z)dz. Taking a, =\/ g_(f)_ to be n/2—1 and

noting that n(z)=[(/g(z)—ao)/(1—2z)"*dz+C=0(|1 —z|*""?) as z—1, we may
write
P(z)=(1-2)"""1+0()), z-1.

It follows that, for some R N,, @ maps R onto a wedge V defined by |arg(z’—x;)| <6
where x; is real and 0 <n/4. In R, f can be expressed by f= ¥ "1, F. ®. Now, in the
class of mappings of ¥ onto F (V') that agree with F on 8V, let F be extremal. As
noted in the concluding paragraph of section 3, F# F. Hence, redefining fin R to
be ¥ ~1. F, & exhibits a second K-quasiconformal mapping with the same boundary
correspondence as f. This completes the proof.

We conclude with a remark concerning a possible characterization of regular
functions ¢, which are meromorphic in 4, with respect to the property that corre-
sponding Teichmiiller mappings f are extremal but not necessarily unique extremal.
If ¢ has a double pole on 04, or if ¢ possesses only simple poles, we know that fis
extremal. On the other hand, if ¢ possesses poles of order exceeding two but no
second order poles, it is not known whether a corresponding f'is extremal. However,
there is some evidence that the answer is always in the negative. Indeed, for every
integer n> 2, there exists such a ¢, with an nth order pole at z=1, for which a corre-
sponding f is not extremal. This fact was exhibited in the concluding remarks of
Section 3. In view of these remarks a reasonable conjecture is that f is extremal if
and only if either (i) ¢ has a double pole or (ii) ¢ has no pole of order exceeding two.
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