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Some Congruence Theorems for Closed Hypersurfaces in Riemann

Spaces (Part II: Method based on a Maximum Principle)

by Heinz Hopf in Zurich and Yoshie Katsurada in Sapporo

Introduction

This is the continuation of the previous paper [1] of which we assume at least the
"Introduction" as well known to the présent reader. In [1] it has been proved: If
W, W are closed hypersurfaces in an (m-j-l)-dimensional Riemann space with
W= Tx W, where the transformations Tx (depending on the parameter t) are properly
conformai (and even a bit more generally so) and if

H(p) Hp(p) for each peW (1)

holds (for the notation compare the quoted "Introduction"), then W, W are con-

gruent modulo G (where G is the group of the transformations TT). In the présent paper,
we shall cancel the assumption that the transformations Tx are properly conformai ;

in fact, they are essentially arbitrary; however we will assume that no orbit ofa
transformation Tx is tangent to the surface W (and even a weaker assumption on the orbits
will be sufficient). Then we shall prove: W and W are congruent (that is, ffî=TxW).
- Hère we like to call the reader's attention to the fact that neither the assumption
made in part I (that the Tx are properly conformai) nor the assumption made in
part II (on the orbits of the Tx) covers the other.

As said in the introduction of [1], the method of proof of our theorem in the

présent paper is based on the maximum principle of the solution of an elliptic differ-
ential équation. The kernel of this principle is contained in a theorem of E. Hopf [2]
which we treat together with two rather easy conséquences in § 1. Then § 2 contains
the proof of our congruence theorem.

§ 1. Some auxiliary theorems on a linear partial differential expression of elliptic type

In an m-dimensional coordinate neighbourhood U we consider a linear partial
differential expression of the second order of elliptic type

where gap(u) and hy(u) are continuous functions of a point p(u) in U and where the
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quadratic form g*pX^Xp is supposed to be positive definite everywhere in U. Through-
out this paper repeated lower case Greek indices call for summation from 1 to m.
Then the following theorem has been proved by E. Hopf:

Theorem 1.1. If in a coordinate neighbourhood U a function <&(p) of class C2

satisfies the inequality L($)^0 and if thère exists a fixed point p0 in U such that
<P(p)^<P(p0) everywhere in U, then we hâve <P(p) <P(p0) everywhere in U. IfL(<P)^0
and <P(p)^.<P(p0) everywhere in U, then we hâve <P(p) <P(p0) everywhere in U ([2],
p. 147).

We prove easily
Theorem 1.2. Let g*p{u, t) be a continuons function of a point ueU and of a para-

meter t, O^f^l, and let the quadratic form gaP(u, t) XaXp be positive definite
everywhere, then \ogaP{u, t) dt-XaLXp is positive definite everywhere in U.

Proof If we integrate the quantity gaP(u9 t)XaXp over the interval 0^/g 1, then

we hâve i 1

C B< { f B,jg (u,t)Wt= jg- (u,t)dt Kh-
0 0

Since gaP(u, t)XaXp is positive definite everywhere in U and in the interval OS*S 1,

its intégral over the interval O^t^l is also positive. Therefore {JJga^(«, t)dt] XaXp

must be positive definite everywhere in U. -
Now we consider in U a linear partial differential expression of the second order

î i

hy(u,t)dt
ou7

0 0

where g*p(u, t) and h(u, t) are continuous functions of the point ueU and of the

point t in the interval O^f^l; the quadratic form gap(u, t)XaXp is supposed to be

positive definite everywhere in U and in the interval 0^ t^ 1. Then from Theorem 1.1

and Theorem 1.2 we get the following

Theorem 1.3. If in a coordinate neighbourhood U a function <P(p) of class C2

satisfies the inequality /(p)^0 and if there exists a fixed point p0 in U such that

#(/?)^d>(/?0) everywhere in U, then we hâve $(p) <I>(p0) everywhere in U. If 1(<P)^O
and <P(p)*2:<P(p0) everywhere in U, then we hâve <&(p) <&(Po) everywhere in U. -

Especially in the case that ga/?(w, t) and hy(u, t) are constant with respect to the

parameter t, Theorem 1.3 becomes E. Hopf's theorem.

§ 2. A congruence theorem for closed hypersurfaces

We suppose an (m+ l)-dimensional Riemann space Rm+1 of class Cv (v^3) which
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admits an infinitésimal transformation

xl xl + ?(x)ôx (2.1)

(where Jt'are local coordinates in Rm+l and Ç are the components of a contravariant
vector). We assume that the orbits of the transformations generated by £ cover
Rm+1 simply and that £ is everywhere continuous and ^0. Let us choose a coordinate
System such that the orbits of the transformations generated by £ are new x^coor-
dinate curves, that is a coordinate System in which the vector Ç has components
<f <5\, where the symbol <$J dénotes the Kronecker delta; then (2.1) becomes

xl xl + ô\ÔT. (2.1')

Thus Rm+1 admits a one-parameter continuous group G of transformations which
are (l-l)-mappings of Rm+1 onto itself and are given by

xl xl + s\ t (2.2)

in the new spécial coordinate System [3].
We consider now two hypersurfaces Wm and Wm of class Cvimbedded in Rm+Î

which do not pass through a singular point of the vector field £. Let points on the

two hypersurfaces correspond along the orbits of the transformations. Then the two
hypersurfaces Wm and ffîm are given by

Wm:xl xl(u*)9 i l,. .,m + l
Wm: xl xl(ua) + ô\ t«), a 1,..., m

K }

where u* are local coordinates of Wm and t(ux) is a fonction of class Cv defined on
W^m. We shall henceforth confine ourselves to Latin indices running from 1 tom+1
and Greek indices from 1 to m.

Besides the surfaces (2.3) we now consider, to each point poeW, the surface

ff" :*• *'(«•) +*i t(«S),

where u*0 are the local coordinates of p0. Then the corresponding point p0 lies on
Wm and on W™. We can consider the additional hypersurfaces ffi™=Tt(p)(Wm) to
each point pe Wm and the mean curvatures H, H, Hp of Wm, Wm, W™ ([4], p. 250),
and we claim that the foliowing theorem holds :

Theorem 2.1. Let Wm and ffîm given 6y (2.3) be two closed hypersurfaces in Rm+1.

Suppose that no orbit ofthe transformations generated by ^ ever contacts Wm at the

maximum point poeWm so that t(p)^t(/?0) everywhere in Wm. If the relation

H(p) ffp(p) (1)

holdsfor each point pe Wm, then Wm and ffîm are congruent mod. G. (Wm and ffîm are

congruent mod. G means that Wm Tx Wm for a certain TteG).
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Proof. We consider the family of the hypersurfaces

Wm(t) (1 - t) Wm + t Wm, 0 S t£ 1,

generated by Wm and ffîm whose points correspond along the orbits of the transformations

TT where Wm and Wm mean Wm(0) and Wm(l) respectively.
Then according to (2.3), Wm{t) is given by the expression

Wm(t): xl'(wa, t) (1 - 0 xV) + txl(u% 0 S t£ 1
• (2.4)

(2.4) may be rewritten as follows:

Wm(t): xl(u\ t) xl(ua) + ô[t- t«), Og^l. (2.5)

The relation between ffîm and W(t) becomes as follows:

If we take the hypersurface Wm(t0) defined by a fixed value t0 in O^t^ 1, then we
hâve the transformation T(1_fo)t(po)eG attached to the point on Wm(t0) correspond-
ing to po€ Wm, given by

Thus we get the additional hypersurface

which passes through the corresponding point p on ffîm, and is given by

^oOoMpoOA t0) *l{u\ t0) + ô\(l - t0) t(ua0), (1 - t0) tK) const. (2.6)

Therefore we hâve the hypersurfaces

for ail hypersurfaces in the family which pass through the corresponding point p0 on
ffîm. Thus we can consider Wr™(t) Ta-t)xip)Wm(t) for each pe Wm.

Let Hpo(to), npo(to), g*f(t0) be the mean curvature, the normal unit vector and
the metric tensor of $^J(f0) at Po respectively. Then we can consider the mean
curvature Hp(t),the normal unit vector np(t) and the metric tensor g*ap(t)of ffip(t)9
0^l:§ 1, at the corresponding point/? to each point pe Wm.

From the définition of the mean curvature of a hypersurface we hâve

where it is understood that

ô2x'p(u,t)_ô2xp(u,t) dxi(u,t)dxkp(u,j)
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rijk and Fypap(t) are the Christoffel symbols with respect to the metric tensor gtj of
Rm+1 and gpap(t) respectively, at the corresponding point/? to peWm. (Throughout
this paper repeated lower case Latin indices call for summation from 1 to m +1 ; but

p is not a summation index!)
From the définition of the normal unit vector of a hypersurface we hâve

nptl(t) l2'jlm^111 • _ Aj p -^—' (2.9)

where

g being déterminant of the metric tensor gtj oî Rm + 1 at the corresponding point/?, and
the symbol ^il..jm + l means plus one or minus one depending on whether the indices

h--- im+1 dénote an even or an odd permutation, of 1,2,... m +1, and zéro when at least

two indices hâve the same value ([4], p. 25). The symbol [...] means alternating in m

([4], p. 14); g*(t) is the déterminant of the metric tensor gp<xp(t)on the hypersurface
Wp(t) at the corresponding point p.

Since from (2.5) and (2.6) we obtain

P '
¦ + ô\t-

du* du" eu" l du-

%(u, t) ô2x>(u,t) 5

5u^ aMa«* ôu01^ '
and since

(2.7) becomes

and we hâve

where gtj is the metric tensor of Rm+l at the point p.
As seen from the above results, only Sx1 (m, f)/dwy and d2x1(u, t)/duadup contained

in Hp(t) dépend on the parameter t. Therefore if we now differentiate the mean cur-
vatures Hp{t) ofï?^), 0^ t^ 1, at the point p corresponding to pe W with respect to
r, we hâve

dff,(t) dff(t) dh{u) ÔHp(t) dx(u)

d2xl(u,t)\ du"du"
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Integrating both members of (2.11) over the interval 0^^ 1, we get

ffp(u\l)-ffp(u\0)
dÉp(t)

dt
V(ii,O\ du*du*

dH.it) dx{u)

dxl(u,t)\ duy

du7

where we see easily that ffp(u, l) H(p) and Hp(u, O) Ëp(p).
Now we make use of the hypothesis H(p) Hp(p); then we hâve

ÔÊp{t)

ô2xl(u,t)
du"du"

From (2.7), (2.8) and (2.10) we hâve

(2.12)

and from (2.9) and (2.10)

Therefore setting

Jd2x1(u,t)\ m "'

{ Ou"Ou"

dx2(u)

dx2(u) dxm+1(u)
ri,

du"

we hâve
vf(o

(2.13)

Since our closed hypersurface Wm is compact and the function t is continuous,
there is a point p0 such that t(/?)<t(/?0) everywhere in Wm, and also the orbits of the
transformations never are tangent to Wm at such a maximum point p0 (that thèse
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orbits are tangent to Wm would mean that at this point nt =n*=0). Consequently we
can take a neighbourhood U of p0 in which «*^0. In U, it follows from (2.12) and

(2.14)

{-\T(m - 1)1 Jgn*

As known from (2.13) the quadratic form G*ap(t)ÀaÀfi is positive definite everywhere
in U and in the interval O^t^l; G*aP(t) and the factor before the second intégral as

well as the integrand are continuous in U and in 0^ rg 1 ; and t is a function of class

C\ v^2, on U.

Consequently, it follows from Theorem 1.3 that we hâve t(/?) t(/?0) for ail
peU; as one sees easily this is true for ail peWm. Thus t(/?) const. and Wm

Tt(po)^,q.e.d.
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