On the Symplectic Cobordism Ring.

Autor(en): Segal, D.M.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 45 (1970)
PDF erstellt am:
11.07.2024

Persistenter Link: https://doi.org/10.5169/seals-34650

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

On the Symplectic Cobordism Ring

D. M. SEGAL^{1})

I. Introduction

This paper continues the study of $\Omega_{*}^{S p}$, the ring of cobordism classes of weakly symplectic manifolds along lines initiated by Liulevicius, [6] and Stong [10]. $\Omega_{n}^{S p}$ is computed for $n<25$ and, modulo extension problems, for $n<30$ (along with information on the ring structure) and some information is obtained on the image of the $\operatorname{map} \Omega_{*}^{S p} \rightarrow \Omega_{n}^{0}$, to wit:

THEOREM 1.1. $\Omega_{n}^{S p} \rightarrow \Omega_{n}^{0}$ is trivial for $n<32$; for $n=32$ the image is given by $[R P(2)]^{16}$.

The first stage in our work is the (partial) calculation of the E_{2} term of the $\bmod 2$ Adams spectral sequence for $\Pi_{*}(M S p)$ using an algebraic spectral sequence essentially contained in Adams [1] and Liulevicius [6], [7].

In the second stage we employ "Riemann-Roch" relations on the cohomology characteristic number of symplectic manifolds to establish the impossibility of certain classes in the Adams spectral sequence persisting to E_{∞}; this leads immediately to a determination of certain differentials. Also applicable to the calculation of differentials (although dispensable for our range of calculation) are the Cartan formulae for higher order cohomology operations and complete knowledge of $\Omega_{*}^{S U}$ and its Adams spectral sequence (due to Anderson, Brown and Peterson [4]).

Finally, we make some remarks about the extension problem in the E_{∞} term.
The author is happy to acknowledge his indebtedness to F. P. Peterson for his guidance in this work, to R. Stong for communication of his results and to D. W. Anderson for much helpful criticism and advice.

II. The E_{2} Term

Let $B S p(n)$ denote the universal classifying space for $S p(n)$ vector bundles and let $M S p(n)$ be the associated Thom space; $M S p$ will designate the associated Thom spectrum. Note that $M S p$ is a ringed spectrum and, according to Novikov [5] we have a ring isomorphism $\Omega_{*}^{S p} \cong \Pi_{*}(M S p)$. Milnor [9] has shown that $\Pi_{*}(M S p)$ has no odd torsion; we therefore consider only the mod 2 Adams spectral sequence which we denote $E_{*}^{*, *}(M S p)$. To compute $E_{2}^{*, *}(M S p)=E x t_{A}^{*, *}\left(H^{*}(M S p), Z_{2}\right)$ [A will be

[^0]the mod 2 Steenrod algebra, and cohomology will be mod 2 unless otherwise indicated] we first summarize results contained essentially in Liulevicius [6].

If H is a graded vector space let H^{\prime} denote the vector space isomorphic to H as an ungraded vector space but such that the isomorphism $H \rightarrow H^{\prime}$ doubles grading (and preserves any multiplication or comultiplication that H may possess.) Let $A^{\prime \prime}$ be given structure as a graded A-module by having A act via the map $A \xrightarrow{\alpha} A \xrightarrow{\alpha} A$ where α is the dual of the squaring map on the dual of A. Let S be the graded coalgebra over Z_{2} such that $S^{*} \cong Z_{2}\left[x_{2}, x_{4}, x_{5}, \ldots, x_{i}, \ldots\right] x_{i}$ of grading $i, i \neq 2^{a}-1$.

PROPOSITION 2.1. $H^{*}(M S p) \cong A^{\prime \prime} \otimes S^{\prime \prime}$ as a graded coalgebra and A-module (A operating on $S^{\prime \prime}$ trivially).

PROPOSITION 2.2. $E_{2}^{* *}(M S p)=\operatorname{Ext}_{A}\left(A^{\prime \prime}, Z_{2}\right) \otimes S^{\prime \prime} *$

$$
\begin{aligned}
= & \operatorname{Ext}_{B}\left(Z_{2}, Z_{2}\right) \otimes Z_{2}\left[V_{2}, V_{4}, V_{5}, \ldots, V_{i}, \ldots\right] \\
& \left(i \neq 2^{a}-1, V_{j} \in \operatorname{Ext}_{A}^{0,4 j}\left(H^{*}(M S p), Z_{2}\right)\right.
\end{aligned}
$$

where B is the normal and Hopf subalgebra of A such that $A / / B \cong A^{\prime \prime}$.
If we describe A in terms of the Milnor basis [8] B may be described as the Hopf subalgebra of A generated (additively) by $\left\{S t^{I}\right\}, I=\left(C_{0}, C_{1}, \ldots, C_{j}, \ldots\right) 0<C_{j} \leq 4$ for all j.

It is convenient to employ a special notation for elements of B.
Let $I=\left(C_{0}, C_{1}, \ldots, C_{j}, \ldots\right)\left(0 \leq C_{j}<4\right)$. Substitute for each non-zero C_{j} the symbol

$$
\begin{array}{rll}
1_{j} & \text { if } & C_{j}=1 \\
2_{j} & \text { if } & C_{j}=2 \\
1_{j} 2_{j} & \text { if } & C_{j}=3
\end{array}
$$

delete zeros and commas and bracket the resulting concatenation; this will be taken as the new symbol for $S t^{I}$, e.g. $S t^{(1,3,2,0,1,2)}$ becomes $\left[1_{0} 1_{1} 2_{1} 2_{2} 1_{4} 2_{5}\right.$].

Let $C(n)$ be the Hopf aubalgebra of B generated (multiplicatively) by the elements $\left[1_{0}\right],\left[2_{j}\right]$ for $j<n,\left[1_{j}\right]$ for $j>n$. As a Hopf algebra $C(n) \cong \cong^{\prime} C(n) \otimes^{\prime \prime} C(n)$ where ' $C(n)$ is generated by the elements $\left[1_{j}\right],\left[2_{j}\right]$ for $j<n$ and " $C(n)$ by the elements $\left[1_{j}\right], j>n$. Note that $\operatorname{Ext}_{B}^{s, t}\left(Z_{2}, Z_{2}\right) \rightarrow E x t_{C(n)}^{s, t}\left(Z_{2}, Z_{2}\right)$ induced by the injection $C(n) \rightarrow B$ is an isomorphism onto for $t-s<2^{n+2}-2$.
$C(n)$ is normal in $C(n+1),{ }^{\prime} C(n)$ is normal in $C^{\prime}(n+1), C(n+1) / / C(n) \cong \cong^{\prime} C(n+1)$ $/ /^{\prime} C(n) \cong K(n)$ where $K(n)$ is an exterior algebra on one generator of grading $2^{n+2}-2$.

We now give a slight improvement of a spectral sequence due to Adams [3]:
Let Γ be a connected Hopf algebra over Z_{2}, Λ a normal (but not necessarily central) and Hopf subalgebra of Γ. Let $F\left(\Gamma^{*}\right)$ be the cobar construction [1] on Γ^{*}, the dual of Γ. By definition

$$
F\left(\Gamma^{*}\right)=\sum_{s \geqslant 0} I\left(\Gamma^{*}\right)^{\otimes s}
$$

where $\otimes s$ denotes s-fold tensor product and I denotes augmentation ideal. $F\left(\Gamma^{*}\right)$ is a bigraded cochain complex with cup products (see [3] for gradings, differentials and cup products) and its cohomology is just $\operatorname{Ext}_{\Gamma}^{*, *}\left(Z_{2}, Z_{2}\right)$. We define a filtration, the Λ-filtration on $F\left(\Gamma^{*}\right)$ by setting

$$
a_{1} \otimes a_{2} \cdots \otimes a_{r} \in F\left(\Gamma^{*}\right)^{(p)} \quad\left(a_{i} \in I\left(\Gamma^{*}\right)\right)
$$

if a_{i} annihilates $I(\Lambda)$ for p-values of i. Let $\Omega=\Gamma / / \Lambda$.
PROPOSITION 2.3. The Λ-filtration of $F\left(\Gamma^{*}\right)$ gives rise to a trigraded spectral sequence with products, $E_{*}^{*, *, *}$ such that

$$
\begin{aligned}
E_{1}^{*, *, *} & =\operatorname{Ext}^{*, *}\left(Z_{2}, Z_{2}\right) \otimes F\left(\Omega^{*}\right) \\
E_{1}^{s, t, u} & =\sum_{u^{\prime}+u^{\prime \prime}=u} E x t_{\Omega}^{t, u^{\prime}}\left(Z_{2}, Z_{2}\right) \otimes F\left(\Omega^{*}\right)^{s, u^{\prime \prime}} \\
d_{r}: E_{r}^{s, t, u} & \rightarrow E_{r}^{s+r, t-r+1, u} \\
d_{r}(x \cdot y) & =d_{r}(x) y+x d_{r}(y) \\
E_{r+1} & =H\left(E_{r} ; d_{r}\right)
\end{aligned}
$$

$E_{\infty}^{s, n-s, t}$ gives a composition series for $E x t_{\Gamma}^{s, t}\left(Z_{2}, Z_{2}\right)$; the product structure of E_{∞} as the limit of the E_{r} agrees with the product structure of E_{∞} as the graded group associated to a filtration of $\operatorname{Ext} t_{\Gamma}^{*, *}\left(Z_{2}, Z_{2}\right)$.

Proof. We refer to the proof of Theorem 2.3.1 of [3]. We must verify that the condition Λ central in Γ may properly be weakened to Λ normal in Γ. Now actually the effect upon the proof in [3] of this weakening of the hypothesis is that the maps

$$
\begin{aligned}
& \mu_{*}: \bar{B}(\Lambda) \otimes(\bar{\Gamma})^{p} \rightarrow \bar{B}(\Gamma)^{(p)} \\
& \mu^{\prime}: B(\Omega) \otimes(\bar{\Omega})^{p} \rightarrow C^{(p)}
\end{aligned}
$$

([3], p. 40) fail to be chain maps (that is they do not commute with the differentials). The reduction

$$
\mu_{*}^{\prime}: \bar{B}(\Lambda) \otimes(\bar{\Omega})^{p} \rightarrow \bar{B}(\Gamma)^{(p)} / \bar{B}(\Gamma)^{(p-1)}
$$

will however remain a chain map since in fact μ^{\prime} deviates from being a chain map precisely by an error term in $\bar{B}(\Gamma)^{(p-1)}$.

We could also give the E_{2} term as $\operatorname{Ext}_{\Omega}\left(Z_{2}, \operatorname{Ext}_{\Gamma}\left(Z_{2}, Z_{2}\right)\right)$ but this would require a prior knowledge of the action of Ω on $\operatorname{Ext}_{\Gamma}\left(Z_{2}, Z_{2}\right)$; on the other hand the E_{1} term requires $F\left(\Omega^{*}\right)$ which is awkward in the general case but very simple for our applications in which $\Omega=K(n)$.

In fact let $\Gamma=C(n+1), \Lambda=C(n), \Omega=\Gamma / / \Lambda=K(n)$, and let the associated spectral sequence be denominated ${ }_{n} E$. Then $F\left(K(n)^{*}\right)$ is simply a polynomial algebra $Z_{2}\left[k_{n}\right], k_{n}$
of bigrading $\left(1,2^{n+2}-2\right)$, so we write

$$
\begin{aligned}
{ }_{n} E_{1} & =\operatorname{Ext}_{C(n)}\left(Z_{2}, Z_{2}\right) \otimes Z_{2}\left[k_{n}\right] \\
{ }_{n} E_{1}^{s, t, u} & =\operatorname{Ext}_{C(n)} t_{(n)-s\left(2^{n+2-2)}\right.}\left(Z_{2}, Z_{2}\right) \otimes k_{n}^{s}
\end{aligned}
$$

PROPOSITION 2.4. (Liulevicius [6]) $\operatorname{Ext}_{C(1)}^{*,}\left(Z_{2}, Z_{2}\right)$ has multiplicative generators $q_{0}, k_{0}, \tau_{0}, \omega_{0}, q_{j}(j>1)$ of bigradings $(1,1),(1,2),(3,7),(4,12),\left(1,2^{j+1}-1\right)$ respectively subject to the relations

$$
q_{0} k_{0}=0 \quad k_{0}^{3}=0 \quad k_{0} \tau_{0}=0 \quad \tau_{0}^{2}=q_{0}^{2} \omega_{0}
$$

$\operatorname{Ext}_{C(1)}^{* *}\left(Z_{2}, Z_{2}\right)$ thus is a free $Z_{2}\left[\omega_{0}, q_{2}, q_{3}, \ldots, q_{j}, \ldots\right]$ module.
This proposition may easily be reproven using ${ }_{0} E ; \operatorname{Ext}_{C(0)}^{*, *}\left(Z_{2}, Z_{2}\right)$ is of course just $Z_{2}\left[q_{0}, q_{1}, \ldots, q_{j}, \ldots\right]$ since $C(0)$ is an exterior algebra.

We now consider ${ }^{n} E, n>0$. Since $C(n)={ }^{\prime} C(n) \otimes^{\prime \prime} C(n)$ and " $C(n)$ is an exterior algebra we may write

$$
\begin{aligned}
\operatorname{Ext}_{C(n)}\left(Z_{2}, Z_{2}\right) & =\operatorname{Ext}_{{ }_{C(n)}} \otimes Z_{2}\left[q_{n+1}\right] \otimes Z_{2}\left[q_{n+2}, \ldots, q_{j}, \ldots\right] \\
\operatorname{Ext}_{C(n+1)}\left(Z_{2}, Z_{2}\right) & =\operatorname{Ext}_{\cdot(n+1)} \otimes Z_{2}\left[q_{n+2}, \ldots, q_{j}, \ldots\right] \\
{ }_{n} E & ={ }_{n}^{\prime} E \otimes Z_{2}\left[q_{n+2}, \ldots, q_{j}, \ldots\right]
\end{aligned}
$$

where ${ }_{n} E$ is the spectral sequence associated to ${ }^{\prime} C(n+1) / /^{\prime} C(n) \cong K(n)$.
THEOREM 2.5. All d_{r} in ${ }_{n} E$ are trivial for $r>3$. i.e. ${ }_{n} E_{4} \cong{ }_{n} E_{\infty}$.
Proof. We define a second grading, the " n-grading" on $C(n+1)={ }^{\prime} C(n+1) \otimes$ ${ }^{\prime \prime} C(n+1)$ by assigning n-grading 0 to $\left[1_{0}\right]$, to $[2], j<n$ and to $\left[1_{j}\right], j>n+1$ and n-grading 1 to $\left[2_{n}\right]$. It is readily verified that this gives a well defined grading on $C(n+1)$ and induces a fourth grading on ${ }_{n} E$ so that

$$
\begin{aligned}
& \operatorname{Ext}_{C(n)}\left(Z_{2}, Z_{2}\right) \in_{n} E_{1}^{*, *, *, 0} \\
& q_{n+1} \in_{n} E_{1}^{1,0,2^{n+2-1,1}} \\
& k_{n} \in_{n} E_{1}^{0,1,2^{n+2-2,1}} \\
& q_{j} \in_{n} E_{1}^{1,0,2^{j+1-1,0} \quad(j>n+1)}
\end{aligned}
$$

and so that d_{r} preserves the fourth grading. Direct computation shows that q_{n+1}^{4} persists to ${ }_{n} E_{\infty}$ and that ${ }_{n} E_{r}$ can be regarded as a free $Z_{2}\left[q_{n+1}^{4}\right]$ module for $r=1$; we show indirectly that this is true for all r. Assume then that ${ }_{n} E_{r}$ is a free $Z_{2}\left[q_{n+1}^{4}\right]$ module. To show that ${ }_{n} E_{r+1}$ is also a free $Z_{2}\left[q_{n+1}^{4}\right]$ module we must show that if $u \in_{n} E_{r}, d_{r} u=\left[q_{n+1}^{4}\right] \cdot w$ then there is a $u^{\prime} \epsilon_{n} E_{r}$ such that $d_{r} u^{\prime}=w$. Since $d_{r} u=\left[q_{n+1}^{4}\right] \cdot w$ u has fourth grading greater by 4 than that of w and a second grading 2 less than that of $w . \operatorname{In}{ }_{n} E_{1}$ the fourth grading minus the second grading gives the power of q_{n+1}, hence u is the image of an element of ${ }_{n} E_{1}$ which is there divisible by q_{n+1}^{4}. By induction
this divisibility persists to ${ }_{n} E_{r}$ so

$$
u=\left[q_{n+1}^{4}\right] u^{\prime}, \quad d_{r} u=\left[q_{n+1}^{4}\right] d_{r} u^{\prime}=\left[q_{n+1}^{4} w\right]
$$

and $u^{\prime}=w$.
Now suppose $d_{r} u \neq 0, r>3$. Then as before $u=\left[q_{n+1}^{4}\right] u^{\prime}, d_{r} u=\left[q_{n+1}^{4}\right] d_{r} u^{\prime}, d_{r} u \neq 0$ giving an absurd infinite regress and so proving the theorem.

Now let ω_{n} denote the class in $\operatorname{Ext}_{\boldsymbol{C (n + 1)}}\left(Z_{2}, Z_{2}\right)$ corresponding to the image of q_{n+1}^{4} in ${ }_{n} E_{\infty}$. We will (in line with our general notational policy) also refer to the corresponding (unique) element of $\operatorname{Ext}_{B}\left(Z_{2}, Z_{2}\right)$ as ω_{n}.

COROLLARY 2.6. $\operatorname{Ext}_{B}\left(Z_{2}, Z_{2}\right)$ is a free $Z_{2}\left[\omega_{0}, \omega_{1}, \ldots, \omega_{j}, \ldots\right]$ module. Note that we do have relations in $\operatorname{Ext}_{B}\left(Z_{2}, Z_{2}\right)$ of the form $u \cdot v=w \omega_{n}$ where u, v are not divisible by ω_{n}.

Let us consider the element k_{j} which arises in ${ }_{j} E_{1}$ and persists by reason of grading considerations to ${ }_{j} E_{\infty}$ to give an element of $\operatorname{Ext}_{C_{(j+1)}^{1,2 j+2}}\left(Z_{2}, Z_{2}\right)$ which cannot (again for grading considerations) be killed in ${ }_{j^{\prime}} E\left(j^{\prime}>j\right)$ and so determines an element (also called) $k_{j} \in \operatorname{Ext}_{B}\left(Z_{2}, Z_{2}\right)$. Direct computation shows that these k_{j} together with $q_{0} \in \operatorname{Ext}_{B}^{1,1}\left(Z_{2}, Z_{2}\right)$ complete the description of $\operatorname{Ext}_{B}^{1, *}\left(Z_{2}, Z_{2}\right)$. (The elements [2 $\left.{ }_{j}\right]$, [1_{0}] constitute a minimal set of polynomial generators of $B ; k_{j}, q_{0}$ are their duals.)

The element q_{j+1} must therefore perish; it can do so only in ${ }_{j} E$ and only via $d_{1} q_{j+1}=q_{0} k_{j}$. However the class $q_{j+1} k_{i}(j>i)$ which arises in ${ }_{i} E$ is not killed in ${ }_{j} E$ as $d_{1}\left(q_{j+1} k_{i}\right)=q_{0} k_{i} k_{j}$ but $q_{0} k_{i} k_{j}=0$ in ${ }_{j} E$ as already in ${ }_{i} E q_{0} k_{i}$ has been killed by q_{i+1}.

There is a well-defined element

$$
\gamma_{i, j} \in E x t_{B}^{2,2^{i+2}+2^{j+2-3}}\left(Z_{2}, Z_{2}\right)
$$

corresponding to $q_{j+1} k_{i}$.
Similarly, the element $q_{0} q_{j+1}^{2}$ is not killed in ${ }_{j} E$ as while $d_{2}\left(q_{j+1}^{2}\right)=k_{0} k_{j}^{2}, d_{2}\left(q_{0} q_{j+1}^{2}\right)$ $=q_{0} k_{0} k_{j}^{2}=d_{1}\left(q_{j+1} k_{0} k_{j}\right)=0 \epsilon_{j} E_{2}$, so $q_{0} q_{j+1}^{2}$ determines a class

$$
\tau_{j} \in \operatorname{Ext}_{B}^{3,2^{j+3}-1}\left(Z_{2}, Z_{2}\right)
$$

(If $j=0$ replace d_{2} by d_{3} in the preceding). For $j>0$ the definition of τ_{j} is subject to an indeterminancy of $k_{j} \gamma_{0, j}$. More generally let $j(i), 1 \leqslant i \leqslant n$ be a strictly increasing sequence of nonnegative integers. Corresponding to

$$
q_{0} q_{j(1)+1}^{2} \cdots q_{j(i)+1}^{2} \ldots q_{j(n)+1}^{2}
$$

we have a class
$\tau_{j(1), \ldots, j(i), \ldots, j(n)}$
Now suppose $0 \leqslant i<j<k . \operatorname{In}_{k} E$
$\gamma_{j, k}$ is represented by $q_{k+1} k_{j}$
$\gamma_{i, k}$ is represented by $q_{k+i} k_{i}$
$\gamma_{i, j}$ is represented by $\gamma_{i, j}$ (coming from $q_{j+1} k_{i}$ in $\left.{ }_{j} E\right)$.
There are also elements $\gamma_{i, j} k_{k}$ and $q_{k} k_{i} k_{j}$ in ${ }_{k} E$ (persisting to ${ }_{k} E_{\infty}$). We see at once that

$$
k_{k} \gamma_{i, j} \neq 0, \quad k_{i} \gamma_{j, k} \neq 0, \quad k_{j} \gamma_{i, k} \neq 0
$$

and

$$
k_{i} \gamma_{j, k}=k_{j} \gamma_{i, k}+c k_{k} \gamma_{i, j}
$$

where $c \in Z_{2}$ represents an extension problem. But there is an automorphism Π on B as an ungraded Hopf algebra which interchanges $\left[1_{j+1}\right]$ and $\left[1_{k+1}\right]$ and $\left[2_{j}\right]$ and $\left[2_{k}\right]$. The corresponding (non-grading preserving) automorphism Π^{*} on $\operatorname{Ext}_{B}\left(Z_{2}, Z_{2}\right)$ has

$$
\begin{aligned}
\Pi^{*} k_{i}=k_{i} & \Pi^{*} \gamma_{i, j}=\gamma_{i, k} \\
\Pi^{*} k_{j}=k_{k} & \Pi^{*} \gamma_{i, k}=\gamma_{i, j} \\
\Pi^{*} k_{k}=k_{j} & \Pi^{*} \gamma_{j, k}=\gamma_{j, k}
\end{aligned}
$$

so that

$$
k_{i} \gamma_{j, k}=k_{k} \gamma_{i, j}+c k_{j} \gamma_{i, k}
$$

Now $c=0$ would imply

$$
k_{i} \gamma_{j, k}=k_{j} \gamma_{i, k}=k_{k} \gamma_{i, j}
$$

but we have seen that $k_{i} \gamma_{j, k}, k_{j} \gamma_{i, k}, k_{k} \gamma_{i, j}$ must generate a two-dimensional Z_{2}-vector space in $\operatorname{Ext}_{B}\left(Z_{2}, Z_{2}\right)$ so $c=1$ and we have the relation

$$
k_{i} \gamma_{j, k}+k_{j} \gamma_{i, k}+k_{k} \gamma_{i, j}=0
$$

The symmetries of B are thus very useful for the study of $\operatorname{Ext}_{B}\left(Z_{2}, Z_{2}\right)$. They may be used for example to show that for $0<i<j$,

$$
\left(\gamma_{i, j}\right)^{4}=k_{i}^{4} \omega_{j}+k_{j}^{4} \omega_{i}
$$

(It is also true, but more difficult to establish that $\left(\gamma_{0, j}\right)^{4}=k_{j}^{4} \omega_{0}$.)
It is clear that $\operatorname{Ext}_{B}\left(Z_{2}, Z_{2}\right)$ contains a free polynomial ring generated by the ω_{i} and the $k_{j}(j>0)$. As an application we observe that the spectral sequences show that $k_{2} \tau_{0,1}$ is the unique non-zero element in $\operatorname{Ext}_{B}^{6,35}\left(Z_{2}, Z_{2}\right)$. On the other hand $\left[\left(\gamma_{0,1}\right)^{2}\left(\gamma_{0,2}\right)\right]^{4}=k_{1}^{8} k_{2}^{4} \omega_{0}^{3} \neq 0$ so we have, using symmetry, $i, j>0, i \neq j$

$$
k_{i} \tau_{0, j}=\left(\gamma_{0, j}\right)^{2}\left(\gamma_{0,1}\right)
$$

Let us fix $\tau_{j}, j>0$, by requiring that $k_{0} \tau_{j}=0$. Then we have (by computations such as those above):

THEOREM 2.7. The following are some of the relations holding in $\operatorname{Ext}_{B}\left(Z_{2}, Z_{2}\right)$. (In each case $0 \leqslant i<j<k<l$.)

$$
\begin{aligned}
& q_{0} k_{i}=0 \quad k_{0} k_{i}^{2}=0 \quad q_{0} \gamma_{i, j}=k_{0} k_{i} k_{j} \quad k_{0} k_{i} k_{j} k_{k}=0 \quad\left(\gamma_{i, j}\right)^{4}=k_{i}^{4} \omega_{j}+k_{j}^{4} \omega_{i} \\
& k_{i} \gamma_{j, k}+k_{j} \gamma_{i, k}+k_{k} \gamma_{i, j}=0 \quad \gamma_{i, j} \gamma_{k, l}+\gamma_{i, k} \gamma_{j, l}+\gamma_{i, l} \gamma_{j, k}=0 \quad k_{0} \tau_{i}=0 \\
& k_{j} \tau_{j} \equiv 0 \bmod k_{j}^{2} \gamma_{0, j} \quad k_{j} \tau_{k} \equiv 0 \bmod k_{k}^{2} \gamma_{0, j} \\
& k_{j} \tau_{0} \equiv 0 \bmod k_{0}^{2} \gamma_{0, j} \quad \tau_{0}^{2}=q_{0}^{2} \omega_{0} \\
& \tau_{j}^{2} \equiv q_{0}^{2} \omega_{j} \bmod k_{j}^{2}\left(\gamma_{0, j}\right)^{2}, \quad k_{0} \tau_{0, j}=0, \quad k_{j} \tau_{0, j}=\left(\gamma_{0, j}\right)^{3}, \\
& k_{k} \tau_{0, j}=\left(\gamma_{0, k}\right)\left(\gamma_{0, j}\right)^{2}, \quad k_{0}\left(\gamma_{i, j}\right)^{2}=0, \quad \tau_{I} \tau_{J}=\left(q_{0} \tau_{K} I I_{i \in I \cap J} \omega_{i}\right)+\text { other terms }
\end{aligned}
$$

where $K=(I \cup J)-(I \cap J), \tau_{\phi}=q_{0}$. Although we have not described $\operatorname{Ext}_{B}\left(Z_{2}, Z_{2}\right)$ completely (there are even irreducible generators which have not been mentioned) the above information is sufficient to yield Table I which describes $\operatorname{Ext}_{B}^{s, t}\left(Z_{2}, Z_{2}\right)$ for $t-s \leqslant 31$; actions of q_{0} and k_{0} are described by vertical and diagonal lines respectively.

TABLE I

Table I (Continued)

III. Characteristic Numbers and the Differentials

Let $H^{* *}(B S p ; Q)$ denote the direct product of the $H^{n}(B S p ; Q)$.
It is well known that there is a pairing
$H^{* *}(B S p ; Q) \otimes \Omega_{*}^{S p} \rightarrow Q$
which enables us to define symplectic (rational cohomology) characteristic numbers on the symplectic cobordism classes. Each non-zero element of $H^{4 n}(B S p ; Q)$ defines a non-trivial evaluation map $\Omega_{4 n}^{S p} \rightarrow Q$.

For each partition ω on the integer n Stong [10] has defined a class $s_{\omega}\left(e_{p}\right) T \epsilon$ $H^{* *}(B S p ; Q)$ with the property that if M is a $4 k$-dimensional symplectic manifold $S_{\omega}\left(e_{p}\right) T[M]$ is an integer and is an even integer if $n+k \equiv 1(\bmod 2)$.

By detailed computations we have established:
PROPOSITION 3.1. Every cohomology characteristic number on 8 and 20 dimensional symplectic manifolds is divisible by 4 ; on 16 and 24 dimensional symplectic manifolds by 2.

In the case of 8-dimensional manifolds our calculations are easily exhibited. If M is an 8-dimensional $S p$-manifold $S_{1}\left(e_{p}\right) T[M]=(1 / 6) S_{1^{2}}(p)[M]$ and $S_{\phi}\left(e_{p}\right) T[M]=$ $=(1 / 240) S_{2}(p)+(1 / 144) S_{1^{2}}(p)[M]$ where $S_{2}(p)$ and $S_{1^{2}}(p)$ generate $H^{8}(B S p ; Z)$. The condition that $(1 / 6) S_{1^{2}}(p)$ [M] be even implies that $S_{1^{2}}(p)$ [M] is divisible by 4 ; this together with the requirement that $(1 / 240) S_{2}(p)[M]+(1 / 144) S_{1^{2}}(p)[M]$ be integral gives that $S_{2}(p)[M]$ and so also any integral cohomology characteristic number is divisible by 4.

The following has been proven by D. W. Anderson (unpublished).

PROPOSITION 3.2. Let M be a connected spectrum, S the sphere spectrum, $u \in E_{\infty}^{s, t}(M)$ such that $h_{0}^{n} \cdot u \neq 0$ for all non-negative $n\left(h_{0}\right.$ the generator of $E_{\infty}^{1,1}(S)$). Let $f: S \rightarrow M$ be represented by u. Then the image of $H^{*}(M, Z)$ in $H^{*}(S, Z)$ under f^{*} contains elements not divisible by 2^{s+1}. (We allow f to be a map of spectra which changes indexing.)

The proof of Proposition 3.2 depends upon the fact that it is possible to map M into $K(Z)$ (the Eilenberg-MacLane spectrum) so that u is in the image of the induced map $E_{\infty}(K(Z)) \rightarrow E_{\infty}(M)$. The general result for M then follows from the case of $K(Z)$; the proposition is however obvious for $M=K(Z)$.

PROPOSITION 3.3.

(i) $d_{2} v_{2}=\gamma_{0,1}$, (ii) $d_{2} v_{4}=\gamma_{0,2}$, (iii) $d_{3} v_{2}^{2}=k_{1}^{3}$,
(iv) $d_{2} v_{5}=\gamma_{1,2}$, (v) $d_{3} v_{6}=k_{1}^{2} k_{2}$, (vi) $d_{2} v_{8}=\gamma_{0,3}$,

Proof. Putting together Propositions 3.1 and 3.2 we have at once that $v_{2}, q_{0} v_{2}$, $v_{4}, v_{2}^{2}, v_{5}, q_{0} v_{5}$ and v_{6} cannot persist to $E_{\infty}(M S p)$. This implies parts (i)-(v).

From the results of Anderson, Brown and Peterson [4] and analysis of the map of Adams spectral sequences induced by the standard map of $M S p$ to $M S U$ we may obtain (vi).

Putting Proposition 3.3 together with Proposition 2.1, Theorem 2.7 and Table I we are able to compute the Adams spectral sequence for $M S p$ completely through the 31-stem save for two unsettled questions:
i) The value of $d_{3}\left(v_{4}^{2}\right)$. (We conjecture that it is $k_{1} k_{2}^{2}$.)
ii) Is $k_{1}^{3} v_{4}+k_{2} k_{1}^{2} v_{2}$ an infinite cycle?

Our results concerning $E_{\infty}(M S p)$ are depicted in Table II. Since $d_{2}\left(v_{2}^{4}\right)=d_{3}\left(v_{2}^{4}\right)=0$ it is now obvious that v_{2}^{4} is an infinite cycle and Theorem 1.1 follows.

We now turn to the extension problems involved in passing from $E_{\infty}(M S p)$ to $\Omega_{*}^{S p} . \Omega_{10}^{S_{p}}=Z_{2} \oplus Z_{2}$ where one Z_{2} is the square of the $\Omega_{5}^{S p}$ generator and the other is the product of the generators of $\Omega_{1}^{S p}$ and $\Omega_{9}^{S p}$. Multiplication by the generator of $\Omega_{1}^{S p}$ induces an isomorphism between $\Omega_{13}^{S p}$ and $\Omega_{14}^{S p}$; this implies $\Omega_{13}^{S p} \simeq \Omega_{14}^{S p} \simeq Z_{2} \oplus Z_{2}$. In the 16 -stem there is a non-trivial extension since the element $k_{0} \gamma_{0,1} v_{2}$ goes into a non-zero element in $E_{\infty}(M S U)$ but $\Omega_{16}^{S U}$ is torsion free. (In fact careful analysis of

TABLE II

characteristic numbers shows that twice the class represented by $k_{0} \gamma_{0,1} v_{2}$ is represented by $\tau_{0,1}$.) Utilizing multiplication by k_{1} as well as k_{0} in $E_{\infty}(M S p)$ it is possible to show that all elements of the $17,18,21$ and 22 stems of $\Omega_{*}^{S p}$ are of order 2.

There are clearly no extension problems in the 20 -stem while in the 24 -stem we have a situation corresponding to that in the 16 -stem (with $k_{0} \gamma_{0,1} \omega_{0} v_{2}$ and $\tau_{0,1} \omega_{0}$ replacing $k_{0} \gamma_{0,1} v_{2}$ and $\tau_{0,1}$ respectively). Beyond the 24 -stem we have not succeeded in resolving the extension problems. Also, some very elementary questions on the ring structure are left open. For example we do not know if the product of the class represented by $k_{0}^{2} \gamma_{0,1} v_{2}$ by the class represented by k_{0} is trivial or not. (If it is trivial then $\Omega_{25}^{S p}$ is the sum of six copies of Z_{2}.)

BIBLIOGRAPHY

[1] J. F. Adams, On the cobar construction, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), pp. 409-412.
[2] -, On the structure and applications of the Steenrod algebra, Comm. Math. Helv. 32 (1958), pp. 180-214.
[3] -, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2), 72 (1960) pp. 20-104.
[4] D. W. Anderson, E. H. Brown, Jr. and F. P. Peterson, SU-cobordism KO-characteristic numbers and the Kervaire invariant, Ann. of Math. (2), 83 (1966), pp. 54-67.
[5] R. Lashoff, Some theorems of Browder and Novikov on homotopy equivalent manifolds with applications (University of Chicago).
[6] A. Liulevicius, Notes on homotopy of Thom spectrum. Amer. J. of Math. 86 (1964), pp. 1-6.
[7] ——, Multicomplexes and a general change of rings theorem (to appear).
[8] J. Milnor, The Steenrod algebra and its deal, Ann. of Math. (2), 67 (1968), pp. 150-171.
[9] -, On the cobordism ring and a complex analogue, I, Amer. J. of Math. 82 (1960), pp. 505-521.
[10] R. Stong, Some remarks on symplectic cobordism, Ann. of Math. (2) 86 (1967), pp. 425-433. University of Illinois at Chicago Circle

Received in revised version August 22, 1969

[^0]: ${ }^{1}$) The author was partially supported by the N.S.F. during this work.

