An Algebraic Classification of some Knots of Codimension Two.

Autor(en): Levine, J.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 45 (1970)

PDF erstellt am: $\quad 11.07 .2024$
Persistenter Link: https://doi.org/10.5169/seals-34652

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

An Algebraic Classification of Some Knots of Codimension Two ${ }^{1}$)

by J. Levine

An n-knot will denote a smooth oriented submanifold K of the $(n+2)$-sphere S^{n+2}, where K is homeomorphic to S^{n}. If n is odd, one can associate to K a square integral matrix A, called a Seifert matrix of K, using a submanifold of S^{n+2} bounded by K (see [13] for $n=1$, and [4] or [8] in general). When $n=1$, it is known that two Seifert matrices of isotopic knots are related by certain algebraic "moves" (see [11], [16]). In this paper we will generalize this fact to all n. We then consider, for n odd, n-knots (referred to as simple) whose complements are of the same ($(n-1) / 2)$ type as a circle, i.e. $\Pi_{q}\left(S^{n+2}-K\right) \approx \Pi_{q}\left(S^{1}\right)$ for $q \leqslant(n-1) / 2$. This is the most that can be asked without making K unknotted (see [7]). We will show that two simple n-knots ($n \geqslant 3$) are isotopic if and only if their Seifert matrices are related by such "moves". Thus it will follow that the semi-group of isotopy classes of simple n-knots depends only on the residue class, $\bmod 4$, of n for $n \geqslant 4$.

By contrast, Lashof and Shaneson [6] (and, independently, Browder) have shown that the isotopy class of an $n-\operatorname{knot}(n \geqslant 3) K$, whose complement is of the same 1-type as a circle is determined by the homotopy type of its exterior pair $(X, \partial X)$, where X is the complement of an open tubular neighborhood of K in S^{n+2}-except for one other possible knot $\tau(K)$, obtained from K by removing a tubular neighborhood twisting, and reinserting in S^{n+2}. It is not known whether $\tau(K)$ is ever different from K. As a straightforward application, we will show that $\tau(K)$ is isotopic to K if K is simple.

We conclude with some remarks on the algebraic problems which arise.

1. Let K be a $(2 q-1)$-knot in $S^{2 q+1}$. We recall the definition of a Seifert matrix of K. Let M be a smooth oriented submanifold of $S^{2 q+1}$ bounded by K. The l-pairing of M :

$$
\theta: H_{q}(M) \otimes H_{q}(M) \rightarrow \mathbf{Z}
$$

is defined by letting $\theta(\alpha \otimes \beta)$ be the linking number $L\left(z_{1}, z_{2}\right)$, where z_{1} is a cycle in M representing α and z_{2} is the translate in the positive normal direction off M of a cycle in M representing β. A Seifert matrix A of K is then a representative matrix of θ with respect to a basis of the torsion-free part of $H_{q}(M)$ - see e.g. [8].

We recall also the formula [8]:

$$
\theta(\alpha \otimes \beta)+(-1)^{q} \theta(\beta \otimes \alpha)=\alpha \cdot \beta
$$

[^0]where $\alpha \cdot \beta$ is the intersection number in M. Thus $A+(-1)^{q} A^{T}$ is unimodular $\left(A^{T}\right.$ is the transpose of A) and, if $q=2, A+A^{T}$ has signature a multiple of 16 (see [9]).
2. Let A be a square integral matrix. Any matrix of the form:
\[

\left($$
\begin{array}{ccc}
A & 0 \\
\alpha & 0 & 0 \\
0 & 1 & 0
\end{array}
$$\right) or\left($$
\begin{array}{ccc}
A & \beta & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}
$$\right)
\]

where α is a row vector, β a column vector, will be called an elementary enlargement of A. A is an elementary reduction of any of its elementary enlargements. Two matrices (or their associated pairings) are equivalent if they can be connected by a chain of elementary enlargements, reductions and unimodular congruences. It is proved in [11] that Seifert matrices of isotopic 1-knots are equivalent. We shall prove:

THEOREM 1: Seifert matrices of isotopic knots of any (odd) dimension are equivalent.

THEOREM 2: Let q be a positive integer and A a square integral matrix such that $A+(-1)^{q} A^{T}$ is unimodular and, if $q=2, A+A^{T}$ has signature a multiple of 16 . If $q \neq 2$, there is a simple $(2 q-1)$-knot with Seifert matrix A; if $q=2$, there is a simple 3-knot with Seifert matrix equivalent to A.

THEOREM 3: Let $q \geqslant 2$ and K_{1}, K_{2} simple ($2 q-1$)-knots with equivalent Seifert matrices. Then K_{1} is isotopic to K_{2}.
3. Proof of Theorem 1: Suppose K_{1}, K_{2} are isotopic $(2 q-1)$-knots bounding manifolds M_{1}, M_{2}, respectively, of $S^{2 q+1}$. We first construct a submanifold V (with corners) of $I \times S^{2 q+1}$ meeting $0 \times S^{2 q+1}$ along $0 \times M_{1}$ and $1 \times S^{2 q+1}$ along $1 \times M_{2}$ with boundary the union of $0 \times M_{1} ; 1 \times M_{2}$ and the trace X of an isotopy from K_{1} to K_{2}. We use the Pontriagin-Thom construction as follows. First construct a normal vector field to $\left(0 \times M_{1}\right) \cup X \cup\left(1 \times M_{2}\right)=Y$ in $\dot{I} \times S^{2 q+1}$, which is tangent to $\dot{I} \times S^{2 q+1}$ along $0 \times M_{1} \cup 1 \times M_{2}$. If $q \neq 1$, there is no obstruction. If $q=1$, the obstruction to extending such a vector field from $0 \times M_{1} \cup 1 \times M_{2}$ over Y is the difference in its winding numbers about K_{1} and K_{2}. But since the field is defined over M_{1} and M_{2}, these winding numbers are zero.

Let T be a tubular neighborhood of X. We can "translate" $(X, v \mid X)$ to a framed submanifold of ∂T which agress with the framed submanifold $\left(0 \times M_{1} \cup 1 \times M_{2}, v\right)$ on $\partial T \cap\left(\dot{I} \times S^{2 q+1}\right)$. Let $W=\overline{I \times S^{2 q+1}-T}$; the Pontriagin-Thom construction on the above framed submanifolds of ∂W determines a map $\partial W \rightarrow S^{1}$. An extension of
this map over W will determine the desired V. The obstruction lies in

$$
H^{2}(W, \partial W) \approx H^{2}\left(I \times S^{2 q+1}, X \cup \dot{I} \times S^{2 q+1}\right) \approx H^{1}\left(X \cup \dot{I} \times S^{2 q+1}\right)=0 .
$$

4. Now let $\Phi^{\prime}: V \rightarrow I$ be the "height" function defined by the restriction of the projection $I \times S^{2 q+1} \rightarrow I$. We may assume Φ^{\prime} has no critical points in a neighborhood of ∂V (omitting corners). Let Φ be a C^{2}-approximation to Φ^{\prime} which agrees with Φ^{\prime} in a neighborhood of ∂V and has only non-degenerate critical points (except at corners) which are mapped one-one into I (see e.g. [10]). We can move V so that Φ becomes the new height function. In fact if $p: V \rightarrow S^{2 q+1}$ is defined by the projection $I \times S^{2 q+1} \rightarrow$ $\rightarrow S^{2 q+1}$ and Φ is a close enough approximation to Φ^{\prime}, then $x \mapsto(\Phi(x), p(x))$ defines a new imbedding $V \rightarrow I \times S^{2 q+1}$ which agrees with the original inclusion near ∂V and has Φ as its new height function.
5. Let $0=t_{0}<t_{1}<\cdots<t_{k}=1$ be a partition of I satisfying
(i) each t_{i} is a regular value of Φ,
(ii) at most one critical value of Φ lies in each interval $\left(t_{i}, t_{i+1}\right)$.

Let $\Phi^{-1}\left(t_{i}\right)=t_{i} \times M_{i}^{\prime}$; then each M_{i}^{\prime} is bounded by a knot isotopic to K_{0} and K_{1}, and $M_{0}^{\prime}=M_{1}, M_{k}^{\prime}=M_{2}$. This shows that it suffices to consider the case where Φ has only one critical point.

LEMMA 1: Let $\alpha, \alpha^{\prime} \in H_{q}\left(M_{1}\right)$ and $\beta, \beta^{\prime} \in H_{q}\left(M_{2}\right)$ and suppose that α is homologous to β and α^{\prime} homologous to β^{\prime} in V. Then $\theta_{1}\left(\alpha, \alpha^{\prime}\right)=\theta_{2}\left(\beta, \beta^{\prime}\right)$, where θ_{i} is the l-pairing of M_{i}.

Proof: Let C, C^{\prime} be $(q+1)$-chains in V such that $\partial C=\alpha-\beta, \partial C^{\prime}=\alpha^{\prime}-\beta^{\prime}$. Then it follows from the definition of θ_{1}, θ_{2} that $\theta_{1}\left(\alpha, \alpha^{\prime}\right)-\theta_{2}\left(\beta, \beta^{\prime}\right)$ is the intersection number of C and the translate of C^{\prime} off V in the positive normal direction - but this is obviously zero.
6. Now consider the following diagram:

consisting of the exact homology sequences of $\left(V, M_{1}\right)$ and $\left(V, M_{2}\right)$. If the index of
the critical point of Φ is not q or $q+1$, then

$$
H_{q}\left(V, M_{1}\right)=H_{q+1}\left(V, M_{1}\right)=H_{q}\left(V, M_{2}\right)=H_{q+1}\left(V, M_{2}\right)=0
$$

and we have

$$
H_{q}\left(M_{1}\right) \approx H_{q}(V) \approx H_{q}\left(M_{2}\right)
$$

It follows from Lemma 1 that θ_{1} and θ_{2} are congruent.
If the index of the critical point of Φ is q, then

$$
H_{q}\left(V, M_{1}\right) \approx H_{q+1}\left(V, M_{2}\right) \approx Z
$$

and

$$
H_{q}\left(V, M_{2}\right)=H_{q+1}\left(V, M_{1}\right)=0 .
$$

If $\alpha \in H_{q}\left(M_{2}\right)$ is the image of a generator of $H_{q+1}\left(V, M_{2}\right)$, then the composite

$$
H_{q}\left(M_{2}\right) \rightarrow H_{q}(V) \rightarrow H_{q}\left(V, M_{1}\right) \approx \mathbf{Z}
$$

can be defined by $\beta \rightarrow \alpha \cdot \beta=$ intersection number ${ }^{\mathrm{i}} \mathrm{n}_{2}$ (see [5]). If α has finite order, then it follows that $H_{q}\left(M_{1}\right) \approx H_{q}(V) \approx H_{q}\left(M_{2}\right)$, modulo torsion, and, therefore, θ_{1} and θ_{2} are congruent modulo torsion.
7. Suppose α has infinite order; then α is a multiple of a primitive element α_{0} and there exists $\beta_{0} \in H_{q}\left(M_{2}\right)$ with $\alpha_{0} \cdot \beta_{0}=1$. Suppose $\gamma_{1}^{\prime}, \ldots, \gamma_{s}^{\prime} \in H_{q}\left(M_{2}\right)$ such that:
(i) γ_{i}^{\prime} is homologous to γ_{i} in V, and
(ii) $\alpha_{0}, \beta_{0}, \gamma_{1}^{\prime}, \ldots, \gamma_{s}^{\prime}$ is a basis of $H_{q}\left(M_{2}\right)$, modulo torsion.

We now examine θ_{2} on the elements $\alpha_{0}, \beta_{0}, \gamma_{1}^{\prime}, \ldots, \gamma_{s}^{\prime}$. By Lemma 1 we can conclude from (i) that $\theta_{2}\left(\gamma_{i}^{\prime}, \gamma_{j}^{\prime}\right)=\theta_{1}\left(\gamma_{i}, \gamma_{j}\right)$. Since α is null-homologous in $V, \theta_{2}\left(\alpha, \gamma_{i}^{\prime}\right)=$ $=\theta_{1}\left(0, \gamma_{i}\right)=0$ and $\theta_{2}(\alpha, \alpha)=\theta_{2}(0,0)=0$. Thus $\theta_{2}\left(\alpha_{0}, \gamma_{i}^{\prime}\right)=\theta_{2}\left(\alpha_{0}, \alpha_{0}\right)=0$; similarly $\theta_{2}\left(\gamma_{i}^{\prime}, \alpha_{0}\right)=0$. We also recall that (§1):

$$
\theta_{2}\left(\alpha_{0}, \beta_{0}\right)+(-1)^{q} \theta_{2}\left(\beta_{0}, \alpha_{0}\right)=-\alpha_{0} \cdot \beta_{0}=-1
$$

8. We may summarize this as follows. Let A be the matrix representative of θ_{1} with respect to the basis $\gamma_{1}, \ldots, \gamma_{s}$. The the matrix representative of θ_{2} with respect to the basis $\gamma_{1}^{\prime}, \ldots, \gamma_{s}^{\prime}, \alpha_{0}, \beta_{0}$ has the form:

$$
B=\left(\begin{array}{c|cc}
A & 0 & \\
\mathbf{1} & \vdots & \eta \\
\hline 0 \ldots 0 & 0 & x \\
\xi & x^{\prime} & y
\end{array}\right)
$$

where x, y are integers, $x+(-1)^{q} x^{\prime}=-1, \xi$ is a row vector and η is a column vector.

Recall from e.g. [8] that the polynomial $\Delta_{A}(t)=\operatorname{det}\left(t A+(-1)^{q} A^{T}\right)$, where A is a Seifert matrix for a knot K, is an invariant of the isotopy class of K (up to multiplication by a unit in $\left.\mathbf{Z}\left[t, t^{-1}\right]\right)$. But it is easily verified that:

$$
\Delta_{B}(t)=\left(t x+(-1)^{q} x^{\prime}\right)\left(t x^{\prime}+(-1)^{q} x\right) \Delta_{A}(t)
$$

Thus x (or x^{\prime}) is zero, since $x \pm x^{\prime}=-1$, then $x^{\prime}($ or x) is ± 1. It now is easily checked that B is congruent to an elementary enlargement of A.
9. If the index of the critical point of Φ is $q+1$; then its index as a critical point of $-\Phi$ is q. The preceding arguments apply to show that θ_{2} is congruent to θ_{1}, or has, as representative matrix, an elementary reduction of a representative matrix of θ_{1}.

This completes the proof of Theorem 1.
10. Proof of Theorem 2: For $q \neq 2$, this is proved in [4] (see also [9]). For $q=2$, we must show that A is equivalent to a matrix B, where $B+B^{T}$ is a matrix representative of the intersection pairing of some simply-connected closed 4-manifold. By an argument in [9], such a B can be obtained by adding enough blocks $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ to A; but this is a sequence of elementary enlargements of A, so B is equivalent to A.
11. Proof of Theorem 3: We reduce Theorem 3 to two lemmas. Recall (see [7]) that a simple $(2 q-1)$-knot bounds a $(q-1)$-connected submanifold of $S^{2 q+1}$. A Seifert matrix obtained from the l-pairing of such a submanifold will be called special.

LEMMA 2: Let K be a simple $(2 q-1)$-knot with a special Seifert matrix A. If B is an elementary enlargement of A, then B is also a special Seifert matrix of K.

LEMMA 3: If $q \geqslant 2$, then simple ($2 q-1$)-knots admitting identical special Seifert matrices are isotopic.
12. We first show that Theorem 3 follows from Lemmas 2 and 3. Let K, K^{\prime} be simple ($2 q-1$)-knots with equivalent Seifert matrices, $q \geqslant 2$. Let A, A^{\prime} be special Seifert matrices of K, K^{\prime}, respectively. Thus there exists a sequence: $A=A_{1}, A_{2}, \ldots, A_{k}=A^{\prime}$, where each A_{i+1} is unimodularly congruent to an elementary enlargement or reduction. of A_{i} It follows from Theorem 2 that, for $q>2$, each A_{i} is a special Seifert matrix of a simple ($2 q-1$)-knot K_{i} (actually the proof of Theorem 2 (see [4]) realizes S as a special Seifert matrix of a simple knot). If $q=2$, we can enlarge each A_{i} by adding a constant number of blocks $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ to obtain a new sequence $A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{k}^{\prime}$. Each A_{i+1}^{\prime} is again congruent to an elementary enlargement or reduction of A_{i}^{\prime} - and it
now follows from the argument in $\S 10$ that each A_{i}^{\prime} is a special Seifert matrix of a simple 3-knot K_{i}.

We now prove that each K_{i} is isotopic to K_{i+1}. Suppose A_{i+1} is congruent to an elementary enlargement of A_{i}. It follows from Lemma 2 that A_{i+1} (or A_{i+1}^{\prime}) is a special Seifert matrix of K_{i}. Then Lemma 3 implies K_{i} and K_{i+1}, both of which now admit A_{i+1} (or A_{i+1}^{\prime}) as a special Seifert matrix, are isotopic. If A_{i+1} is congruent to an elementary reduction of A_{i}, the same argument works, switching the roles of K_{i} and K_{i+1}.

We may as well have chosen $K_{1}=K$ and $K_{k}=K^{\prime}$ if $q>2$, but if $q=2$ we need to show that K_{1} is isotopic to K and K_{k} is isotopic to K^{\prime}. It follows from Lemma 2 that A_{1}^{\prime} is a special Seifert matrix of K, since A_{1}^{\prime} is obtained from A_{1} by a sequence of elementary enlargements. Then Lemma 3 implies K and K_{1} are isotopic - similarly for K^{\prime} and K_{k}.
13. Proof of Lemma 2: Let M be a ($q-1$)-connected submanifold of $S^{2 q+1}$ bounded by K, and $\alpha_{1}, \ldots, \alpha_{n}$ a basis of $H_{q}(M)$, modulo torsion, such that A is the corresponding matrix representative of the l-pairing of M. Let x_{1}, \ldots, x_{n} be an arbitrary sequence of integers. It follows from Alexander duality that there exists a cycle $z \in H_{q}\left(S^{q+1}-M\right)$ such that the linking numbers $L\left(z, \alpha_{i}\right)=x_{i}$, for $i=1, \ldots, n$. Now $S^{2 q+1}-M$ is $(q-1)$ connected and so z is spherical; by general position, z can be represented by an imbedded q-sphere $\sigma \subset S^{2 q+1}-M$. The normal bundle to σ is trivial and so a tubular neighborhood T can be identified with $\sigma \times D^{q+1}$ - we may assume T disjoint from M. Orient ∂T so that the positive normal direction in $S^{2 q+1}$ points into T and let M^{\prime} be the connected sum in $S^{2 q+1}$ of M and ∂T. Then $H_{q}\left(M^{\prime}\right)$ has rank two greater than the rank of $H_{q}(M)$, and $\alpha_{1}, \ldots, \alpha_{n}$ may be extended to a basis of $H_{q}\left(M^{\prime}\right)$, modulo torsion, by adjoining the homology classes β_{1}, β_{2} of $\sigma \times y_{0}$ and $x_{0} \times S^{q} \subset \sigma \times S^{q}=\partial T$, respectively. The representative matrix of the l-pairing of M^{\prime} with respect to the basis $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}$ is

$$
\left(\begin{array}{c|cc}
A & \pm x_{1} & 0 \\
\vdots & \vdots \\
\frac{ \pm x_{n}}{} & 0 \\
x_{1} \ldots x_{n} & x & 0 \\
0 \ldots 0 & \pm 1 & 0
\end{array}\right)
$$

which is congruent to:

$$
\left(\begin{array}{c|cc}
A & 0 & 0 \\
\boldsymbol{A} & \vdots & \vdots \\
x_{1} \ldots x_{n} & 0 & 0 \\
0 \ldots 0 & 1 & 0
\end{array}\right)
$$

If z is chosen so that $L\left(\alpha_{i}, z\right)=x_{i}$ for $i=1, \ldots, n$, and ∂T is oriented so that the positive normal direction points out from T, then the representative matrix of the l-pairing of M^{\prime} with respect to $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}$ is:

$$
\left(\begin{array}{c|cc}
A & x_{1} & 0 \\
\boldsymbol{A} & x_{n} & \vdots \\
\cline { 1 - 3 } \begin{array}{c}
x_{1} \ldots \pm x_{n} \\
0 \ldots 0
\end{array} & x & \pm 1 \\
0 & 0
\end{array}\right)
$$

which is congruent to:

Thus we can realize any elementary enlargement of A as a special Seifert matrix of K.
14. Proof of Lemma 3: Suppose K and K^{\prime} are ($2 q-1$)-knots bounding ($q-1$)-connected submanifolds M and M^{\prime} of $S^{2 q+1}$ with l-pairings θ and θ^{\prime}. Suppose also that there exists an isomorphism $\Phi: H_{q}(M) \rightarrow H_{q}\left(M^{\prime}\right)$ preserving the l-pairings, i.e. $\theta=\theta^{\prime} \circ(\Phi \otimes \Phi)$.

Let us assume, for now, $q>2$; we will show that M and M^{\prime} are isotopic submanifolds of $S^{2 q+1}$. According to [15], M and M^{\prime} have handle decompositions:

$$
\begin{aligned}
& M=D^{2 q} \cup h_{1} \cup \cdots \cup h_{r} \\
& M^{\prime}=D^{2 q} \cup h_{1}^{\prime} \cup \cdots \cup h_{r}^{\prime}
\end{aligned}
$$

where each h_{i}, h_{i}^{\prime} is a handle of index q-diffeomorphic to $D^{q} \times D^{q}$. The $h_{i}\left(h_{i}^{\prime}\right)$ are attached to $D^{2 q}$ by disjoint imbeddings $S^{q-1} \times D^{q} \rightarrow \partial D^{2 q}$. Let $C_{i}\left(C_{i}^{\prime}\right)$ be the "core" of $h_{i}\left(h_{i}^{\prime}\right)$, i.e. the submanifold corresponding to $D^{q} \times 0-$ then $\partial C_{i}=C_{i} \cap D^{2 q}$.

The imbedded disks $\left(C_{i}, \partial C_{i}\right) \subset\left(M, D^{2 q}\right)$ represent a basis $\left\{\alpha_{i}\right\}$ of $H_{q}\left(M, D^{2 q}\right) \approx$ $\approx H_{q}(M)$. According to handle body theory (see [17]), we can choose a handle-decomposition realizing any prescribed basis $\left\{\alpha_{i}\right\}$. Thus if $\left\{\alpha_{i}^{\prime}\right\}$ is the basis of $H_{q}\left(M^{\prime}\right)$ defined by $\left(C_{i}^{\prime}, \partial C_{i}^{\prime}\right) \subset\left(M^{\prime}, D^{2 q}\right)$, we may, by setting $\alpha_{i}^{\prime}=\Phi\left(\alpha_{i}\right)$, assume $\theta\left(\alpha_{i}, \alpha_{j}\right)=\theta^{\prime}\left(\alpha_{i}^{\prime}, \alpha_{j}^{\prime}\right)$.
15. Now consider the links $\left\{\partial C_{i}\right\}$ and $\left\{\partial C_{i}^{\prime}\right\}$ in $\partial D^{2 q}$; by [17] and $\S 1$ we have:

$$
L\left(\partial C_{i}, \partial C_{j}\right)=\alpha_{i} \cdot \alpha_{j}=-\theta\left(\alpha_{i}, \alpha_{j}\right)-(-1)^{q} \theta\left(\alpha_{j}, \alpha_{i}\right)
$$

similarly for $L\left(\partial C_{i}^{\prime}, \partial C_{j}^{\prime}\right)$. Therefore $L\left(\partial C_{i}, \partial C_{j}\right)=L\left(\partial C_{i}^{\prime}, \partial C_{j}^{\prime}\right)$, for $i \neq j$, and, since $q>2$, the links $\left\{\partial C_{i}\right\}$ and $\left\{\partial C_{i}^{\prime}\right\}$ are isotopic in ∂D^{q}.

Clearly we may assume that the base disks $D^{2 q}$ in the handle decompositions of M and M^{\prime} coincide as imbedded in $S^{2 q+1}$. Thus the cores C_{i} and C_{i}^{\prime}, as imbedded
in $S^{2 q+1}$, may be assumed to coincide on their boundaries: $\partial C_{i}=\partial C_{i}^{\prime}$. We next show how to isotopically defrom $\left\{C_{i}\right\}$ onto $\left\{C_{i}^{\prime}\right\}$, keeping $\left\{\partial C_{i}\right\}$ fixed and avoiding any intersections with $D^{2 q}$ (except, of course, along ∂C_{i}).

Assume inductively that $C_{i}=C_{i}^{\prime}$ for $i<k$. We will isotopically deform C_{k} to C_{k}^{\prime}, avoiding intersections with $D^{2 q} \cup C_{1} \cup \cdots \cup C_{k-1}$. Given such an isotopy, we can extend it to an isotopy of $h_{k} \cup h_{k+1} \cup \cdots \cup h_{i}$ in

$$
S^{2 q+1}-\left(D^{2 q} \cup h_{1} \cup \cdots \cup h_{k-1}\right)
$$

the result is an isotopy of M to a new imbedding satisfying $C_{i}=C_{i}^{\prime}$ for $i \leqslant k$. We begin with an isotopy of C_{k} to C_{k}^{\prime}, rel ∂C_{k}, avoiding $D^{2 q}$; this exists according to Wu [20] because the imbeddings of C_{k} and C_{k}^{\prime} and $S^{2 q+1}-$ int $D^{2 q}$ are homotopic $\operatorname{rel} \partial C_{k}=\partial C_{k}^{\prime}$ and $S^{2 q+1}-\operatorname{int} D^{2 q}$ is simply-connected. We would then like to use Whitney's procedure, as in [20], to remove the intersections of this isotopy with $I \times C_{i}(i=1, \ldots, k-1)$ in $S^{2 q+1}-D^{2 q}$, since $q \geqslant 2$ and $S^{2 q+1}-D^{2 q}$ is simply-connected. The only obstruction to this is the intersection number, which is easily seen to be (up to sign) $\theta\left(\alpha_{i}, \alpha_{k}\right)-\theta^{\prime}\left(\alpha_{i}^{\prime}, \alpha_{k}^{\prime}\right)=0$.
16. We now have achieved $C_{i}=C_{i}^{\prime}$ for $i=1, \ldots, r$. By the tubular neighborhood theorem we may assume $h_{i} \cap D^{2 q}=h_{i}^{\prime} \cap D^{2 q}$. Let $v_{i}\left(v_{i}^{\prime}\right)$ be the positive unit normal field to $h_{i}\left(h_{i}^{\prime}\right)$ on $C_{i}=C_{i}^{\prime}$.

By the tubular neighborhood theorem, we may assume that $h_{i}\left(h_{i}^{\prime}\right)$ is the orthogonal complement of $v_{i}\left(v_{i}^{\prime}\right)$ in a normal disk bundle neighborhood N of $C_{i}=C_{i}^{\prime}$ in $S^{2 q+1}$. Therefore if we can homotopically deform v_{i} to v_{i}^{\prime}, rel ∂C_{i}, we obtain an isotopy, rel $h_{i} \cap D^{2 q}$, of h_{i} to h_{i}^{\prime} within N. Doing this for all i achieves, finally, an isotopy of M to M^{\prime}.

Since $v_{i}=v_{i}^{\prime}$ along $\partial C_{i}, v_{i}$ differs from v_{i}^{\prime} by an element of $\Pi_{q}\left(S^{q}\right) \approx Z$ (the normal space to C_{i} in $S^{2 q+1}$ has dimension $q+1$). But this element can be identified with $\theta\left(\alpha_{i}, \alpha_{i}\right)-\theta^{\prime}\left(\alpha_{i}^{\prime}, \alpha_{i}^{\prime}\right)=0$, and so Lemma 3 is proved - for $q>2$.
17. For $q=2$, more work is required to repair those parts of the preceding argument which are no longer valid. First of all M and M^{\prime} are not necessarily diffeomorphic. On the other hand, they are simply-connected 4 -manifolds with boundaries diffeomorphic to S^{3} and isomorphic intersection pairings (since their l-pairings are isomorphic). It then follows from [19] that, after adding on a number of copies of $S^{2} \times S^{2}, M$ and M^{\prime} will be diffeomorphic. Since these enlargements of M and M^{\prime} can be realized by adding to the Seifert matrices blocks $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, as is demonstrated in $\S 13$, we may as well assume that M and M^{\prime} are diffeomorphic to start with. In fact, by [18], there is a diffeomorphism $f: M \rightarrow M^{\prime}$ preserving the l-pairings i.e. $\theta=\theta^{\prime} \circ\left(f_{*} \otimes f_{*}\right)$, where $f_{*}: H_{2}(M) \rightarrow H_{2}\left(M^{\prime}\right)$ is the induced homomorphism.

We reformulate the situation so far as follows. M is a simply-connected 4-manifold, ∂M diffeomorphic to S^{3}, and we have imbeddings $g, g^{\prime}: M \rightarrow S^{5}$ such that $g(\partial M)=K$ and $g^{\prime}(\partial M)=K^{\prime}$. The l-pairings of $g(M)$ and $g^{\prime}(M)$ are identical, as pairings on $H_{2}(M)$.
18. Now let

$$
M=D^{4} \cup h_{1}^{1} \cup \cdots \cup h_{k}^{1} \cup h_{1}^{2} \cup \cdots \cup h_{l}^{2} \cup h_{1}^{3} \cup \cdots \cup h_{m}^{3 *}
$$

be a handle decomposition of M, where h_{j}^{i} is a handle of index i. Since $H_{1}(M)=0$ we can choose the handles of index 2 in such a way that the first k of them $-h_{1}^{2}, \ldots, h_{k}^{2}-$ homologically cancel out the handles of index 1 (see e.g. [10], Theorem 7.6]) i.e. if $V=D^{4} \cup h_{1}^{1} \cup \ldots \cup h_{k}^{1}$, then the boundary operator $H_{2}(M, V) \rightarrow H_{1}(V)$ maps the subgroup of $H_{2}(M, V)$ generated by the "cores" of $h_{1}^{2}, \ldots, h_{k}^{2}$ isomorphically onto $H_{1}(V)$. Then

$$
\Delta=D^{4} \cup h_{1}^{1} \cup \cdots \cup h_{k}^{1} \cup h_{1}^{2} \cup \cdots \cup k_{k}^{2}
$$

is acyclic. Set

$$
M_{0}=\Delta \cup h_{k+1}^{2} \cup \cdots \cup h_{l}^{2}
$$

We will show that $g \mid M_{0}$ and $g^{\prime} \mid M_{0}$ are isotopic.
First we show that $g \mid \Delta$ and $g^{\prime} \mid \Delta$ are isotopic by extending $g^{\prime} \circ g^{-1}: g(\Delta) \rightarrow g^{\prime}(\Delta)$ to an orientation preserving diffeomorphism of S^{5}. Begin by extending it to a tubular neighborhood T of $g(\Delta)$ diffeomorphic to $g(\Delta) \times I$ (with corners rounded). Now ∂T is a homology 4 -sphere bounding the contractible 5 -manifold $\overline{S^{5}-T}$ - similarly for T^{\prime} a tubular neighborhood of $g^{\prime}(\Delta)$. That $\overline{S^{5}-T}$ is acyclic follows from Alexander duality; that $\overline{S^{5}-T}$ is simply-connected follows from the fact that Δ collapses onto a 2-dimensional polyhedron (it has only handles of index one and two) which has codimension >2 in S^{5}. We now invoke the case $n=5$ of the following lemma (stated by Kato for the PL case in [3]) since $\Gamma^{5}=0$, to obtain the extension over S^{5}.
19. LEMMA 4: If C_{1}, C_{2} are contractible smooth manifolds of dimension $n \geqslant 5$, then any diffeomorphism $d: \partial C_{1} \rightarrow \partial C_{2}$ extends to a diffeomorphism of C_{1} onto C_{2}, after perhaps changing d on an $(n-1)$-disks in ∂C_{1}.

Proof of Lemma 4: Consider $W=C_{1} \cup_{d} D_{2}$, a homotopy n-sphere. Since $n \geqslant 5, W$ is homeomorphic to S^{n} ([15]) and, by changing d, we can insure that W is diffeomorphic to S^{n}. Then W bounds a copy of D^{n+1} which determines an h-cobordism

[^1]from C_{1} to C_{2}, trivial from ∂C_{1} to ∂C_{2} (identifying them by d). By the relative version of the h-cobordism theorem ([15, Cor. 3.2]), d extends to a diffeomorphism from C_{1} onto C_{2}.
20. Now M_{0} is obtained from Δ by attaching handles of index two. Since we may assume that $g\left|\Delta=g^{\prime}\right| \Delta$, the problem of showing $g \mid M_{0}$ isotopic to $g^{\prime} \mid M_{0}$ is similar to (but not exactly the same as) the argument above in § 15,16 . We need first to know that the l-pairings on $H_{2}\left(M_{0}\right)$, defined from g and g^{\prime}, are identical, but this is because they are induced from the l-pairings on $H_{2}(M)$ by the inclusion $M_{0} \subset M$. The argument in $\S 15$ will then serve to show that g and g^{\prime} are isotopic on the cores of the handles. To extend the isotopy to the entire handles, it will suffice to show that the normal 2-fields to the imbedded cores in S^{5}, defined by applying the differentials of g and g^{\prime} to the standard normal 2-fields to the cores in the handles of M_{0}, are homotopic. But the obstructions are elements of $\Pi_{2}\left(V_{3,2}\right)=0$, where $V_{3,2}$ is the Stiefel manifold of 2-fields in 3-space.
21. We now have shown that $g \mid M_{0}$ is isotopic to $g^{\prime} \mid M_{0}$. The proof of Lemma 3 for $q=2$ will be completed by showing that ∂M can be isotopically deformed, in M, inside M_{0}. This will use the engulfing theorem in its most naive form ([12, Lemma 2.7]). Let N be the closed simply-connected 4-manifold obtained from M by attaching a 4-disk D to ∂M. Given any handle-decomposition of N it follows from the engulfing theorem that the handles of index one are contained in a 4-disk imbedded in N. Applying this to the dual handle decomposition of that postulated in § 18, we find that $N-M_{0}$ is contained in a 4-disk D^{\prime} in N. Since any two similarly oriented n-disks in an unbounded n-manifold are isotopic, D and D^{\prime} are isotopic in N. It also may be arranged that any given point in (int $D) \cap\left(\operatorname{int} D^{\prime}\right)$ is fixed during the isotopy. It is then easy to see that $\partial D(=\partial M)$ and ∂D^{\prime} are isotopic in $M=\overline{N-D}$. This completes the proof of Lemma 3, and so Theorem 3.
22. Let $f: S^{n} \rightarrow R^{n+2}$ be a smooth imbedding. Since its normal bundle is trivial, f extends to an imbedding $F: S^{n} \times D^{2} \rightarrow R^{n+2}$ whose isotopy class is uniquely determined by f, if $n>1$. Let $h: S^{n} \times S^{1} \rightarrow S^{n} \times S^{1}$ be the diffeomorphism defined by $(x, y) \rightarrow$ $\rightarrow(\Phi(y) \cdot x, y)$ where $\Phi: S^{1} \rightarrow S 0(n+1)$ represents the non-zero element of $\Pi_{1}(S 0(n+1))$. Define
$$
R_{0}=S^{n} \times D^{2} \cup_{F, h} \overline{R^{n+2}-F\left(S^{n} \times D^{2}\right)}
$$

Representing R^{n+2} as the interior of D^{n+2}, the construction of R_{0} represents R_{0} as the interior of a compact manifold D_{0} with boundary diffeomorphic to S^{n+1}. By [15], D_{0} is diffeomorphic to D^{n+2} if $n \geqslant 3$; therefore R_{0} is diffeomorphic to R^{n+2}. Consider
the knot $S^{n} \times 0 \subset S^{n} \times D^{2} \subset R_{0} \approx R^{n+2}$, which we denote by $\tau(K)$, if K is the knot $f\left(S^{n}\right)$. It follows easily that the isotopy class of $\tau(K)$ depends only on that of K.

The interest of $\tau(K)$ is that its complement is diffeomorphic to the complement of K and, besides K itself, is, up to isotopy, the only knot with this property (see [2] and [6]). It is not known whether $\tau(K)$ is ever not isotopic to K. We can prove:

COROLLARY 1: If K is a simple $(2 q-1)-k n o t, q \geqslant 2$, then $\tau(K)$ is isotopic to K. Proof: Let M be a submanifold of $R^{n+2} \subset S^{n+2}$ bounded by $K=f\left(S^{n}\right)$ - we may assume that $M \cap F\left(S^{n} \times D^{2}\right)=F\left(S^{n} \times \varrho\right)$ where ϱ is any ray from the origin in D^{2}. Since $h\left(S^{n} \times x_{0}\right)=S^{n} \times x_{0}$, for any $x_{0} \in S^{1}$, we may define

$$
M^{\prime}=S^{n} \times \varrho \cup\left(M \cap \overline{R^{n+2}-F\left(S^{n} \times D^{2}\right)}\right)
$$

a submanifold of R_{0} bounded by $\tau(K)$. It is obvious that M^{\prime} is diffeomorphic to M and the l-pairings coincide. Thus, by Theorem 3 (or even Lemma 3), K and $\tau(K)$ are isotopic.
23. Another consequence of Theorem 3 - not surprisingly - is the unknotting theorem of [7] and [14].* For if K is a $(2 q-1)$-knot with complement X and universal abelian covering \tilde{X}, and A is a Seifert matrix for K, then $t A+(-1)^{q} A^{T}$ is a relation matrix for $H_{q}(\tilde{X} ; Q)$, as a module over the rational group ring $Q[Z]=Q\left[t, t^{-1}\right]$ (see [8]). Now A is equivalent to a non-singular matrix A^{\prime} (allowing $A^{\prime}=0$) by Proposition 1 in §24. But if A^{\prime} has rank r, it follows easily that $H_{q}(\tilde{X} ; Q)$ has dimension r as a Q-module. Thus, if $H_{q}(\tilde{X} ; Q)=0, A$ must be equivalent to 0 , which implies, by Theorem 3, that K is unknotted for $q \geqslant 2$.
24. We now turn to the algebraic problem presented by the notion of equivalence of matrices. Results are very incomplete, and most of them are contained implicitly in [16].

PROPOSITION 1: Any matrix A such that $A+A^{T}$ is unimodular is equivalent to a non-singular matrix (i.e. with non-zero determinant) or zero.

Proof: By the argument in [16, p. 484], if A is singular it admits an elementary reduction. Thus by a sequence of elementary reductions (and congruences) we may make A non-singular (or zero).
25. PROPOSITION 2: Suppose that A and B are equivalent non-singular matrices. Then $\operatorname{det} A=\operatorname{det} B=d$, and A is congruent to B over any ring R in which d is a unit.

[^2]Proof: This is proved implicitly in [16, Theorem 2] more or less as follows. Consider the matrix $t A-A^{T}$, with entries considered as elements of $Z\left[t, t^{-1}\right]=\Lambda$, and the Λ-module H_{A} with $t A-A^{T}$ as relation matrix. Consider also the bilinear form [,]: $H \otimes_{\Lambda} H \rightarrow Q(\Lambda) / \Lambda=S(\Lambda)(Q(\Lambda)$ is the quotient field of $\Lambda)$ defined, with respect to the same generators of H_{A} as $t A-A^{T}$ is a relation matrix, by the matrix $\left(t A-A^{T}\right)^{-1}$. Note that $t A-A^{T}$ is non-singular over $Q(\Lambda)$ because $\Delta_{A}(t)=\operatorname{det}\left(t A-A^{T}\right)$ is nonzero. In fact the leading coefficient of $\Delta_{A}(t)$ is $\operatorname{det} A \neq 0$.

It is not hard to see that the isomorphism class of $\left(H_{A} ;[],\right)$ is an invariant of the equivalence class of A. Furthermore the element $\Delta_{A}(t)=\operatorname{det}\left(t A-A^{T}\right)$ is an invariant of the equivalence class, up to multiplication by powers of t. From this it follows that $\operatorname{det} A=\operatorname{det} B$.

If A is unimodular over R, then $t-A^{-1} A^{T}$ is a presentation matrix of $H_{A} \otimes R\left(\otimes=\otimes_{\mathrm{Z}}\right)$, so $H_{A} \otimes R$ is a free R-module of the same rank as A and $\left(t A-A^{T}\right)^{-1}$ is the matrix for [,] with respect to an R-basis for $H_{A} \otimes R$. From this it follows that there exists a matrix P with entries in, and unimodular over, R such that

$$
P\left(t A-A^{T}\right)^{-1} P^{T}=\left(t B-B^{T}\right)^{-1} \quad \text { in } \quad S(\Lambda) \otimes R
$$

Let $\overline{\left(t A-A^{T}\right)}$ be the "adjoint" of $t A-A^{T}([1, \mathrm{p} .305)]$. Then

$$
\left.\begin{array}{rl}
P\left(\overline{\left.t A-A^{T}\right)} P^{T}=\overline{t B-B^{T}} \quad \text { in } \quad(\Lambda /(\Delta(t)) \otimes R,\right. \tag{*}\\
\text { where } \quad \Delta(t)=\Delta_{A}(t)=\Delta_{B}(t) .
\end{array}\right\}
$$

Since A and B are unimodular over $R, \Delta(t)$ has as leading coefficient a unit of R. From this it follows that there exists a unique well-defined R-linear map $\gamma: \Lambda /(\Delta(t)) \otimes R \rightarrow R$ defined by the properties $\gamma(1)=1$ and $\gamma\left(t^{i}\right)=0$ for $0<i<$ degree $\Delta(t)$. Now every entry of $\overline{t A-A^{T}}$ and $\overline{t B-B^{T}}$ has degree $<\operatorname{rank} A=\operatorname{degree} \Delta(t)$. Therefore, applying γ to equation $\left(^{*}\right)$ we find that $P A P^{T}=B$ in R.
26. We cannot strengthen the conclusion of Proposition 2 to conclude that A and B are congruent over K, as the following example shows. Set:

$$
A=\left(\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right), \quad B=\left(\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right)
$$

We first show that A and B are not congruent over \mathbf{Z}. Consider the solutions X of $X^{T} A X=X^{T} B X=2$; they are $X=\binom{ \pm 1}{0}$. If $P^{T} A P=B$, it follows that $P X= \pm X$ (say $\left.X=\binom{1}{0}\right)$. Now $B X=\binom{2}{0}$ and so $Y^{T} B X$ is even, for any Y. Choose Y so that $P Y=\binom{0}{1}$; then $Y^{T} B X=Y^{T} P^{T} A P X= \pm(P Y)^{T} A X$ which one can calculate to be ± 1.

To see that A and B are equivalent, we consider the following elementary enlargements, respectively, of A and B :
A^{\prime} and B^{\prime} are congruent; in fact, $P A^{\prime} P^{T}=B^{\prime}$, where

$$
P=\left(\begin{array}{rrrr}
0 & 0 & 2 & 1 \\
0 & -1 & 1 & 0 \\
1 & 0 & -2 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

27. On the other hand, the converse of Proposition 2 is false. Consider the following matrices for $\varepsilon= \pm 1$:
$A=\left(\begin{array}{cccccc}0 & \varepsilon x & 0 & 0 & 0 & 0 \\ x & 0 & 0 & 0 & 0 & 0 \\ p^{2} & 0 & 0 & \varepsilon & 0 & 0 \\ 0 & p^{2} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & p & p(1+\varepsilon)+1 \\ 0 & 0 & 0 & 0 & 0 & p+1\end{array}\right), \quad B=\left(\begin{array}{cccccc}0 & \varepsilon x & 0 & 0 & 0 & 0 \\ x & 0 & 0 & 0 & 0 & 0 \\ p^{4} & 0 & 0 & \varepsilon & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & p & p(1+\varepsilon)+1 \\ 0 & 0 & 0 & 0 & 0 & p+1\end{array}\right)$
where p is any odd prime, and $x=\frac{1}{4}\left(p^{4}-1\right)$. It may be checked directly that $A+\varepsilon A^{T}$ and $B+\varepsilon B^{T}$ are unimodular and $\operatorname{det} A=\operatorname{det} B$ is divisible by p. But A and B are congruent over any ring in which p is a unit. In fact $P A P^{T}=B$ where:

$$
P=\left(\right)
$$

Finally, A and B are not equivalent. To see this consider $A-\varepsilon A^{T}$ and $B-\varepsilon B^{T}$ over Z_{p}. It follows from Witts Theorem (see e.g. [21]) for $\varepsilon=-1$, or the well-known classification of skew-symmetric forms (see e.g. [1]) for $\varepsilon=+1$, that the congruence class of $A-\varepsilon A^{T}$ over Z_{p} is an invariant of the equivalence class of A. But $A-\varepsilon A^{T}$ and $B-\varepsilon B^{T}$ have ranks 2 and 4 , respectively, over Z_{p}.
28. Finally we remark that the genus of the non-degenerate quadratic form $A+A^{T}$ is an invariant of the equivalence class of A (see [16, Prop. 5.1]).

REFERENCES

[1] Birkhoff, G. and MacLane, S.: A survey of modern algebra (MacMillan Co., New York 1953).
[2] Browder, W.: Diffeomorphisms of 1-connected manifolds, Trans. Amer. Math. Soc. 128 (1967), 155-63.
[3] Kato, M.: Embedding spheres and balls in codimension $\leqslant 2$ (mimeographed notes).
[4] Kervaire, M.: Les ncuds de dimensions superieures, Bull. Soc. Math. France, 93 (1965), 225-71.
[5] Kervaire, M. and Milnor, J.: Groups of homotopy spheres, I, Annals of Math. 77 (1963), 504-37.
[6] Lashof, R. and Shaneson, J.: Classification of knots in codimension two, Bull. Amer. Math. Soc. 75 (1969), 171-5.
[7] Levine, J.: Unknotting spheres in codimension two, Topology 4 (1965), 9-16.
[8] Levine, J.: Polynomial invariants of knots of codimension two, Annals of Math. 84 (1966), 537-54.
[9] Levine, J.: Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-44.
[10] Milnor, J.: Lectures on the h-cobordism theorem, Princeton Mathematical Notes (Princeton U. Press, Princeton 1965).
[11] Murasugi, K.: On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387-422.
[12] Penrose, R., Whitehead, H. H. C., and Zeeman, E. C.: Imbeddings of manifolds in Euclidean space, Annals of Math. 73 (1961), 613-23.
[13] Seifert, H.: Über das Geschlecht von Knoten, Math. Ann. 110 (1934), 571-92.
[14] Shaneson, J.: Embeddings of spheres in spheres of codimension two and h-cobordism of $S^{1} \times S^{3}$, Bull. Amer. Math. Soc. 74 (1968), 972-4.
[15] Smale, S.: On the structure of manifolds, Amer. J. Math. 84 (1962), 387-99.
[16] Trotter, H.: Homology of groups system with applications to knot theory, Annals of Math. 76 (1962), 464-98.
[17] Wall, C. T. C.: Classification of ($n-1$)-connected $2 n$-manifolds, Annals of Math. 75 (1962), 163-89.
[18] Wall, C. T. C.: Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39 (1964), 131-40.
[19] Wall, C. T. C.: On simply-connected 4-manifolds, J. London Math. Soc. 39 (1964), 141-9.
[20] Wu, W. T.: On the isotopy of C^{r}-manifolds of dimension n in Euclidean $(2 n+1)$-space, Science Record, New Series II (1958), 271-5.

Received December 1, 1969

[^0]: ${ }^{1}$) This work was done while the author was partially supported by NSF GP 8885.

[^1]: ${ }^{*}$) In fact an argument of A. Wallace, communicated to me by C. T. C. Wall, shows that only handles of index 2 are needed after connected sum with enough copies of $S^{2} \times S^{2}$. This obviates the need for the arguments of $\S 18,19$ and 21 , since $\Delta=D^{4}$ and $M_{0}=M$.

[^2]: *) The argument here applies, of course, only for odd dimensional knots. The case $q=2$ was also announced by C. T. C. Wall: Proc. Camb. Phil. Soc. 63 (1967), p. 6.

