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Non-Simply-Connected Surgery and Some Results in
Low Dimensional Topology

by Julius L. Shaneson

§ 1. Introduction

In [27] we derived a Kûnneth formula for WalPs surgery obstruction groups
Ln(G). In particular, the inclusion induces an isomorphism L6(e)-»L6(Z), Z the

integers. It follows that non-framed surgery is possible in an orientable six-dimen-
sional situation with fundamental group Z. In § 6 of [27], [29], and [19] we derived
some conséquences of this fact for the classification of non-simply-connectred five-
manifolds and related questions.

This paper continues the application of surgery to low dimensional manifolds. For
example, we will prove a resuit somewhat more gênerai than the following:

THEOREM 1.1. Let M be a closed, connected, orientable, smooth 5-manifold with
7i1M Z. Suppose M is smoothly fibered over a circle with connectedfibre. Let Q be a
simply connected, closed, smooth 5-manifold. Then any closed smooth manifold of the

homotopy type of M#Q is diffeomorphic to M#Q.
For the spécial case M=N x S1, this generalizes the resuit of Novikov [22] and

Wall [35] that homotopy équivalent simply-connected closed smooth four manifolds
are A-cobordant. In fact, we use an idea from Novikov's proof of this fact to help
prove 1.1.

As a conséquence of the proof of 1.1, we also hâve a splitting theorem for fibered
5-manifolds. Analogous theorems hâve been proven in higher dimensions by Farrell
and W.-C. Hsiang [10], for more gênerai fundamental groups.

THEOREM 1.2. Let M be as 1.1, and let N^M be a fibre. Let h: K-*M be a
homotopy équivalence of closed smooth manifolds. Then 3fhomotopic to h, transverse
to N, so thatf'^N) is diffeomorphic toNandfiiKJ'1^^]^, N) is a homotopy
équivalence ofpairs.

Of course, in this theorem K is actually diffeomorphic to M. The analogous resuit
is true in the piecewise linear case. (Theorem 1.1 holds in the P.L. case automatically
becau^p 5-dimensional P.L. manifolds are always smoothable).

Theorem 1.1 also sheds some light in the fibering problem. Let us say M, a closed
5-manifold with 7r1M Z, is quasi-fibered over a circle if there is a smooth (simply-
connected) submanifold N of codimension one, N, so that the séquences
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are exact where g'.M-^S1 represents any generator ofH1 (M; Z). The (quasi-) fibering
conjecture for 5-manifolds asserts that any closed five manifold with nY Z, whose

universal cover has the homotopy type of a finite complex, is quasi-fibred over a

circle. The smoothing conjecture for simply-connected finite Poincaré complexes in
dimension four asserts that if Z is a closed Poincaré 4-complex, finite, { a vector
bundle over Z with spherical Thom class and £(£) index X, £(<J) L1(/?1(<^"1)) the

dual Hirzebruch class, then 3 a closed manifold N and a homotopy équivalence h.

N-+Xso that h*Ç is équivalent to the normal bundle of N.

THEOREM 1.3. The quasi-fibering conjecture for five manifolds (with nt=: Z) is

équivalent to the smoothing conjecture for simply connected Poincaré complexes in

dimension four.
Assuming the fibering conjecture, the smoothing conjecture follows by smoothing

X xS1 up to homotopy and fibering. We use a stronger version of Theorem 1.1 to

prove the converse, thus reducing the fibering problem to an abstract surgery problem
rather than a problem in codimension one.

As a final application of surgery we will show the following (/=unit interval):

THEOREM 1.4. Let (W, ô_ W, d+ W) be an orientable h-cobordism with dim W=
5. Say n1W=Z. Assume 3 a retraction r : W-+d. W so that r\ô+W: d+ W-+d_ W is

a diffeomorphism. Then 3 a diffeomorphism q>: W^>d- Wxl with

<p | dW (r | d.W, 0)u(r | d+W, 1).

As a corollary, every diffeomorphism of a closed, orientable four-manifold with
fundamental group Z, homotopic to the identity, is psuedo-isotopic to the identity.
This was already known for S1 x S3 [14].

The simply-connected analogue of 1.4 is due to Barden. His proof has never

appeared. As part of the proof of 1.4, we also prove the simply-connected analogue.

The reader who is primarily interested in 1.4 can skip directly to the final section.

For larger fundamental groups, everything is much harder. For example, Theorem

1.1 is false for S3 x T2 [27], and whether 1.2 or 1.3 hold for S3 x T2 seems to be a very

deep question.

§ 2. Browder-Novikov Theory

*

Let (W9 dW) be a smooth connected manifold with (possibly empty) boundary.

We assume orientability of W, though for this section it is not necessary. By

hS(W, dW) we dénote the équivalence classes of simple* homotopy équivalences

* In ail cases of concern to us hère, every homotopy équivalence is simple.
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h:(K,dK)-+(W9dW)

where Kis a smooth manifold and h | dK: dK-+dWa. diffeomorphism; h is équivalent
to h':(K\ dK')-*(W, dW) if there is a diffeomorphism <p:(K9 dK)-*(K', dK') with
h! o(p homotopic to h relative dK.

Given h, let g be a homotopy inverse with g | 3^= (A | dK)'1. Let g:(JF, ôH^)-^
(AT, ôK) x Rm, m large, be an embedding homotopic to (g, 0) with g | dW=(g, 0). Let t?

be the normal bundle of g; g | 5W détermines a natural trivialization of t; | ôW. By
infinité répétition of the s-cobordism theorem, or by engulfing, there is a
diffeomorphism

c:E(v)-+K xRm

extending gu [(g | d W) x idRm]. Hère 2s (t;) dénotes the total space of v. The composite
(h x 1) o c is a fibre homotopy trivialization of the bundle v which is a linear bundle map
oîv\dW. Hence it defines a homotopy class rç(/i) in \W\dW\ G/0] of maps of W\dW
into G/0, the classifying space for stable fibre homotopy trivializations of vector
bundles. The invariant r\{h) is well-defined and dépends only upon the class of h in
hS(W, dW). This is Sullivan's définition of the normal invariant [33].

We will need the original définition of Browder (see [3]) and Novikov [22] only in
the case of tangential homotopy équivalences of closed manifolds. Let Mn be a closed,
oriented manifold, and let vm be a high dimensional (i.e. m>n +1) normal bundle of
M, i.e. the normal bundle of an embedding of Min Sn+m. For m>/i + l, any two such

embeddings are isotopic via an ambient isotopy that restricts to a bundle map of
normal bundles. Let D(v)(S(v)) be the associated disk (sphère) bundle, and let

T(v) D(v)/S(v), the Thom space of v. The orientation of M and of Sm+n détermine
an orientation of v and so a Thom isomorphism \j/: Hl(M)-^Jffi+m(r(v)). Let [M] be

the orientation class of M, and let Â(M) H "x (^ [M]), H:nm+n(T (v))-*ffn+m( T(v))
the Hurewicz homomorphism.

An orientationpreserving bundle map of v to itself over the identity induces a map
of T(v) with itself which, by naturality of the Thom isomorphism, préserves the
Thom class \j/ [M]. Hence the équivalences of v with itself, Aut(v), acts on Â(M). Let
A (M) be the orbit set. By stability, A (M) is really independent of the high dimension
m of the fibre of v.

Note also that since we are in the stable range, Aut(v)= [M; SO{mj] [M ; SO"\.
Given £eAut(v), £©id:v©v~1-"»v®v""1 is an automorphism of the trivial bundle
and so détermines an élément of [M ; SO~\ ; this correspondence is bijective.

Given an embedding of M in Sn+m, the quotient map D(v)-*T(v) extends to a

map Sn+m-+T(v) which carries Sn+m-D(y) to a point; this defines a class ln+m(M)
(or just 1B+W) in A(M). Suppose h:K-*M is a tangential homotopy équivalence that
préserves orientations, and let b:vm(K)-*v be a bundle map of normal bundles of
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fibre dimension m covering h, A map on Thom spaces, T (b), is induced by b, and we
define

0(h)=T(b)*lm+n(K).

It is easy to see that 6(h)eA(M) dépends only upon the class in hS (M) of h. (In the

gênerai définition of normal invariants one has to consider bundles over M other
than the normal bundle.) So if thS(M)czhS (M) dénotes those classes which are

tangential, then we hâve 0:thS(M)->A(M).
Let Tn+m be a représentative of ln+m in Â(M). Then, according to WalPs refine-

ment [39] of Spivak's uniqueness resuit for normal fibrations of Poincaré complexes,
the map £-*r(£)*TB+w induces a bijection of isotopy classes of orientation-preserving
fibre homotopy équivalences Ç of v with itself (over the identity) and Â(M). (Basically
this is just a conséquence of the fact that £mM+ is the Spanier-Whitehead dual ofT(vm).)

On the other hand, the isotopy classes of fibre homotopy équivalences of v with
itself are in one-one correspondence with [M; SG(m)] [M; SG], SG(m) the space

of degree one maps of S"1"1 to itself. The correspondence is exactly analogous to the

one that gives Aut(v)= [M ; SO]9 and so we get a map

Ç:A(M)-*[M; G/0] [M; SG/SOli

which is one-one and whose image is the éléments that lift to [M ; G].
The following is part of a resuit that is well-known. It perhaps is buried in [38],

but otherwise it does not seem to hâve appeared in the literature.

PROPOSITION 2.1. The following diagram commutes:

n je

/iS(M) A [M; G/0].

Proof. Let h:K^M be a tangential homotopy équivalence. We will show that

Ç-iflQi^^e (h). Let c:MxRk-+Kx R* be a diffeomorphism with c \ Mx 0 homotopic

to (g, 0), g a homotopy inverse to h, so that rj(h) is represented by {h xl)oc. We can

also suppose c(Mx %Dk)zzKxQ.
Let m>k+n+l and let vm vm~k0gk, vm"k the normal bundle of M in 5m+n"fe

and e* trivial; vm is the normal bundle of M in Sm+n. Then £ (id)0(/s x l)c: vw->vw is

a fibre-homotopy équivalence of vm with itself, and C~1^(^) 3n(0*l»+m-
Fix an embedding Mc,SB+M and letf:Sn+m-+T(vm) be the natural extension of

the quotient map D(v) to T(v) by the trivial map on Sn+m-D(v). Then r(O^/is
tramverse to McT(vm), (T(0°fVlM=K9 and T(0of\Kk homotopic to h. It
now follows as in [3, II.2.13] and from the définition that 0 (h) is represented by

T(ihf.
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Returning to Sullivan's définition, let (W, dW) be a connectée!, orientable mani-
fold pair with n dimW^5. Then 3 an action of the Wall surgery group Ln+1(ntW)
on hS (W, dW) so that rj(x) rj(y) iff x and y are in the same orbit. This resuit is a

simple conséquence of the realization Theorem [38, 5.8 and 6.5] (also [27, 1.1]) for
surgery obstructions and the définitions. There is also an exact séquence of pointed
sets hS(W9 dW)-*[WldW; G/O^L^W), but we will not use this hère. Thèse

formulations are due basically to Sullivan. See [3], [33] and [38] for more détails.

PROPOSITION 2.2 Letf:K->Pandg:P-*Mbe (simple) homotopy équivalences

of closed manifolds. Then in [M; G/O~\,

g~l any homotopy inverse for g.
We omit the proof of this proposition. We use it only when rj(g) O, a case in

which the vérification is quite simple.

PROPOSITION 2.3. Let f :K->M be a (simple) homotopy équivalence of closed

manifolds. Let N^M be a submanifold of codimension one, let f be transverse to N,
and suppose h f\f~1N:f~1->N is also a (simple) homotopy équivalence. Let
i:NczM be the inclusion. Then rj(h) i*rj(f).

The proof of this proposition is straightforward using the définitions, and so

omitted.
Suppose vm and £m are vector bundles over pointed spaces X and Y respectively.

Then, by identifying fibres over a point, we hâve vvÇ defined over the one-point
union XvY. The inclusions of the base points induce inclusion of Sm in T(v) and
T(Ç), and the following is obvious.

PROPOSITION 2.4. T(vvÇ) T(v)vsmT(O, the space obtained from the

disjoint union ofT(v) andT(Ç) by identifying the included copies of Sm.

We conclude this section by defining, following Novikov [22], atwisted suspension.
Let Çm be an oriented vector bundle over X. Let nn(X, £) be the subgroup of classes in
nn(X) which induce from £ the trivial bundle over Sn. Let K:Sm->T(Ç) be induced by
the inclusion of the basepoint. Note that K(Sm) is invariant under the action of
[M;SO(my].

Let ju:Sn-+Xrepresent an élément of nn(X, £), and let ft:sm-^Çm cover ^. Let em be
oriented so that fl is orientation preserving. Then the standard orientation of Sn
détermines xeHn+m(T(em))=Z, by the Thom isomorphism. Let yenn+m(T(em)) be

any class whose Hurewicz image is x. This exists because T(em)~Sn+m vS". The class

T(fi)*y in 7rn+OT(r(<!D)/K*(7rw+w(Sm)) dépends only upon the class /i in nn(X, £). We
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dénote this élément by ^([/i]); this defines

This map is natural with respect to bundle maps. If Ç is trivial, it coincides with the
usual suspension; in particular S% is a homomorphism.

Let Mn be an oriented, closed, connected manifold. Let vm be its normal bundle,
m large. Assume nxM acts trivially on nnM ; for example, let M be simply-connected.
The orientation détermines an isomorphism

Htt(M;nnM) nn(M).

By nynM we dénote those éléments of nnM which pull back the normal bundle v

trivially and hâve zéro Hurewicz image. Given xenvnM, there is a unique homotopy
class of maps g:M-+M so that g is the identity outside a given disk Dn^M and so

that the cohomology class of the différence co-cycle of/and the identity with respect
to the identity homotopy on the (« — i)-skeleton is just x. (Recall that M—Dn deforms

to the (# — l)-skeleton.)
This defines a map (o:nvn{M)-+n*(M, M), the last being homotopy classes of

orientation preserving tangential homotopy équivalences of M with itself. There is a

natural map of tt+(M, M) into hS (M). Moreover, n+(M9 M) acts upon A (M) by
induced maps of covering maps; i.e. if h: M->Mrepresents an élément of n+(M, M),
let fi : vm-» vm cover h and let [A] • a T (îï)*<x in A (M), where [A] dénotes the class ofh.

Let M(B"1) be the («— l)-skeleton of M. Then inclusion induces a monomorphism
7rB+m(F(v | M^^sw.+^JM),asr(v)is,uptohomotopy,5"+l"v T(v | Jf("-1)).
If a67rB4.m(r(v | M"""1)) and lw+me7cn+m(r(v))is an élément in the orbit lB+we.4(M),
then In+m+0L€Â(M). We write lB+w+a for the orbit of this élément in A (M).

PROPOSITION 2.5. (Novikov [22].) Let oc€nn+m(T(v | M{n~l)% and let

Then

(o>(y))(ln+m + a) s lB+m + a + Sv(y), mod Image k*.

COROLLARY 2.6. Moàfo */k? image o/ic*,

If g: M-+Mf is a tangential homotopy équivalence, and [A]e7c+(M, M), let

1]» £~* any homotopy inverse g. The following is obvious:

PROPOSITION 2.7. [û)(y)]f «



Non-Simply-Connected Surgery 339

§ 3. Simply-Connected Four-Manifolds

In this section we study the Thom space of a simply-connected four-manifold N.
Let vm be the normal bundle, m large. Since [N; S0(m)]=O and nm+4(Sm)=09 we
hâve A(N) Â(N) and

Sv:nl(N)-+nm+4(T(v)).
Since n4(SO(m)) 0, nvn(N) is just the homotopy classes of degree zéro.

Let g:N-+N be a homotopy équivalence. Then g is tangential, by the argument of
[27, Theorem 6.1]. The map T (g)*:nm+4(T (v))^>nm+4(T (y))9 the map induced by a
bundle map covering g, is independent of the choice of covering map.

THEOREM 3.1. Let <xenm+4(T(v \ N(2)))çznm+4(T(v)%N{2)thetwo-skeleton of
N. Suppose T (g)^ a. Then there is a class yenl(N) such that Sv(y) a and g* (y) y.

For g=id, this resuit is stated in [22] and is not hard to prove. Together with
Corollary 2.6, this case implies, since r(v)=5"w+4 v T(v \ N{2)), the following:

COROLLARY 3.2. Every élément Çe[N; G/O~\ that lifts to \N\ G] is the normal
invariant ofa homotopy équivalence ofN with itself

Since L5(e)=0, this implies, as observed by Novikov, that any four-manifold of
the homotopy type of N is A-cobordant to N.

Proof of Theorem 3.1. We suppose first that W2(N) 0; i.e. N is almost
parallelizable. Up to homotopy, Ni2) S[2) v- vSf}, T(v

(S""v^+2v-v5km+2, and Sv \ nl(N) is just the suspension

Let ^16712(^1 v v Si), be the class carried by the ith sphère Sf with standard
orientation. Let rjen3(S2) be the Hopf class and let Irjen4(S3) be its suspension. Let, for

i^fiiofjoln; i.e. yt is the composite

LEMMA 3.3. Sm carries the subgroup of n4(S2 v ---vS2.) generated by the yt
isomorphically onto nm+4(S^+2 v ••• v S%+2).

Proof Each yt has order two. By homotopy excision [2], in the stable range,
nm+4.($7+2 v-- v5'2l+2)=^s=:1 nm+4(S?+2). Moreover, the suspension n4(S2)-+
~^7rm+4(5"n+2) Z2 is an isomorphism, and n4(S2) is generated by (2Tiy)oi|. Hence Im
carries the subgroup in question onto the isomorphic group nm+4(Sf+2 v-vS^2),
and so is an isomorphism of thèse groups.
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Now suppose a67rm+4(SÏI+2v---v^+2), with T(g)*a cc. Let P^Ui
with Af 0 or 1, be such that Imp a. Then £m(#*/?) a also. We may suppose
g(N(2))^N(2\ and we write g again for its restriction to N(2\

In gênerai, (g + (j)orç=£orç + (7orç + [£, a], where [#, <t] dénotes the Whitehead
product of q and a, since rç has Hopf invariant one. On the other hand, composition
with the suspension Ir\ is a homomorphism. So if

> then
J

g*7t E &
j

g*P E ^

Suspension

,j,k
* "

annihilâtes Whitehead

E X&JS{

> I>7, and so

products, so

Hence ^j Y,i^u (m°d 2). Thus if <5 Zz A^f, then g#(ô) ô+2e some e. Hence

g*(ô on) (5 o^y + 2(eo//) + [e, fi] + 2[e, 5].

Since, [e, e] is even, i.e. divisible by two, we can write

Since composition with Irj is a homomorphism and since Irj has order two,

g*(ôorjoZri) ôorjoSrj.

Also

i i

since composition with a suspension is a homomorphism. So if y=ôorjolrj9 then

Now suppose W2(N)^Q. The second Stiefel-Whitney class can be viewed as a

homomorphism W2 (N) : H2 (N, Z)->Z2. H2 (M ; Z) has a basis over Z so that W2 (#)
vanishes except on the last basis élément. So we may write, up to homotopy,

S2v...vS,2vSk2+1

with V" | Sf trivial for !</<£ and non-trivial for i**k + l. It is easy to see that up to

homotopy,T(v | S^1)isJustJr=5""u<pi)lil+2,^:Slfl+1^SIBnon-trivial. ForJ(v | S%+i)
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has two cells, and if cp were trivial v | Si+1 would be fibre-homotopy tirvial by Spivak
[31], and so trivial because ni(o) n1(G). Hence by 2.4,

+2 v...vS£+2 v X.

LEMMA 3.4. nm+4(X)=0. Hence the inclusion induces an isomorphism of
with 7tmr2 r2

Proof. By homotopy excision the stable range, the characteristic map
(Dm+2, Sm+1)-+(X, Sm) induces an isomorphism of (m-f 4)th homotopy groups. So

we hâve an exact séquence

0 ;rm+4(Sm) - 7rm+4(Z) -> nmUDm+\ Sm+1) l nm+3(Sm).

The domain of d is Z2, and the image of a generator is represented by the composite
Sm+3-+Sm+2-*Sm+1->Sm of the non-trivial maps. This is just the suspension of the
Blakers-Massey élément in n6(S3) and so is non-trivial, by [26]. Hence nm+4(X) 0.

The second statement follows from the first by homotopy excision.
As before, let iiien2(N(>2)) be the class carried by the ith sphère, U/^Hl. Let

7i= fiiorfolt]. The restriction of Sv to n±(S\ v ••• v S2,), a direct summand of 7T4(^(2)),
is the suspension homomorphism Im, hence by 3.2 it carries the subgroup generated
by the yh l^i^k, isomorphically onto 7rm+4(r(v | Ni2}j).

Again let g+(pd=2jttjlij- since W2(N)og* W2(N), and since H2(N)
H2(N(2)) n2(Ni2)) n2(N), we hâve {u+1s0 (mod2), for 1

Suppose ae7rm+4(r(v | N(2% with T(g)*oL <x. Let j8=£*«i
such that Zmp <x. Again 5fv(gHej8) a.

The third term in parenthèses is ^>fc+1 [c,-, /ifc+{\ ; since {ljk+1 is even, this vanishes under
composition with In. Similarly, (^,k+ijUJt+1)o>y ^>+1(/ifc+1o^)+T[jufc+1,/ik+1] also
vanishes under composition with Zy\. So

<rio*1oZri and

g*P =(o-i +--+fffc)oifo2;i/.

Now everything lives over S2 v ••• v S2k9 where vm is trivial, and so the argument for
the case W2(N)=0 and the fact that ^,k+1=0 (mod 2) imply that g*(ô)=5+2a,
^-^î/^i H H^ife. Then it follows again that g^(ôorjoIrj)=ôorjoEri. By the same

argument as for the case W2(N)=0, we also hâve ^(dorçolrç^a. So again,
y^ôotjolrj astisfies the conclusions of 3.1.
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§ 4. Split Five-Manifolds With 7^ Z

Let W be a simply-connected 5-manifold with dJFthe disjoint union of closed,

simply-connected four manifolds, N and N' say. Let k:N-+N' be a homotopy
équivalence with vanishing normal invariant (for example, a diffeomorphism) so that

if i:Ncz W and i'\NczW are inclusions, i'ok^i. ("~" means "is homotopic to.")
Let / :N-^>N' be a diffeomorphism, and let M be obtained from W by identifying
x with/(x). We assume/préserves appropriate orientations, so that M is orientable.
Let n:W->M be the quotient projection. Then we also require that (ni)*:H2(M; Z2)
-+H2(N; Z2) be monic, or equivalently, that H2(W, dW; Z2) 0. It is easy to see

that n^M=Z. We say a manifold M obtained in this way is a split five-manifold (with
simply-connected fibre). For example, if M=NxI, fc=identity, and/is any orientation

preserving diffeomorphism, we get the case of a manifold fibered over a circle.
The requirement that k hâve no normal invariant is somewhat unpleasant. This

requirement will always be satisfied, however, if 3 a retraction r : W-+N with r | N' a

homotopy inverse to A: and with r*(rN) stably équivalent to xWy the tangent bundle

of W, So, for example, if Wi$ an A-cobordism and k:N^N' is a homotopy équivalence

with rokczi, we will always hâve rj(k)=O.
Given any orientable 5-manifold M with ;r1M=Z, one can always find a simply-

connected four manifold Nez M with H2(N; Z)-*H2(M; Z) a surjection. Cutting M
along JV gives a simply-connected manifold W from which M can be recorvered by

glueing up the two boundary components. However, it does not seem clear, in gênerai,

how to produce the homotopy équivalence k.

THEOREM 4.1. Let Mbea split 5-manifold with simply-connectedfibre. Then any
closed smooth manifold ofthe homotopy type ofM is diffeomorphic to M.

Assuming 4.1, let us dérive 1.1. According to [27], rj:hS(M)-+ [M ; (7/0] is monic

with image consisting of those éléments that lift to [M; G]. This is valid for any

orientable five-manifold M with fundamental group Z; it foliows essentially from an

analysis ofthe Wall groups L6(Z) and L5(Z).
Suppose P is a simply-connected closed 5-manifold. Let h:L-+M#P be a homotopy

équivalence, and let Ç=tj(h). (M#P dénotes the connected sum of M and P.)

Then { lifts to A:M#P->G. Since n4r(G)=0, the restrictions of X to M-(disk) and

P-(disk) extend to Âx\M-*G and À2:M->G, respectively. Let ^ and ^2 be the images

of Xx and kZ9 respectively, in [M; G/O] and [P; G/O]. Then let ht:K-*M and

hi*Q-*P be homotopy équivalences with tj(hi)=Çi and ^(A2)=^2- Then Jt is eas^ t0

verify that ifF^ht #A2: i«:#e^M#P,then^(F) <ï=^(A). Moreover, by [1] or [22],

Q is diffeomorphic to P. So this proves the following "splitting theorem".

PROPOSITION 4.2. Let M be a closed connected orientable 5-manifold with
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ntM= Z. Let h:L-*M#P be a homotopy équivalence, L a closed 5-manifold. Then 3 a
closed 5-manifold K, homotopy équivalences hx:K-+M and h2:P-+P, and a diffeo-
morphism q>:K#P-*L so that ho(pczhi#h2.

Clearly 1.1 foliows from 4.2 and 4.1. In fact, if M5 is any split manifold and P5 is

simply-connected, any manifold of the homotopy type of M#P is diffeomorphic to it.
We turn now to the proof of 4.1. Let M be a split 5-manifold with simply-connected

fibre. Let W, N, n, i, i', k9 and/be as in the définition of split manifolds. Let
vm be the normal bundle of N. For any space X, let CJ{X) be the image of \_X; G] in

LEMMA 4.4. (ni)*:CJ(M)-*CJ(N) is a monomorphism.

Proof. By [27], the map yM:CJ(M)->H2(M;Z2) defined by

ieH2(G/O; Z2) the non-zero class, is monic. Let yN:CJ(B)-+H2(M; Z2) be defined

similarly. Then the following diagram commutes :

H2(M;Z2)

Since (ni)* on the right is monic, so is (ni)* on the left.

Remark: This is the only place we use the requirement for a split manifold that
(ni)* :H2(M; Z2)-+H2 (N ; Z2) be monic. It would suffice instead to require only that
Lamma 4.4 hold.

Now let qbCJ(M)\ write q:M-+G/O for a représentative also. We are going to
show that q is the normal invariant of a homotopy équivalence of M with itself. Let
Z=QniaadZ'=Qni'. Then{'*«{and ^'/ ^. Soifg=/"1A::iV-iV,then^=^Â:^^;
i.e. g*t Ç. Hence (g"1)* Ç Ç in [AT; G/Ol

By 2.2, fj(g)~ f*rj(k)=O. By 3.2, <J=^(A) for some homotopy équivalence
h:N~+N. So (g"1)* t rt(goh)-ri(g)~ri(goh)9 by 2.2 again. Thus n(goh)^fj(h). So

by 2.1, 0(goh) 9 (h). Thus if C"1(0=lm+4+«, we hâve

Since >?(g)=0, T(£)* lM+4 lm+4. Hence

Let yeTrî(i^) be such that Sy(y) a. and g#y y; y exists by Theorem 3.1. By 2.6,
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and so n(co(y)) Ç. By 2.7, [ct>(y)]* co(y). Also, co(k*y) [a>(y)]k; hence

Let h:N-+N represent co(y)en+ (N, N), with h the identity outside a disk, and let
h' =fhf ~*. Since f^A:*? /*y, A u A' extends to /: W-* W which is the identity outside a

disk Z)5c Wthat meets 5 FF in two subdisks, one in N and one in N'. We can easily
also arrange things so that l~1(dW) dW and so that for a given collar
c:dWx [0, 1]-+W, l(c(x, t)) c(l(x), t).

Let H.M-+M be the map induced by /. Then H is transverse to (ni) (N) and
H"1 (ni(N)) ni(N). Moreover, Hni=nih. It is not hard to see that if is a homotopy
équivalence. By 2.3, (ni)* rj(H) ri(h) Ç (ni)* q. Hence by 4.4, rj(H) Q.

Thus every geCJ(M) is the normal invariant of a homotopy équivalence of M
with itself. By [27, Theorem 6.6], CJ(M) is the image of one-to-one map rf.hS (M)-»
[M; G/O]. Thus given any homotopy équivalence G:K-+M of closed manifolds,
3H:M-+M and a diffeomorphism q>\K-*M with HcpczG. This proves Theorem 4.1.

This proof also proves Theorem 1.2. For if M is fibered, or even just split, with
fibre N, then given G:K-*M, Hep as in the preceding paragraph satisfies the require-
ments of 1.2.

For the spécial case M=NxS1, one can take H=h x 1 in the proof of 4.1.

COROLLARY 4.5. Every homotopy équivalence of a closed manifold K with

NxS1 is homotopic to one of the form (hxl)0<p, where cpiK^NxS1 is a diffeo-

morphism and h:N-+N is a homotopy équivalence that is the identity outside a disk.

We will use this corollary in the next section. Another corollary is the following
(compare [36]).

COROLLARY 4.6. Let N be a simply connected closed four-manifold. Then

every automorphism ofthe bilinear form Q on H2(N; Z) given by intersection numbers

is induced by a diffeomorphism of S1 xN with itself.

Proof. Let H : N-+N be a homotopy équivalence of # with itself inducing a given

automorphism ofthe form Q. Then (Hx 1)^(A x l)0<p as in Corollary 4.5. Clearly <p

is the required diffeomorphism.
Barden's theorem, the simply-connected version of 1.4, can also be derived from

our arguments in this section. However, we will give a much simpler proof in § 6.

§ 5. Fibering Five-Manifolds And Smoothing 4-Complexes

Let M be a closed, connected orientable five-manifold with fundamental group Z

We say M is quasi-fibered over S1 (with connected fibre) if 3 a closed submanifolo

NczM of codimension one so that the following séquence is exact for/ \M-*SX an/
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map representing a generator of H1 (M, Z):

0 -» nt(N) -> Ki(M) ^ tt^S1) -+ 0: i > 0.

Clearly N has the homotopy type of M, the universal cover of M, Fibered manifolds
are quasi-fibered and quasi-fibered manifolds are split. Quasi-fibered manifolds will
be fibered if the A-cobordism theorem is true in dimension five.

Let M5 be a given closed orientable manifold with tt1M=Z. Suppose Û has the

homotopy type of a finite complex; equivalently, by [40], suppose the homotopy
groups of M are finitely generated. For manifolds of higher dimension with funda-
mental group Z, this requirement on the universal covering space is sufficient to
insure that the manifold fibres over a circle [7]. In particular, the universal cover has the

homotopy type of a closed manifold of one less dimension.
In our situation, let v be the normal bundle of M and p:iïï-+M the universal

covering map. Then Ç=p*v is reducible; equivalently the Thom class of ^ is spherical
[31]. Furthermore, AÏ is a Poincaré complex of formai dimension four and L1(Ç~1)

=ii?i(^~1) [^] a generator of H4(j\£, Z). AH this follows, for example, by fibering
MxS4 and Mx CP2 over a circle and applying Poincaré duality and the Hirzebruch
formula [20] to the fibres. In the analogous situation in dimensions 4k9 k>\9 we
could conclude that Û had the homotopy type of a smooth manifold [5]. In dimension

four, however, it is not known whether this is the case.

THEOREM 5.1. Let M be a closed, connectée!, orientable five-manifold with

iiiM^Tj. Let Ji3f be the universal covering space of M, Suppose Û has the homotopy
type of a smooth closedfour-manifold. Then M is quasi-fibered over a circle,

Proof The basic idea of the proof of 5.1 is illustrated by the following spécial
case: suppose %XM acts trivially on ntM for ail i. Then it is not hard to see that M has

the homotopy type of Û x S1. Hence M also has the homotopy type of Nx S1, N a
simply-connected four-manifold. By Theorem 1.1, Mis diffeomorphic to Nx S1, and
in particular, M is quasi-fibered, indeed fibered, over S1.

In the gênerai case, let t \Û-*Û be a generator of the group of covering
transformations of Û. Let T(t) be the mapping torus of t; i.e. T(t) is obtained from
Jfrx/ by identifying (x, 0) with (tx9 1). The composite of the natural projection of
fà x / to Û and the covering projection induces a map of T (t) to M. Using the fact
that T(t) is a fibre space over S1 with fibre ifô, it is not hard to see that this map
induces isomorphisms of homotopy groups. Hence T(t) and M hâve the same homotopy

type.
Let X;fà-+N be a homotopy équivalence, where N is a simply-connected closed

four-manifold. Let h:N-+N be a homotopy équivalence, simplicial with respect to a
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fixed smooth triangulation of N9 so that hX is homotopic to Xt. Then

XKj{hXCl):Û x dI-+N x dl

extends to a map of Û x I to N x I which agrées with identifications and so induces

H: T(t)-*T(h). The universai cover ofT(h), for example, consists of infinitely many
copies ofNx /laid end to end and glued together by h. Using this description, it is not
hard to verify that if induces isomorphisms of homology groups of universal covering
spaces, as well as an isomorphism of fondamental groups. Hence H induces
isomorphisms of homotopy groups, and so is a homotopy équivalence.

Thus M has the homotopy type of the mapping torus T(h). Suppose h had no
normal invariant; i.e. rç(A)=0 in [i\T; G/O]. Then if g is a homotopy inverse to h,

rj(g)=zO also, by Proposition 2.2. Hence g is normally cobordant [3] to the indentity ;

and since L5(e)=Q, it follows that 3 an A-cobordism W with dW=N and a map
q>:W-*NxI with (p(x)~(gx, 0) for xeô_W and q> \ d+W:d+W-+Nx 1 a diffeo-

morphism. The map (h x 1) (g x 1) <p : d + W-+N x 1 is homotopic to (p | d + W. Hence by
the homotopy extension property, we may find \j/: W-^NxI with il/(x)=(gx, 0) for
xed_ W and ^{x)={hgx 1) q>(x) for xed+ W.

LetXbe obtainedfrom Wbyidentifyingxed^W^Nwith q>~l{x, l)ed+W. Then

& agrées with the identifications and so induces a map G:K-*T(h). Again, G is a

homotopy équivalence because it induces isomorphisms of fundamental groups and

homology groups of universal covering spaces. Thus K and M hâve the same homotopy

type. But Kis quasi-fibered. Hence, by Theorem 4.1, A'and M are diffeomorphic,
and so M is also quasi-fibered.

Thus we would like to show that q(h)=O. This unfortunately seems in gênerai

not to be the case. However, let Q:MxS1-+T(h)xS1 T(hxidsi) be a homotopy
équivalence. The inclusion N=Nxl^NxI induces an inclusion of N in the Poincaré

complex T(h). By the splitting theorem of [10], we may suppose ^~1(Arx 5X) Ô is a

submanifold and

q:(M x S\ Q)->(T(h) xS\Nx S1)

is a homotopy équivalence of pairs. The splitting theorem applies because

By the 5-cobordism theorem [15], M x S1 is diffeomorphic to the mapping torus of

a diffeomorphism/of Q with itself. The map q splits to a map

q:QxI->N x S1 xi with

n:NxSl xI-+NxSl the natural projection. Thus the restriction of q to Q x 0 gives a

homotopy équivalence p;Q-*NxSx with (hx 1) p homotopic to pf. (Hère 1 ~idsi)
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By Corollary 4.5, ficz(jxl)<r9 where j:N-+N is a homotopy équivalence and

a : Q-+N x Sl is a diffeomorphism. Let & be a homotopy inverse to/ ; we assume k and/
are both simplicial with respect to the triangulation ofN. Let g=khj. Then (g x 1 ~ /j=

a/cr"1, a diffeomorphism. Hence rç(gx l) 0. The map [N9 (r/0]->[iVx S1; G/0]
induced by the natural projection is monic and carries rj(g) to tj(g x 1). Hence rç (g)=0.

There is a map of NxS1 xi to itself that sends (x, 0) to (x, 0) and (x, 1) to

((^xl)^"1^), 1), xeNxS1. This map induces a map T{pi)-±T(gx l) T(g)xSl
which is again easily seen to induce isomorphisms of fundamental groups and homo-
logy groups ofuniversal covering spaces. Also, (k x 1) is homotopic to (h x 1) (k x 1) \x~ *,

and the homotopy induces a map T(fi)^T(h)xSi which is also a homotopy
équivalence. Thus as T(h) has the homotopy type of M, we get a homotopy équivalence
F:T(g)xS1-+MxS1.

Let a generate nl(T(g))9 let ô generate nxM, and let y generate n^S1. Then

^î T (g) x S1) 7r± T (g)) x ni (S1), for example, and it follows from the construction
that F#(0, y) (0, ±y). After composition with (irf)x(-1) if necessary, we may
assume F#(0, y)=(0, y). We must hâve F*(a, 0)=(±<î, my), meZ, since F* is an
isomorphism.

Let IiMxS^S1 be such that /*(<5, 0)=-my and 4(0, y) y. Let liMxS1-*
-+MXS1 be /(x, y)=(x, I(x, y)). Then (/oF^Ca, 0) /(±<5, my)=(±5, 0). Hence
/oF is a homotopy équivalence that lifts to a homotopy équivalence of the infinité
cyclic cover T(g) x R of T(g) x S1 with the cover Mx R of Mx S1. Thus M has the
homotopy type of T(g), g:N-+N a homotopy équivalence with vanishing normal
invariant. Now the above argument that we wanted to apply for h goes through for g
and proves Theorem 5.1.

Theorem 5.1 shows that the smoothing conjecture implies the (qu&$i-)fibering
conjecture, To prove the remainder of Theorem 1.3, let us assume the (quasi-)fibering
conjecture to be valid. Let X be a Poincaré complex, finite, simply-connected, of
formai dimension four. Let Çk, k large, be a vector bundle over Xwith spherical Thom
class and with L1CPi(r1))=s^i({"1)=Index X. Then let f:Sk+*-^T(Ç) be a map
representing the Thom class in Hk+4(T(Ç); Z), transverse regular to the zero-section

IcT(^). Let N=f~lX and let g=/ | N;N->X. Then g has degree one with
respect to suitable orientations, and g is covered by a bundle map of the normal bundle
y(N) to Ç; equivalently, there is a stable framing F of T(iV)©g*£. The surgery
obstruction for (N, g9 F) is just

s(N9 g, F) i (Index X - Index M) 0.

Unfortunately, this does not allow us to perform surgery to get a homotopy
équivalence.

The periodicity theorem [33] for simply-connected surgery obstructions asserts
that s((N9 g, F)x CP2)=0. Indeed, this is clear from the facts that the index of a
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product is the product of the indices and complex projective space CP2 has index 1

Hence s ((M, g F)xS1xCP2) 0, and so by the gênerai penodicity theorem for
(non-simply-connected) surgery obstructions of [38], (N9 g, F)xS1 is cobordant to
(K, h, G) with hiK-ïXxS1 a homotopy équivalence The fibenng conjecture asserts

that there is a simply-connected closed four-manifold NczK with nlN=KlKfor z^2
The composite

N cK^X x S^X,
n the natural projection, is a homotopy équivalence which clearly pulls back «^©e1 to
the (Je + l)-dimensional normal bundle of N

§ 6. H-cobordisms of Four-manifolds with n1 Z

In this section we prove Theorem 1.4. To make the basic idea clearer, we first prove
Barden's theorem, the simply-connected analogue of 1.4 No proof of Barden's

theorem has ever appeared

THEOREM 6 1 Let(W, V, Vt) be a simply-connectedh-cobordism with dim W= 5

Let r : W-* Vbea retraction such that r | VX\VX-*V is a diffeomorphism. Then there is a

diffeomorphism q>.VxI->Wso that q>(x, 0) x &nd (p(x, l) (r | V1)~ixtor xeV

Proof We may as well assume W is connected Let \i (W, V, V^)-*{1,0, 1) be a

Morse function [21] Then (r,ju)* W-±VxI is a homotopy équivalence that is a

diffeomorphism of boundanes. Hence r, pi) represents an élément ofhS(VxI,VxdI)
Clearly, ît suffices to prove this élément is trivial

We hâve a map n:hS(VxI, VxdI)-+\XV+, GjO~] and an action of L6(e) on

hS (Vxl, Vxdl) so that the inverse images via n of points are empty or orbtis of this

action. Hère [e] is the trivial group and SV+ VxI/VxdIis the reduced suspension
of the union of V with a disjoint point

There is a map q>:S3 x S3^S6 ofdegree one and a stable framing FofM= S3 xS3

so that the surgery obstruction s(M9 q>9 F)eZ2=zL6(e) is non-trivial See [22], for

example. Given h:(K, dK)-+(VxI, Vx dl)9 let £ be a bundle so that /**£ is équivalent

to the normal bundle of K, and choose a framing G of n(K)@h*l;. Then take the

connected sum in the mtenor, (KxIyhxI9GxI) # (M,q>, F). The surgery ob

struction of the resuit is still non-trivial, by additivity of surgery obstructions [3]

This shows that the non-zero élément of L6(e) acts tnvially.
On the other hand IV+ has a cell-decomposition with one one-cell, some three

cells, and a five-cell. But nl(GIO)^n3(GIO)=n5(GIO)=0. Indeed, PL/O is 6-con

nected as 1^=0 for i<6 (see [8], [21], and [18]) and the odd homotopy groups of
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G/PL are ail trivial by [33]. Hence [XF+; (7/0]=0. So hS(VxI, Vxdl) has one
élément. This proves the theorem.

Now suppose (JV, F, FJ is an /î-cobordism, dimPF=5, but n1W=Z. Assume
that Wis orientable and connected. Let r : W-+ Vbe a retraction with r | Vl:Vi->Va
diffeomorphism. Let \i be a Morse function on JF. Then (r,/z): W-*Vxl again
represents an élément of hs(VxI, Vx dl), and it would suffice to show this élément

to be trivial to prove Theorem 1.4.

SinceL6(e)-»L6(Z) induced by inclusion is an isomorphism, by [27, Theorem 5.1]
and the periodicity L6 L10, the same proof as in the simply-connected case shows
that L6(Z) acts trivially upon hS(VxI, Vx dl). Hence

t\: hS(V x /, V x dl)-> [ZV+ ; G/0]

is a monomorphism. Unfortunately, [£F+, GjO] is not trivial.
Let h:{M, dM)^(VxI9 Vxdl) be a homotopy équivalence that restricts to a

diffeomorphism of boundaries. Let K be obtained from M by identifying h~1(x, 0)
with /r"1^, 1) for xeV. Then A induces a homotopy équivalence /r^T-^FXiS1. It
follows easily from the définitions that rj(f) is the image in [FxS1; G/0] of tj(h)
under the natural quatient projection of Vx S1 onIF+ Vx S^jVxpt.

Let ieH2(G/0; Z2) be the non-zero class. Let £ r\(h). By the results of [27, § 6],
<^=0 if and only if Ç*i 0. In fact, £ cornes from [V x S1 ; G] and the évaluation on i is

a monomorphism on such éléments.

The map [l'F+j G/O]->[Fx51; G/O~\ is a monomorphism. For its kernel is

isomorphic to the cokernel of the map [I (Vx S1); G/0]-* [2? F; G/0] induced by the
inclusion F= Vxpt^VxS1. This map is clearly onto; the suspension of the natural
projection of Fx S1 on F induces a right inverse.

The évaluation on i is natural with respect to induced maps. Hence it defines a map

y: [ZV+ : G/0] -+ H2(IV+ ; Z2) Z2

with the property that for A:(M, 3M)->(Fx/, Fx dl) a homotopy équivalence that
is a diffeomorphism of boundaries, y (rj (h))=0 if and only if rç (/*)=0.

Thus to prove Theorem 1.4 it suffices to find a homotopy équivalence h : Fx /-» F x /,
with 6 | Fx 5/ the identity, and t\(h)ïO in [IF+ ; G/O].

LEMMA 6.2. A generator ofH3(V) Z is spherical
Assuming this lemma, let us complète the proofofTheorem 1.4. Let D5cFx (i,f)

be a disk. Let aoe7r5(Fx/) be represented by the composite

the first map being the non-trivial map and the second representing a generator of
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H3(V). Then let h: Vx J-+ Fx I be the identity outside D and so that the obstruction
to homotopy of h to the identity relative (Vx I- Ù) is <xoeH5(Vx I,(Vx I-Ù);n5V)

Glueing Fx 0 to V x 1 by the identity, we get a map/ : F x S1 -> Fx Sl induced by h.

If rj(h) were equal to zéro, h would represent the trivial élément of hS(Vx /, Fx dl),
i.e. the class of the identity. Certainly in this case /would be homotopic to a diffeo-

morphism. So it suffices to show that/is not homotopic to a diffeomorphism.
Let v* be the normal bundle of Fx S1. Then by 2.6, 6 (f) l5+k+Sv(oio)9 and we

could proceed by showing that l5+k+5'v(a0)#l5+k in A(VxSl). Instead we give a

direct argument suggested by J. Morgan.
Let QaVxS1 be a closed submanifold, dim ô 2, representing a class in

H2(VxSl; Z2) dual to the mod 2 réduction of a generator of jFf3(F)czH3(Fx S1).

Q exists by Steenrod representability [34] and the Whitney embedding theorem.

(Actually, one can use a spectral séquence argument to represent the dual class by a

sphère.) We may assume QnD—0.
We may assume fi;S3~+ Vx S1 is transverse regular to Q. Then P"lQ will be an

odd number of points, qi9..., qs say, s odd. We can assume/?: S5-*S3 has ql9 qs as

regular values. Thenp~1(qd:=Ui is a submanifold of S5, and if Ft is the framing of
Ut induced via p9 the Kervaire invariant c(Uh Ft) is not zéro. This is because the

Kervaire invariant and the Thom construction give an isomorphism of ns(S3) with

Z2 [24], For example, we could arrange to hâve U^S1 xS1 with Ft the "wrong
framing."

Thus we hâve a représentative a:5'5->Fx5'1ofa0, transverse to g, with a " * (Q)

Ut u • • • u Us. Without changing this, we may alter a so that on a small disk DoczS5

so that a | Do :D0-+D is a diffeomorphism. Let us identify D with the complementary
diskS5—Inti>0. Then we may choose /so that (/ | D)u(a
transverse to Q9 &ndf~~1(Q)=QvUlKj~vUs= FF. Let ç>=/

Z>0)=a. So/will be

W:W->Q, a map of

degree one on Q and degree zéro on each Ut. Let £ be the stable normal bundle of Q ;

£ y(g, Fx S1)^ | g, where the first summand is the normal bundle of g in Fx S1.

Then from transversality we hâve a stable bundle map from the normal bundle of W

to £ covering <p9 and so a stable framing of xW@(p*Ç. Clearly the Kervaire (surgery)

obstruction c(W9 <p9 F)=^c0/i^ *i) does not vanish.

Suppose h were homotopic to a diffeomorphism. Then, making the homotopy
transverse to Q9 we get a cobordism of(W, <p9 F) to (P, ^, G), ^:P->g a homotopy
équivalence, mdeed a diffeomorphism. But the Kervaire obstruction is a cobordisrr
invariant (see [3], [6]), so this is impossible. Hence h is not homotopic to a diffeo

morphism. This proves Theorem 1.4, assuming Lemma 6.2.

Proûfof62. Recall Fis a closed orientable manifold with %F=Z. There is <

space X of the homotopy type of F and a Serre fibration piX-^S1 with simply
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connectée fiber F. (See, e.g. [30].) F has the (weak) homotopy type of the universal
covering space of V. Let (Er) be the cohomology spectral séquence of the Serre

fibration/?. Then Ep2*q Hp(Sl ; §*(F)), cohomology with local coefficients. We also
hâve a filtration H3(X) F°>3 =>Fu2 3F2'1 2F3'0 20. As E\X^E\^^Q9 F2-l=0

Suppose yeF1-2. Let xeH1(X) E12>o=El;o=Fuo. Then xuyeF2*2. But
E22>2 Eli=E2i'o=0; hence F2>2=0. So x<uy=0. By Poincaré duality, this implies
y=0. Thus ^^=0, and the map

H3(X)-*F0>3-+E°a;3ç:E02>3czH3(F)9

which is just the map induced by inclusion, is monic. The image consists of those
éléments fixed under the action of n^1.

Now H2(F) H2(P), f the universal cover of V. Let yl Z[7r1F], the intégral
group ring of n± F= Z. Let C% be the chains of fwith respect to a cell-decomposition
induced from one of V by the covering map. C* is a yl-module. By Poincaré duality
(see [39]), H2(V; A)=H2(P)=H2(C*; A) H2(Hom(C*; A))=H2(V; A). So by
universal coefficients over A (see [30]),

H2(F) HomA(H2{V); A)0 Ext^ (?); A).

But Ht(?)=09 and, as Z-modules,

(H2 (V);A)s Homz(H2

Hence H2(F) is free. By universal coefficients, this means H3(F) Hom(H3(F); Z).
The subgroup of éléments of H3 (F) fixed under the action of the fundamental

group is a direct summand because it is the kernel of a homomorphism of the free
module H3(F) onto a submodule and hence onto a free module. Hence 3weH3(F)
with <i *x, w}=0, where i: F-+X is inclusion, xeH3 (X) is a generator, and <,> dénotes

Kronecker product. Hence i*w is a generator of JFf3(Ar)=iÎ3(F). Since Fis simply-
connected, w is spherical, by the Hurewicz theorem. Hence i+w is spherical. This
proves the lemma.
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