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Nonlinear Functional Equations and Eigenvalue Problems

in Nonseparable Banach Spaces1)

Peter Hess (Chicago, 111. 60637, USA)

1. Let X be a real reflexive Banach space and A, B nonlinear mappings of X into
the conjugate space X*, with A of monotone type and B compact. In the last years,
much interest in nonlinear functional analysis has been concentrated on the problem
ofdetermining useful conditions under which the functional équation

Au 0 (1)

or the eigenvalue problem

Au îBu for some real t (2)

admit solutions (which possibly satisfy additional restrictions).
For A satisfying certain asymptotic conditions (such as A coercive or A ~l bounded),

various results on the solvability of équation (1) hâve been obtained (e.g. Brézis [3],
Browder [4, 6, 8, 9], Browder-Hess [13], Leray-Lions [22], Minty [23]). There is an
alternative type of hypothesis one may impose on the mapping A in order to get
existence theorems for équation (1), namely the hypothesis that A=A0 is homotopic
to a mapping Ax which commutes with a group ^ of transformations on the spaces

X and X*9 with ^ having éléments of finite order (in particular Ax odd). Under the

assumption that X is separable, several mathematicians hâve derived existence

theorems involving homotopy arguments, making use of an approximation method
of Galerkin type (e.g. Browder [8, 9, 10, 11], Browder-Petryshyn [14]). (For a com-
pletely différent approach see Hess [19]). Though most of the concrète reflexive
Banach spaces occurring in applications are separable, it is necessary for the investigation

of certain spécifie problems to hâve a similar approach in nonseparable spaces.
For that reason, Ne£as [24] has recently given a method which works in nonseparable

spaces, and which is extended in the writer's papers [17,18].
One way of attacking the eigenvalue problem (2), is by variational methods (e.g.

Browder [5], Hess [16], Krasnoselskii [21], Vainberg [26]). In [7, 8], Browder has

developed a theory for nonlinear eigenvalue problems in separable spaces based on
Galerkin approximations. This latter approach has the advantage that it does not
involve the theory of infinite-dimensional manifolds (Lusternik's principle), and that it
permits to prove the existence of an infinité number of distinct normalized eigen-
functions (Lusternik-Schnirelman theory) under milder differentiability hypothèses.

*) Research supportée by NSF grant GP-23563 and by the Schweizerischer Nationalfonds.
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It is our purpose in the présent note to describe an easy argument of Galerkin
approximation type which allows to prove both existence theorems and results on
eigenvalue problems in nonseparable Banach spaces. In contrary to the Galerkin
approximation method in separable spaces, which is based on an a priori given injective
approximation scheme, our method consists in recursively constructing a suitable
scheme. The main resuit is the Proposition proved in Section 2. In Section 3 we

apply the conclusions of the Proposition to the functional équation (1), assuming that
A A0 is homotopic to an odd mapping Ax. The resuit is closely related to that of
Necas [24], but it seems that our proof is simpler. A brief discussion follows of how

our theory can be used in order to study nonlinear équations of Hammerstein type in
nonreflexive Banach spaces. In Section 4 we finally show the applicabiJity of the

Proposition to the treatment of nonlinear eigenvalue problems in nonseparable

spaces.

2. For X a real Banach space and X* its conjugate space, we let (w, u) dénote the

duality pairing between éléments weX* and ueX. An operator A defined on a closed

set CczX, with range contained in X*, is said to be of type (S) if it satisfies the
condition: for any séquence {un}c:C converging weakly to some ueX,for which lim(Auni
un — u) Ot its strong convergence follows. Mappings of type (S) hâve been introduced

by Browder [7] and hâve shown to form a very useful class of operators of monotone

type for homotopy considérations and eigenvalue problems. The mapping A is further
bounded if it maps bounded sets onto bounded sets. Let A be the set of ail finite-
dimensional subspaces of X, ordered by inclusion. For FeA9jF dénotes the injection
mapping ofFinto X. If the operator A maps CczXmto X*9 the Galerkin approximant

AF:CnF-*F* is defined by AF=j*AjF. In the following we use the symbols "-?"
and "-^" to dénote strong and weak convergence, respectively.

PROPOSITION. Let X a real reflexive Banach space, C a closed subset ofX,Ia
closed interval in R1, and A(u,t) a mapping of Cxi into X* with the following pro-
perties:

(i) Forfixed t,A(u,t):C-+ X*, is bounded, continuous, and oftype (S);
(iï) A{u,t) is uniformly continuous in t with respect to u in bounded subsets of C.

Let {En}n'fl be a given increasing séquence in A with CcsE^ty. Suppose to each

FeA with F=>Et there exist éléments uFeCnFandtFeIsuch thatj*A(uF9 tF)=0, and

assume said éléments are uniformly boundedfor F"=> Ex.
Then A(u0, t0)=0for some u0eC and toel. Moreover, there exists an increasing

séquence {Fn} in A with Fn^Enfor each nf such that for some subsequence {n{k)} of

Proof. We construct the asserted séquence {Fn} in A as follows :

(a) WesetF1=£1.
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(b) Suppose we hâve already constructed Fx c • • • c Fn9 and let un uFn e C n Fn and

tn tFneIdénote the described éléments corresponding to Fn such that7*n4 (un, tn) 0.

There exists vneX9 \\vn\\ 1, such that \(A(un, fn), t>,)| ^i||4(un, tn)\\. We then choose

FH+1z>FH+EH+1+[vn].
By hypothesis, the séquences {un} and {tn} are bounded. We may pass to infinité

subsequences and assure that un-^uoeXand tn^toel. It follows from condition (ii)
that

||4(!i,,*,)-4(ti,,fo)ll->0 (n-oo). (3)

We assert that

(A(umto),w)->0 (n->oo) (4)

for ail weX0 closure {Ujïi ^/}« Indeed, if w lies in some Fj and « g:./, we hâve

(u,, r0), w)| ^ |(i4 (ii,, O, w)\ + 1(4 (wn, t0) - A (un9 tn% w)\,

where the first term on the right side vanishes, while the second term tends to 0 as

«-?oo according to (3). Because of the boundedness of the séquence {A(un, t0)}, (4)
extends to ail weX0. We now get

11,, t0), un - uo)\ S 1(4(11,, tn)9 un)\

m,, t0) - A (un, tH)9 u,)|

On the right side of this estimate, the first summand vanishes, the middle term tends

to 0 because of (3), and the last approaches 0 according to (4), since the weak limit u0

of the séquence {un}czX0 lies in Xo. Property (S) of the mapping A(u, t0) implies
that un-*u0. Hence u0 e C, A (un910) -+ A (u0, t0), and

A(uU9tu)-+A(u09t0) (5)

because of the continuity of the mapping A (w, t0) in u and the estimate (3). We infer
that, according to (4),

o)^) ° fora11 WG*o- (6)

We finally prove that A(u0, ro) 0. Suppose to the contrary that A(u0, ^^0. Then,

by (5), || A (un, tn)|| ^d>0 for some constant dand ail n^n0, which implies that

\(A(ua,tm),vu)\èdl2>0

for n^n0. But (5) and the fact that some subsequence of {vn} (denoted again by {vn})

converges weakly to an élément voeXo hâve as a conséquence that

(4 (un9 tn)9 vn) -> (4 (w0, to)9 v0),
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the expression on the right being 0 according to (6). This contradiction shows that
A(uo,to) 0, q.e.d.

3. We apply the Proposition in order to obtain results on the existence of solutions
of the functional équation (1).

THEOREM 12). Let X a real reflexive Banach space, G an open bounded subset of
X containing 0 and symmetric about the origin, and Atu=A(u,t)a mapping of cl (G) x
x [0,1] into X* asfollows:

(i) Forfixed t, At is a bounded continuons mapping oftype (S);
(ii) A(u, t) is uniformly continuons in t with respect to uecl(G);

(iii) A± is odd on bdry (G), Le. A(~u, l)=—A(u, 1 )for ne bdry (G).
Assume that A (u, t)^Ofor ail w g bdry (G) and ail te[0, 1]. Then the équation A0u=0

has a solution u0 in G.

Theorem 1 follows by the classical Borsuk theorem [2, 15, 21], the invariance of
the Brouwer degree under homotopies, and arguments which hâve become standard
in the theory of mappings ofmonotone type (e.g. [3, 4, 6, 8, 9, 13, 17, 18, 22, 23]) from

LEMMA 1. Let EeA be given. Then nnder the assumptions of Theorem 1 there
exists FeA, FzdE, such that j*A(u, t)^0 for ail webdry(G)nF and ail te[Q, 1].

Proof of Lemma 1. Suppose to each FeA with F^>E we can find éléments

nF ebdry (G) n F and tF e [0, 1 ] such thaty *A (uF, tF) 0. Applying the Proposition with
C=bdry (G) and /= [0, 1 ], we are led to a contradiction to the assumptions ofTheorem
1, q.e.d*

DEFINITION. A mapping A from X to X* is said to be pseudo-monotone iffor any
séquence {un} in X with un-^u and limsup(^4wn, un — w)^0, it follows that for ail veX,
liminf(^4wrt, un-v)^(Au, u-v).

Pseudo-monotone mappings hâve been introduced by Brézis [3] and hâve grown
increasingly important in the discussion ofnonlinear elliptic boundary value problems
[3, 11, 13, 22]. Everywhere defined continuous monotone operators from Xto X* (i.e.
mappings A satisfying (Au—Av9 n—v)^0for ail u, v in X) are pseudo-monotone.

For pseudo-monotone operators we hâve the following extension of Theorem 1.

THEOREM 2. Let G a convex open bounded subset of the real reflexive Banach

space X, with OeG and G symmetric about 0. Suppose the mapping Atu=A(u9 t):Xx
x [0, 1] -> X* satisfies the conditions:

(i) Forfixed t9 At is bounded, continuous, andpseudo-monotone ;

2) For G a subset of a Banach space, cl (G) dénotes its closure and bdry (G) its boundary.
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(ii) À(u, t) is continuons in t, uniformly with respect to uecl (G) ;

(iii) At is oddon bdry (G).
Ifthere exists e>0 such that \\A{u9 t)\\^sfor ailuebdry(G) and/e[0, 1], then the

équation Aou=0 is solvable in G.

Proof. By a récent resuit of Troyanski [25] we can assume without loss of generality
that both X and X* are locally uniformly convex spaces. Let / dénote the (single-
valued) normalized duality mapping from Zto X* given by

Ju {qeX*:(q9u)=\\q\\\\u\\,\\q\\

For each À>0 and te[0, 1], the mapping BlX) At+ÀJ is then continuous and of type
(S). By the boundedness of G, there exists e0 > 0 such that B(tX)u # 0 for ail webdry (G),
te[0, 1], and O^A<£0. Hence for fixed Ae(0, eo)9 the mapping B{tX)u satisfies the

assumptions of Theorem 1, and there exists an élément uxeG with (A0+AJ) wA 0.

Taking a séquence {An}->0+ and assuming that un uXn-^uoec\{G)9 we obtain
Aoun ~An/wrt->0andlim(^4own, un — uo) O. By the pseudo-monotonicity of Ao,

0 lim (Aoun, un-v)^ (AouO9 u0 - v)

for ail veX. This implies that Aouo=0 and uoeG, q.e.d.
We show now how our theory can be applied to the investigation of nonlinear

équations of Hammerstein type

u + TFu /
in a nonreflexive Banach space X. Hère F dénotes a (nonlinear) mapping of X to X*,
T a linear operator of X* to X, axidfeX a given élément. Without assuming that T is

compact (which case leads back to the now-classical theory of compact operators in
Banach spaces), it seems to be the first time that Hammerstein équations are considered

by methods of operators of monotone type in a nonreflexive space X. Former
investigations were restricted to équations in a reflexive space X, or in the conjugate

space X* of some Banach space A^e.g. [1, 3, 12, 18, 20]).

DEFINITION. A bounded linear monotone operator T of X* into X is said to be

angle-bounded ifthere exists a constant y^O such that for ail v, w in X*9

\(v9 Tw) - (w, Tv)\ ^y(v9 Tvf'2 (w, Tw)l/2.

LEMMA 2. Let X an arbitrary real Banach space, F a pseudo-monotone mapping

of X to X*, and T an angle-bounded linear operator of X* to X. Then the équation

u-\-TFu=fin X can be reduced to an équivalent équation Av=0 in a Hilbert space H,
with A apseudo-monotone mapping ofH into itself IfX* is nonseparable, then H has the

sameproperty in gênerai
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Proof. By the natural imbedding, we identify X with a subspace of X** and
consider T as an (angle-bounded) mapping of X* to X**. By a resuit of Browder-
Gupta [12] (cf. also Amann [1], Hess [20]), there exist a Hilbert space H (whose norm
and inner product we dénote by ||.||H and (.,.)#, respectively), a continuous linear
mapping S of X* to ifwith range dense in H, and a monotone linear bijective mapping
C of H onto H, such that T=S*CS and {C~1v, v)H^d\\v\\2H for ail veH9 with d>0.
Since Thas range contained in Xand CS(X*) is dense in H, it follows that the range
ofS* is contained in Xc X**.

By the above resuit, the équation

u + TFu / (7)

is équivalent to the équation

Since *$* is injective, there exists a uniquely determined v in H with u—f=S*v9 and
the initial équation (7) and

v + CSF(S*v + f) 0 (8)

are équivalent. By the bijectiveness of C, (8) holds if and only if

It is readily seen that the operator A :

Av C~xv 4- SF(S*t; + /) (veH)

is a pseudo-monotone mapping of H into itself. Finally, if X* is nonseparable, the

same is true in gênerai for H as the completion of a factorspace X* modulo some
subspace (cf. the construction ofH in [12]), q.e.d.

An application of Theorem 2 gives the following existence theorem of Fredholm
alternative type for asymptotically homogeneous and odd Hammerstein équations.

THEOREM 3. Let X a separable real Banach space, B a bounded continuous
pseudo-monotone mapping of X to X* which is odd and homogeneous (i.e. B(Xu) XBu

for ÀeR1), and N: X-+ X* a bounded continuous operator with limj| w(| _> n || w|| "1 \\Nu\\ 0,
and such that B+N is pseudo-monotone. Letfurther Ta linear angle-bounded operator
ofX* to X. Then the range ofI+T(B+N) is ail ofX,providedu+TBu=0 implies that
w=0.

Proof2). In order to show that the mapping I+T(B+N) is surjective, it suffices

8) Hère we dénote by "-*" weak convergence in Xor H, by "i" weak* convergence in X*.
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by Lemma 2 to prove the solvability of the équation

C~lv + S(B + N) (S*v + /) 0 (9)

in H for arbitrarily givenfeX. We observe that if u + TBu=0 only for w=0, then the

équation C "1 v + SBS *v=0 implies that v=0.
In the following let/eZbe fixed. For te[0, 1] and veH we let

4» c*1» + (1 - it)S(B + JV) (S*t; + /) - itS(B + iV) (S*(- !>) + /).
It is readily seen that the homotopy ^4fi^ has the following properties :

(i) For fixed t, At is pseudo-monotone, bounded and continuous;
(ii) Atv is continuous in t, uniformly for v in bounded sets ;

(iii) A0v C-1v + S(B+N)(S*v+f),whileA1isodd.
The desired resuit on the solvability of the équation (9) follows from Theorem 2, if
we prove that, assuming C~1v+SBS*v 0 only for y 0, there exists R>0 such that
)\Atv\\H^ 1 for ail fe[O, 1] and ail veHwith \\v\\H^R.

Suppose that to each n we can find éléments vneH with ||t?JH^n, tne[O, 1], and

eneH with ||eB||H<l, such that Atnvn en. We may assume that tn-+te[Q, 1]. Setting
Wn=\\Vn\\n\, we then obtain

i(tn - t) {SB(S*wn + bJln1 /)
- (1 - ¥n) \\VnWu1 SN(S\ + /)
+ lkli;1«i,^0 (n->oo).

Because of the separability ofA", the weak* topology on closed balls in X* is metrizable,
and balls in X* axe thus weak* sequentially compact. By passing to infinité subsequen-

ces, we may assure that wn^w in H, B(S*wn + \\vn\\H1f)j!La and B(S*wn— ^«Hh1/)

±b in Z*. It follows that S*wn±\\vn\\~1f--S*w in Z, C"1wB-^C"1w in H, and

0. Wefurtherinferthat

1^, wn - w)B + (1 - it) (B(S*wn + WvJû1 f\ (S*ww + ll^llâ1 /) - S*w)

We assume that 0<r^l (the case *=0 is treated similarly) and choose further
infinité subsequences such that the three limits lim (C ~ iwn9 wn — w)H,

lim(B(S*wn-\\vjH1f),(S*wn-\\vn\\H1f)-S*w)exist. By the pseudo-monotonicity
property of the mappings C"1 and B, ail of the three limits are 0. Hence, again by
pseudo-monotonicity, a=b—BS*w, and consequently C ~Jw+SBS*w=0.
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Since (C~1vn9vn)H^d\\vH\\g9 we conclude that (C~1wn,wn)H'^d>0. Moreover

(C-X, wn)H-> (C'w, w)H. Thus w^O, q.e.d.
Remark. Theorem 3 remains true for Znonseparable, but reflexive.

4. Our principal methodological resuit on nonlinear eigenvalue problems which
extends the corresponding Theorem 1 of Browder [7] to mappings in nonseparable
spaces is

THEOREM 4. Let X a real reflexive Banach space, C a closed subset ofX, and A,
B continuous mappigs of C into X*, with A bounded and of type (S) and B compact.
Let {£„}„=! be an increasing séquence in A with CnE1^(D. Suppose to each FeA
with FzDEt there exist éléments uFeCr\F and tFeRl such that JFAuF tFjFBuF, and

assume uF and tF remain uniformly boundedfor F^> Et.
Then there exists a séquence {Fn} in A with Fn^Enfor each n, such that for some

subsequence {n(k)} of {n}, uFn{k)-+uoeC, tFnik)-^toeR1, and Auo toBuo.

Proof Follows immediately from the Proposition, with I=R1 and A(u,t)
=Au-tBu.

As an application to the "selfadjoint" case where A and B are the derivatives of
two functions, we get the following extension of Theorem 3 in [7] and Theorem 14

in [8]:

THEOREM 5. Let f h continuously differentiable real-valued functions defined
on the (not necessarily separable) real reflexive Banach space X, withf bounded and

°f type (S) and hr compact. Suppose that for a given constant c the level set Mc(f)
{ueX:f(u) c} is nonempty and bounded, and that for ueMc(f),(f'u,u)^0.

Suppose further that there exists a point voeMc(f) and a constant d>0 such that

for ail ueMc(/)for which h(u)^h(t>0), (h'u, u)^d.
Then h assumes its maximum on Mc(f) at a point u0 which is a solution of the

équationf 'u0 t0h'u0for some real number t0.

Proof. By the continuity of/, the level set MC(J) is closed in X. Let F an ar-
bitrary élément of A with Mc(/)nF#0, and let/F, hF dénote the restrictions of/and
h to F. The functions/F and hF are continuously differentiable on F, with (fF)' =jFf'jF,
(hF)'=JÏh'jF. We set MC|F(/) Mc(/)nF. Since ((fF)fu,u) (f%u)ï0 for ail

ueMcF(f), McF(f) is a compact manifold of codimension 1 in F. Thus there exists

uFeMcF(f) such that h(uF) supueMc Fif)h(u). By the Lagrange multiplier method,

(hF)'uF XF(fFyuF (10)

for some real XF.

Let {wn} be a séquence in Mc(f) with h(wn)-+m supueMcif)h(u). We choose

an increasing séquence {En}n=l in A such that El=>{v0, w^, while wneEn for n^2.
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In order to prove the applicability of Theorem 4 with C=Mc(f), we show that for
FeA,F^>Eu the corresponding numbers (Ajr)"1 of (10) are uniformly bounded. In-
deed, it follows from (10) that \(h'uF, uF)\ \ÀF\ |(/'i/F, uF)\9 where \(h'uF, uF)\^d>0
and \(f'uF9 wF)|^A:0 for each FeA with F^=>EV Thus \ÀF\'^k1>0, and we can write
(fF)f uF tF (hF)f uF, with tF (ÀF)~l uniformly bounded.

By Theorem 4 there exists a séquence {Fn} in A with Fn^>En for each n, such that
uFnik)-+UoeMc(f)>tFn(k)-»toeR\ and ffuo toh'uo. Since ivBe£BcFB, h{wn)S
Sh(uFn). In this last relation the left side converges to m, while h(uFn(k))-+h(u0) by
continuity of h. Hence h (u0) suptt smc(/)^ (w)> q.e.d.

In a similar way one generalizes Theorem 15 of [8].
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