
Zeitschrift: Commentarii Mathematici Helvetici

Band: 46 (1971)

Artikel: On Central Group Extensions and Homology

Autor: Eckmann, B. / Hilton, P.J.

DOI: https://doi.org/10.5169/seals-35526

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 17.11.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-35526
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


345

On Central Group Extensions and Homology

by B. Eckmann and P. J. Hilton

0. Introduction

Given an extension of groups

N>-»G^»Q (0.1)

it is well-known (see [7, 8]) that there is an exact séquence in homology

H2G -» H2Q - AT/[G, JV] -> H^G -> HXQ -> 0, (0.2)

where H1G Gab is the abelianized group G/[G9 G]. Ganea pointed out in [5] that, if
N is central in G, we may extend the séquence (0.2) one place to the left, obtaining

N®Gab^H2G->H2Q-+N-+Gab-+Qab->0. (0.3)

Ganea's proof is topological, but uses no explicit spectral séquence technique. In this

paper we exploit Ganea's topological approach, but by using spectral séquence
techniques for fibre spaces, we extend (0.3) a further four places to the left. The feature
which then enters into the séquence, beyond the ordinary homology groups of groups,
is the group H4(N, 2), that is, the fourth homology group of the Eilenberg-Mac Lane

complex K(N, 2). Indeed, we associate naturally with the central extension (0.1) a

homomorphism

a:H^(N92)-^N®Gab (0.4)

which, in fact, factors as

H4(N,2)^N®N^N®Gab, (0.5)

where d is intrinsic to N and natural, and the second homomorphism is induced by
the évident map N-^>Gah. Then, in particular, we obtain the 8-term séquence

H3G -+ H3Q -> cokercr -? H2G -> H2Q -> N -> Gab -» Qab -> 0. (0.6)

Our full 10-term séquence (1.5) then involves a certain quotient, H3G, of H3G, which
we explicitly describe, and commences

H3~G->H3Q ->••-. (0.7)

We remark that the Ganea extension (0.3) of (0.2) and certain parts of our further
extension can be established by an elementary method using free présentations of the

groups concerned. This is done in a separate paper [2] which also discusses some

elementary applications.x)
1 Added in proof: Y. Nomura, The Whitney Join and Us Dual, Osaka J. Math. 7 (1970), 353-373,
uses topological methods to obtain an extension of (0.2), différent from ours, back to HsQ, even if
N is not central in G.
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In Section 3 of the présent paper we show that the séquence (0.6) is relevant to the
study by Bass [1] and Kervaire [6] ofperfect (or connectée!) groups, that is, groups G

such that the abelianized group Gab is trivial. For we obtain immediately from it the
results of Section 1 of [6] and the principal lemma of Section 2 of [6], namely that,
if (0.1) is a central extension with G perfect, then H3G-+H3Q is surjective. Kervaire
also obtains an exact séquence in [6], relating to an extension

of perfect groups, which suggests a définition of £3 04) in algebraic AT-theory. In
Section 3 of this paper we offer a commentary on this séquence in the form of a natural
generalization which exploits again the fact that H3G-+H3Q is surjective. With regard
to algebraic iÊ-theory, we note that an immédiate proof of the exact séquence

K2 (A) -> K2 (A/a) -> Kt (A, a) -> Kt (A) -> Kx (A/a)

of algebraic if-theory can be obtained from (0.2) and from well-known properties
(Theorem 15.1 of [9] oîGL(AJ) and GL(A/a); this proof is given in [2].

Section 2 is devoted to a study of â:H4(N, 2)-+N®N and a companion homo-
morphism

f : H5 (iV, 2)->Tor(JV,iV).

We use the full 10-term exact séquence to compute â and f ; we reobtain in the process
the values of the groups H4(N, 2), H5 (N, 2), first computed by Eilenberg-Mac Lane [3].
Their procédure in Computing H4(N, 2) was to use the bar construction to identify
H4(N, 2) with Whitehead's F-group, and then use Whitehead's calculations [10]. Our
procédure in Computing H4(N9 2) exploits the more gênerai homomorphism a and the

factorization (0.5).
We remark in Section 1 that the topological situation giving rise to a 10-term exact

séquence is much more gênerai than that obtained from a central extension of groups,
although the latter is in a sensé universal. Ail we require is a fibration

F-+E-+B

in which fis connected and B is 1-connected with H3B=Q. Thus, for example, such

a séquence obtains whenever we hâve a fibration over S2.

1. The Extended Exact Séquence

Let

N>->G-»Q (1.1)
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be a central group extension. There is then an opération of N on G, that is, a homo-
morphism

q:NxG-+G (1.2)

which is simply given by the product opération in G, q(x, y) xy, xeN,yeG. Then q
induces a homomorphism, which we also dénote q, in homology,

Q:Hi(NxG)-+HiG9 î>0. (1.3)

Our main theorem is the following.

THEOREM 1.1 : Given the central group extension N>-*G-*>Q, there is a natural
homomorphism

a:H4(N,2)^N®Gab (1.4)

and a natural exact séquence

H4Q -* ker g -> H3G/q ((N ® H2G) ® Tor (N, Gab))

-+ H3Q -> cokera i> H2G -> H2Q -> iV -> Gfl& -> ga& -> 0.

Before proving this theorem we make the following remark. In the third term of
the séquence the denominator is to be understood as the image under q of a subgroup
ofH3(Nx G). Now it is true that the Kùnneth formula does not split naturally; never-
theless, the quotient group of H3G is described in natural, unambiguous fashion, since

Tor (TV, Gah) is embedded naturally in H3(NxG)/N<g)H2G. Equivalently, one may
observe that H2(G; H^) is embedded naturally in H3(NxG).

We now prove the theorem. Following Ganea [5], we base ourselves on the fibre

séquence

K (G, 1) -> K (6, 1) -> K (N9 2). (1.6)

There is then an opération of K(N, l) QK(N, 2) on K(G, 1) and this is precisely the

opération derived from q (1.2). This observation enables us to interpret certain
differentials in the Serre spectral séquence associated with2) (1.6). This spectral

séquence relates, in its simplest form, to a fibration

F-+E-+B

in which B is 1-connected and F is 0-connected. Then, in the spectral séquence
{£rM}, we hâve

2) Ganea [5] does not use the Serre spectral séquence directly, basing himself instead on his
resuit [4] that a fibration F^E->B yields a fibration F*QB^>E U CF-+B. However, the action
of QB on Fis also implicit in this resuit.
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and the séquence converges (finitely) to the graded group associated with H*E, suitably
filtered. Moreover the degree of dr is (—r, r— 1).

Since in the fibration (1.6) the base is 1-connected and the fibre O-connected, we

immediately obtain the right hand end of the séquence (1.5), beginning with
H2G-+H2Q, i.e., the séquence (0.2) in the central case. Moreover, the homomorphism
H2G^H2Q is effectively just the passage from E22 to E^2 in the spectral séquence.
Now consider

j-,40 f* T-21 fi t?02 n n,t,2 -> xl2 —> Jb2 (1*7)

The first homomorphism provides the définition of a:H4(N9 2)-*N®Gab, while the
second is the restriction of q:H2(Nx G)-+H2G to N®Gab; we also dénote this restriction

by q. We thus hâve exactness

However, E2° H3(N, 2) 0, so ^32 E%2 E%2 and we hâve the exact séquence, due

to Ganea [5],

(1.8)

Now E21 =ker g/im c, hence

£^ kere/im<7. (1.9)

Also

^o° 0, (1.10)

since £230 0, and

£L2 0, (1.11)

since E22=0. Thus we hâve an exact séquence

É£>->H3Q-»kerQlimo9 (1.12)

which yields, with (1.8), the exact séquence

Ê°J"H3Q-+N®GJimal+H2G-+H2Q9 (1.13)

where we again dénote by q the homomorphism induced by g.
We now analyze the passage through the spectral séquence from E2

3 to £°3. We

start with E23=H3G; passing to E33, we factor out q{N®H2G)\ passing to E%3, we

further factor out g (Tôt (N9 Gab)); we thus hâve the exact séquence

(N, Gab))-*>E°J. (1.14)

Now, reverting to (1.7), £t3*°=ker a; and E3°=Et° since £212 0. This complètes

the proof of the theorem since E^° is a quotient ofH4Q.
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COROLLARY 1.2 (see also [2]): Suppose that G is perfect (i.e., Gab 0). Then

a) There is an exact séquence

b) H3G-^H3Q is surjective. Indeed, we hâve an exact séquence

We observe that we may pass immediately to a generahzation of Theorem 1.1. We

suppose given a fibration

F->E-+B, (1.15)

with F connectée and B 1-connectée; and we suppose further that H3B=0. We have

an opération of QB on F,

q:QB x F-*F,
and, by identifying H\QB with H2B, we obtain induced homomorphisms

Q:H2B®HtF->Hl+lF, Q:Tor(H2B, H,.^) -? Hl+1F. (1.16)

Then Theorem 1.1 generalizes to assert a natural homomorphism

g:HaB-+H2B®H1F (1.17)

and a natural exact séquence

H4E -> ker a -? H3F/q (H2B ® H2F 0 Tor (H2B, H^))
o

(1.18)
-> H3E -> coker cr^H2F-> H2E -> H2B -+ H^F -> HXE -> 0.

Indeed, the homomorphism <r (1.17) exists without the supplementary hypothesis that

H3B=0.

2. The Homomorphism a

Let us consider the homomorphism a:H4B-*H2B®HlFof (1.17) in full generality.
By considenng the diagram

QB -* EB -+ B

l i i (2.1)
F -? E -»J5

we obtam the commutative diagram
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so that it is sufficient to analyze the homomorphism g\H4B-+H2B®H1QB or, equiv-
alently,

a : H4B -? H2B ® H2B, (2.3)

arising from the path-space fibration
Now let n 7t2B=H2B; then another application of naturality shows that if

rj:B-*K(n, 2) is the fundamental class, then g in (2.3) factors as

Thus we will be content to take B=K(n9 2) and thus to analyze g g:H4(tz9 2)-»7i(g)7i;
this is, in any case, our real concern in this note. We will use (1.5) to carry out the cal-
culation of g and will at the same time compute H4(n9 2). This group has, of course,
originally been computed by Eilenberg-Mac Lane [3], but we will base ourselves

simply on (1.5).
We thus consider the homomorphism

â:H4(n,2)-+n®n. (2.4)

The séquence (1.5) reduces, for the central extension n^n-» 1, to

0 --? ker a -> H3nJQ ((n ® H2n) © Tor (tt, 7i)) -> 0 -» coker a -> H2n -> 0. (2.5)

Assume now that n is cyclic; then H2n 0 and coker (7 0, d is surjective. If n Z,
then ker <t 0, so g is an isomorphism, and (2.4) is then an isomorphism <r:Z^Z.

Now let n Zm. Then H3n Zm and we will prove below the key lemma.

LEMMA2.1:

Granted this lemma, we immediately deduce that, if n Zm9 then

(O, m odd
ker g < _\Z2, m even.

Thus, if n Zm9 m odd, (2.4) is then an isomorphism cf :Zm^Zw. If m is even, we must
détermine the group extension to compute H4(Zm9 2). To do this we consider the
central extension ZwAZm2-»Zm. Then (1.5) yields

0 -* ker g -* quotient of Zm2 ->•••. (2.6)

Moreover, by (2.2), G:H4(Zm9 2)->Zm®Zm2 factors as

H4 (Zm, 2) i ZM ® Zw—Zm ® Zm2.

But plainly 1®i=0, so <j=0, ker G=H4(Zm, 2), so that, by (2.6), H4(ZOT, 2) is cyclic,
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and we hâve proved that if 7i Zm, m even, then (2.4) isanepimorphismô::Z2m--»Zm.
Summing up, we hâve

THEOREM 2.2:

(i) Ifn Z, then H^n, 2) Z and (2A) is an isomorphism;
(ii) ifn Zm, m odd, then HA(n, 2) Zm and (2.4) is an isomorphism;

(iii) ifn Zm, m even, then H^n, 2) Z2m and (2.4) w a« epimorphism.

We now prove Lemma 2.1. Let x generate n Zw and let

•~^Zn^Zn^Zn-^Z-+0, f x-l, g xm~l + xm"2 + ».+ * + 1,

be the usual 7r-resolution of Z. That is, we take the resolution P-»Z in which Pn Zn9

generated by an9 and

^« /^«-i, nodd,
gan_l5 neven, n>0,

ea0 1.

Then P®P is a 7i x 7i-resolution of Z and we seek a chain map q> : P®P^P, compatible
with the augmentations and with the multiplication map o:nxn-+n. Proceeding
step-by-step, we find that we may define <j> as follows in dimensions < 3 :

® ao) <*o »

02 («2 ® flo) 02 («0 ® «2) «2, 02 («1 ® «l) 0,

03 («3 ® flo) 03 (a2 ® ^l) 03 (al ® ^2) 03 (^0 ® ^3) a3 •

Now Tor(Zw, Zm)^H3(ZmxZm) is generated by ^2®^ +^®^. Thus, the image
of Tor(Zm, Zm) in H3Zm under ^ is the subgroup generated by 2a3, that is, 2Zm.

Remark. We may identify â:H4(n, 2)-»7i®7i with an élément of H*(n, 2; xc®7i)

since H3(7r, 2) 0. Since a is just rf2 in the Serre spectral séquence, the standard
identification of the differential shows that d f]1r\2, where n e H2 (n, 2 ; n) is the fundamental
class and r\u rj2 copy r\ into the first and second factors of 7r®7r. This remark may be

used to establish the next theorem.
Let n N®N'. Then plainly â:H4(n, 2)->n®n maps N®N' to

THEOREM 2.3:

ô{x ® x') x ® x' + xr ® x, xeiV, x'

We note from (2.5) that Q:n®n-+H2n induces an isomorphism
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coker â^H2n. It is plain that q(x®x') =x®xr and q(x'®x) — x®xr. This establishes
the theorem, in view of the naturality of a with respect to n.

We thus hâve a complète détermination ofH^in, 2) and à for any finitely generated
abelian group n. Of course we may, if we wish, use a direct limit argument to extend
the détermination of â to any abelian group n.

We close this section by mentioning a companion homomorphism to a, namely,

t:H5(N, 2)->Tor(#, Gab) in the situation of (1.1). This is just </2:£250-»£231 in the
Serre spectral séquence of (1.6). Again it follows by naturality that t is just

H5 (N, 2) i Tor (N, N) -> Tor (N, Gab),

where the second homomorphism is induced by N-+Gah. Thus, reverting to our previous
notation, we consider the central extension 7i>->7r-» 1 and the resulting

f : H5 fa 2) -> Tor fan). (2.7)

We will be content to study (2.7) when n is cyclic.

THEOREM 2.4:

(i) Ifn Z,thenH5fa2) 0;
(ii) ifn Zm> m odd, then H5fa 2) 0;
(iii) if n Zm, m even, then H5 (n, 2) Z2 and f is a monomorphism.

Proof. (i) is well-known. We will prove (ii) and (iii) simultaneously. In the Serre

spectral séquence we hâve x d2:E250->E21. Then ker f JEr|°. Now£'|2=0sincettis
cyclic; E23=0; and E24 0 since n is cyclic. Thus E^° E^° 0, and t is a

monomorphism.

Since E22 0, coker î Ep. Thus we hâve the exact séquence

Also, we hâve â:E2°-^Ell and we know that

m odd
'3 '' m even,

by Theorem 2.2. Then E*o=E£° since E212 0, so we hâve an exact séquence

731 «3 £,03 1^03
,3 >-^xs3 -»ré4

and

Finally, £'222 0 since 7t is cyclic and £203 Zm, so £303 Zm. Putting ail thèse facts

together yields the theorem.
We remark that this theorem does hâve some relevance to (1.5) ; for in the third term,
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when we factor out the image of Tor (N, Gab)9 we actually pass through coker t, where

r:H5(N, 2)^Tor(N,Gab).

3. The Kervaire Exact Séquence

In [6], Kervaire associâtes with a short exact séquence of perfect groups

l->K-»G->e-»l (3.1)

an exact séquence

H3K0 ^H3G0->#3Ôo -+H2K-+H2G->H2Q-+09 (3.2)

provided that Q opérâtes trivially on H2K; hère, Go (for example) dénotes the universel

cover of G, that is, there is a central extension

Go is perfect and H2G0 0.

We wish to remark in this section that we may, just as easily, obtain an exact

séquence like (3.2) for any covering

of (3.1). We first explain what we mean by a covering of (3.1). From (3.1) we obtain
the exact séquence

H2K -> H2G -> H2Q -+ 0 ; (3.3)

this follows (see [6]) from the Hochschild-Serre spectral séquence and the fact that
K is perfect. Now let

U _> y -? W -» 0 (3.4)

be an exact subsequence of (3.3); that is, (3.4) is exact and

U -» V -? W ->0

l l l
H2K -+ H2G -> H2Q -> 0

commutes. Let K, G, Q be the covers of K, G, Q corresponding to U, V, W. Then there
is a séquence

covering K-*G-*Q and an elementary and familiar argument establishes the exaetness

of

K^G^Q-*\. (3.5)
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Thus, we call (3.5) the covering of (3.1) corresponding to (3.4). As spécial cases we hâve
the universal cover of Kervaire, when (3.4) is the zéro séquence; and (3.1) itself when
(3.4) coincides with (3.3). We may set the covering of (3.1) in évidence by means of the
commutative diagram

(3.6)

THEOREM 3.1. Let (3.5) be a covering of the séquence (3.1) ofperfect groups. If
Q opérâtes trivially on H2K, the séquence

H3(K)-+ H3(G)-+ H3(Q)-+ H2K^ H2G -> H2Q-+0

is exact.

Proof. A straightforward application of the Hochschild-Serre spectral séquence
for the extensionK>-+ G-»Q (E%q Hp(Q; HqK)), using thefacts that El1 0 sinceKis
perfect and E22 0 since Q is perfect and opérâtes trivially on H2K, yields the exact

séquence

H3K -> H3G -> H3Q -> H2K -* H2G -> H2Q -» 0.

Now let C be the kernel otË-^G. Then it is clear from (3.6) that C lies in the kernel of
Ë-+K and hence is central in K. Moreover, K/C is also perfect. We obtain from (3.6)
the commutative diagram

I i i

We claim that H2(K/C)-+H2Kis monomorphic. This follows from Corollary 1.2 since

the kernel of RlC-»K is central. Thus, by the naturality of the opération, we infer
that Q opérâtes trivially on H2(K/C). Thus, we hâve the commutative diagram, with
exact rows,

0

(3.7)
?0.

Now the first three vertical arrows in (3.7) are surjective by Corollary 1.2, and the last
three are injective. Since, again by Corollary 1.2, H3K^H3(K/C) is surjective, the
theorem is proved.

We close by offering an example to show that, if G covers G, then H3G^>H3G may
fail to be injective, that is, fail to be an isomorphism. Let B be the binary icosahedral

3 (a/C) -»¦ J

i
H3K >J

1

t -»• H3Q -
i

}->H3Q-

+ H2(R/C)
1

—*H2K—

->H2G

l
-+H2G
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group.3) Then B is perfect and the center of B is Z2 and we hâve the central extension

where A5 is the alternating group of degree 5. Moreover, B is the fundamental group
of a Poincaré space with universal covering space S3, so that H2B=0, H3B=Zi2O.
Thus B is the universal cover of the group A5 and plainly H3B-+H3A5 is not injective,
since the order of A5 is 60. Indeed, the exact séquence b) of Corollary 1.2 reads, in
this case,

H4A5 -» Z4 -> Z120 ->Z30 ->0

(from the exact séquence, H3A5 must be Z60 or Z30; since the 2-Sylow subgroup of
A5 is Z2 x Z2, it follows that the 2-component ofH3A5 has exponent 2, so H3A5 Z30).
Part a) of Corollary 1.2 simply asserts that H2A5 — Z2.

The failure of H3G->H3G to be an isomorphism, on the one hand, vindicates
Kervaire's définition of n2G as H3G0. On the other hand, it does introduce a somewhat

unsatisfactory feature into the analogy with covering spaces of connected spaces.
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3) We are indebted to R. Beyl for drawing our attention, in a slightly différent context, to this
example of a perfect group.
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