Generalized Antipodes and the Borsuk Antipode Theorem

Autor(en): Agoston, Max K.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 46 (1971)

$$
\text { PDF erstellt am: } \quad 10.07 .2024
$$

Persistenter Link: https://doi.org/10.5169/seals-35535

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Generalized Antipodes and the Borsuk Antipode Theorem

by Max K. Agoston

The fact that one has the notion of antipodal points on the n-sphere, S^{n}, is often very useful. The Borsuk-Ulam theorem, which asserts that if $f: S^{n} \rightarrow R^{n}$ thenthere exists $x \in S^{n}$ with $f(x)=f(-x)$, is a particularly nice result having many interesting and amusing corollaries. The object of this paper is to define a generalized notion of when two points on an arbitrary Riemannian manifold are antipodal and then to exploit this concept to prove a generalization of the Borsuk antipode theorem as stated in [2, §33]. It would seem that antipodal points as defined here should prove useful in other areas of differential geometry and topology. At any rate, it opens up a new direction for further theorems of the type just mentioned. Some of the interesting problems that arose in this context are listed in § 3.

§ 1. Generalized Antipodes

All the manifolds considered in this section will be closed and Riemannian. Recall that a Riemannian manifold is a pair $\left(M^{n}, d\right)$, where M is a C^{∞}-manifold and d is a Riemannian metric on its tangent bundle. We shall assume basic facts from differential geometry which can be found in [3]. For example, d induces a metric on M which we shall also denote by d. In addition, all the necessary geodesics which we require will exist because of compactness.

Note. The metric d will always be fixed, and so we shall omit any reference to it except in isolated instances where there might be some confusion otherwise.

Let X be a closed subset of M.
DEFINITION. Let $y \in M$. We say that Γ is a minimal geodesic between y and X if Γ is a geodesic of M connecting y to a point $x \in X$ whose length is equal to the distance from y to X.

DEFINITION. $A(X) \equiv A(X, d) \equiv\{y \in M \mid$ there are at least two distinct minimal geodesics from y to $X\}$.
Elements of $A(X)$ are called the antipodal points, or antipodes, of X. This in in direct analogy with S^{n}, in case X is a point. We shall say that two points $x, y \in M$ are antipodal if $x \in A(y)$.

Note. Clearly, if $x \in A(y)$, then $y \in A(x)$, so that we do not have to distinguish between x being antipodal to y and y being antipodal to x.

There are easy examples to show that $A(x)$ need not be closed; however, we have the following lemma:

LEMMA 1. The closure of $A(x)$ is the set of cut points of x. (See [3, VIII. 7] for the definition of a cut point.)

Proof. We shall only outline the proof which was suggested by F. W. Warner. Let K be the closure of $A(x)$, and let $C(x)$ be the set of cut points of x. It is seen easily from the definitions that $A(x) \subseteq C(x)$. Since $C(x)$ is closed (see [3]), it follows that $K \subseteq C(x)$. Therefore, to prove the lemma, it suffices to show that $A(x)$ is dense in $C(x)$.

Now it is also shown in [3] that if $y \in C(x)$, then either $y \in A(x)$ or y is a conjugate point of x. But conjugate points of x (considered as a subset of the tangent space of M at x) were studied in [5]. There it was proved that the conjugate locus splits into a regular and a singular part and that the regular conjugate locus is dense in the conjugate locus and is a submanifold on the tangent space of codimension one. Let $y \in C(x)$ be a conjugate point. One proves that y belongs to the closure of $A(x)$ as follows: First, one may assume that y belongs to the regular part of the conjugate locus where one knows something about the behavior of the exponential map. Finally, one considers the two cases where the order of the conjugate point y is greater than 1 , so that the kernel of the exponential map is tangent to the conjugate locus, and where the order of the conjugate point is equal to 1 .

Remark. Not much seems to be known about the structure of the set of cut points. $C(x)$ is a strong deformation retract of $M-\{x\}$, and $M-C(x)$ is an open ball.

DEFINITION. $A_{M} \equiv\{(x, y) \in M \times M \mid y \in A(x)\}$.

§ 2. The Generalized Borsuk-Ulam Theorem

This section is devoted entirely to proving the main result of this paper, namely Theorem 1, which is a generalized version of the Borsuk-Ulam Theorem. In what follows, M^{n} will denote as closed manifold with a fixed Riemannian metric d and W^{m} will be an arbitrary differentiable manifold, not necessarily compact or without boundary.

DEFINITION. Given any map $f: M^{n} \rightarrow W^{m}$ we let
$A(f) \equiv A(f, d) \equiv\left\{(x, y) \in A_{M} \mid f(x)=f(y)\right\}$.
THEOREM 1. a. If $f: M^{n} \rightarrow W^{m}$ where $n>m$, then $\operatorname{dim} A(f) \geqslant n-m$.
b. Iff: $M^{n} \rightarrow W^{n}$ hasf $: H^{n}\left(W^{n} ; Z_{2}\right) \rightarrow H^{n}\left(M^{n} ; Z_{2}\right)$ trivial, then $A(f) \neq \emptyset$.

The proof of Theorem 1 is an adaptation of the argument given in [2, §33]. For simplicity, we shall assume that M and W are connected. We begin with a technical lemma which we shall need to be able to perform various constructions.

If $Y \subseteq M, \operatorname{int}(Y)$ will denote the interior of Y.
Let $S=S_{M}: M \times M \rightarrow M \times M$ be the involution $S(x, y)=(y, x)$.

LEMMA 2. Let $x_{0} \in M$. For every open neighborhood O of $A_{M} \subseteq M \times M$ there is a tubular neighborhood U of the diagonal Δ_{M} in $M \times M$, a closed n-disk D in M with $x_{0} \in \operatorname{int}(D)$, and a closed manifold $N^{n} \subseteq O-U$ satisfying
(a) $x_{0} \times \partial D \cup \partial D \times x_{0} \subseteq O-A_{M}$;
(b) $S(U)=U, S(\partial U)=\partial U, S(N)=N$;
(c) $x_{0} \times(M-\operatorname{int} D) \cup(M-\operatorname{int} D) \times x_{0} \subseteq N$; and
(d) we can identify $N-\left(x_{0} \times(M-\operatorname{int} D) \cup(M-\operatorname{int} D) \times x_{0}\right)$ with $S^{n-1} \times[-1,1]$ in such a way that $S(x, t)=(-x,-t)$ in an open neighborhood of $S^{n-1} \times 0$ in $S^{n-1} \times$ $\times[-1,1]$. (We shall identify $S^{n-1} \times 0$ with S^{n-1}.)

Proof. The picture below may clarify this lemma.

M×M

Let $O_{\varepsilon}=\{(x, y) \in M \times M \mid \operatorname{dist}(y, A(x))<\varepsilon\}$. Then O_{ε} is an open neighborhood of A_{M} and $O_{\varepsilon} \subseteq O$ for some sufficiently small $\varepsilon>0$ which we fix. One can easily find a tubular neighborhood U of Δ_{M} such that $U \cap O_{\varepsilon}=\emptyset, S(U)=U$, and $S(\partial U)=\partial U$.

Next, let $\delta=\varepsilon / 2$ and let D be an n-disk in $M-A\left(x_{0}\right)$ which contains x_{0} in its interior and such that $x_{0} \times(M-\operatorname{int} D) \cup(M-\operatorname{int} D) \times x_{0} \subseteq O_{\delta}$. Consider $D \times D \subseteq$ $\subseteq M \times M$ and identify D with D^{n} so that x_{0} corresponds to the origin and geodesics
correspond to straight lines. (This identification of D with D^{n} does not necessarily preserve the metric, however.) Define

$$
\alpha: S^{n-1} \times[-1,1] \rightarrow D \times D
$$

by $\alpha(x, t)=\left(\left(\frac{1}{2}\right)(t-1) x,\left(\frac{1}{2}\right)(t+1) x\right)$. It is easily checked that α is an imbedding and $S\left(\alpha\left(S^{n-1} \times[-1,1]\right)\right)=\alpha\left(S^{n-1} \times[-1,1]\right)$. Note that $S(\alpha(x, t))=\alpha(-x,-t)$. Now $\alpha\left(S^{n-1} \times\{-1,1\}\right) \subseteq O_{\delta}$. Suppose $\alpha\left(S^{n-1} \times(-1,1)\right) \nsubseteq O_{\varepsilon}$. The idea will be to push $\alpha\left(S^{n-1} \times(-1,1)\right)$ into O_{ε} in a symmetric manner.

Let $(x, t) \in S^{n-1} \times[-1,1]$ and define

$$
\beta(x, t):[-1,1] \rightarrow[-1,1] x \times[-1,1] x
$$

by $\beta(x, t)(s)=\left(\left(\left(\frac{1}{2}\right)(t-1)-s(1+t) / 2\right) x,\left(\left(\frac{1}{2}\right)(t+1)+s(1-t) / 2\right) x\right)$ for $s \geqslant 0$ and $\beta(x, t)(s)=\left(\left(\left(\frac{1}{2}\right)(t-1)-s(t-1) / 2\right) x,\left(\left(\frac{1}{2}\right)(t+1)+s(t+1) / 2\right) x\right)$ for $s \leqslant 0$. Next, given $\mu: S^{n-1} \times[-1,1] \rightarrow[-1,1]$, define
$\alpha_{\mu}: S^{n-1} \times[-1,1] \rightarrow D \times D$
by $\alpha_{\mu}(x, t)=\beta(x, t)(\mu(x, t))$.
CLAIM. We can find a differentiable μ with the property that
(1) $\mu(x, 1)=0=\mu(x,-1)$, for $x \in S^{n-1}$; and
(2) $\alpha_{\mu}\left(S^{n-1} \times[-1,1]\right) \subseteq O_{\varepsilon}$.

This claim is proved by studying the pairs of antipodal points in the 'plane' $[-1,1] x \times[-1,1] x \subseteq D \times D$. It will be useful to look at the function

$$
\theta(x, t):[-1,1] \rightarrow R
$$

given by $\theta(x, t)(s)=\operatorname{dist}\left(\beta(x, t)(s), A_{M}\right)$. To be precise, we are interested in $\theta(x, t)^{-1}[0, \delta)$. Our choice of D enables us to define μ by

$$
\begin{aligned}
\mu(x, t)= & 0, \text { if } 0 \in \theta(x, t)^{-1}[0, \delta), \\
= & \left.\inf [0,1] \cap \theta(x, t)^{-1}[0, \delta), \text { if the length (in } M\right) \text { of the } \\
& \operatorname{arc}\left[\left(\frac{1}{2}\right)(t-1),\left(\frac{1}{2}\right)(t+1)\right] x \text { is equal to } d\left(\left(\frac{1}{2}\right)(t-1) x,\left(\frac{1}{2}\right)(t+1) x\right), \\
= & \sup [-1,0] \cap \theta(x, t)^{-1}[0, \delta), \text { otherwise. }
\end{aligned}
$$

It is easy to see that μ is well defined and has the desired properties. Furthermore, one can check that α_{μ} is an imbedding and $\alpha_{\mu}\left(S^{n-1} \times[-1,1]\right)$ has the same symmetry properties with respect to S as $\operatorname{did} \alpha\left(S^{n-1} \times[-1,1]\right)$.

Finally, let $N=x_{0} \times(M-D) \cup(M-D) \times x_{0} \cup \alpha_{\mu}\left(S^{n-1} \times[-1,1]\right) . N$ will be a differentiable n-manifold (after we round off corners) with $N \subseteq O_{\varepsilon}$. Conditions (a)-(d) in the lemma are readily checked. This proves Lemma 2.

Proof of Theorem 1.a. Case 1. Assume W^{m} is closed and $n>m$: Let S, O, U, and N be as in Lemma 2. Let B be the double of $B_{0}=M \times M-\operatorname{int} U$ and set $X=B \times W \times W$.

Define fixed point free involutions $R: B \rightarrow B$ and $T: X \rightarrow X$ by $T(b, u, v)=(R(b), v, u)$, where R is the double of $S \mid B_{0}$. There are natural inclusions $S^{n-1} \subseteq N \subseteq B_{0} \subseteq B$, and by Lemma 2, S^{n-1}, N and B_{0} are invariant under R. Therefore, $X / T, B / R, N / R$, and $P^{n-1}=S^{n-1} / R$ are closed manifolds of dimension $2(n+m), 2 n, n, n-1$, respectively.

Now let $\varphi_{m} \in H^{m}\left(X / T ; Z_{2}\right)$ be the dual of $i_{*} \mu \in H_{2 n+m}\left(X / T ; Z_{2}\right)$, where $i: B / R \times$ $\times \Delta_{W} \rightarrow X / T$ is the natural inclusion and μ is the fundamental class of $B / R \times \Delta_{W}$.

We easily obtain the following fact:
$\left.\begin{array}{l}\varphi_{m} \text { belongs to the kernel of } H^{m}\left(X / T ; Z_{2}\right) \rightarrow H^{m}\left(X / T-V ; Z_{2}\right) \text { for every } \\ \text { open set } V \text { in } X / T \text { containing } B / R \times \Delta_{W} \text {. }\end{array}\right\}$
Next, we observe that we can identify N / R with $P^{n} \# M^{n}$ in a natural way. In fact, let $S^{n-1} \times[-\varepsilon, \varepsilon], \varepsilon>0$, be a collar of S^{n-1} in N with the property that $R(x, t)=$ $=(-x,-t), x \in S^{n-1}, t \in[-\varepsilon, \varepsilon]$. Such a collar exists for some ε by Lemma 2.d. If we think of S^{n} as $S^{n-1} \times[-\varepsilon, \varepsilon]$ with $S^{n-1} \times \varepsilon$ and $S^{n-1} \times(-\varepsilon)$ collapsed to the north and south pole, respectively, then we get a natural map $\lambda: N \rightarrow S^{n}$ which we can also assume to commute with R and the standard antipodal map on S^{n}. λ therefore induces a map $\lambda_{1}: N / R=P^{n} \# M^{n} \rightarrow P^{n}$ which essentially collapses the part from M^{n} to a point. Similarly, we get a map $\lambda_{2}: N / R=P^{n} \# M^{n} \rightarrow M^{n}$ which collapses the part from P^{n} to a point. (The M^{n} in N / R comes from Lemma 2.c.)

Consider the diagram

where the i_{j} are the natural inclusions and π, p_{j} are the projections. $\left(P^{n-1}=S^{n-1} / R=\right.$ $=S^{n-1} / S$ by Lemma 2.d.) Let $c \in H^{1}\left(B / R ; Z_{2}\right), c_{1} \in H^{1}\left(P^{n} ; Z_{2}\right), c_{2} \in H^{1}\left(N / R ; Z_{2}\right)$, and $c_{3} \in H^{1}\left(P^{n-1} ; Z_{2}\right)$ be the characteristic classes of the involutions on B, S^{n}, N, and S^{n-1}, respectively (see [2, p. 60] for a definition of the c 's). By naturality and the commutativity of (II), we have that $i_{1}^{*}(c)=c_{2}, i_{2}^{*}\left(c_{2}\right)=c_{3}, \lambda_{1}^{*}\left(c_{1}\right)=c_{2}$, and $i_{3}^{*}\left(c_{1}\right)=c_{3}$.

Define

$$
\psi: H^{i}\left(P^{n} ; Z_{2}\right) \oplus H^{i}\left(M ; Z_{2}\right) \rightarrow H^{i}\left(N / R ; Z_{2}\right)
$$

by $\psi(u+v)=\lambda_{1}^{*}(u)+\lambda_{2}^{*}(v)$ for $u \in H^{i}\left(P^{n} ; Z_{2}\right), v \in H^{i}\left(M ; Z_{2}\right)$. The following fact is easily checked:
ψ is an isomorphism for $i \neq 0, n$ and onto for $i=0, n$.

Finally, assume $f: M^{n} \rightarrow W^{m}$ is a map. Define a cross-section
$\sigma: B / R \rightarrow X / T$
by $\sigma\left(p_{2}(x, y)\right)=p_{1}(x, y, f(x), f(y))$, i.e., $\pi \sigma=1$.
LEMMA 3. $i_{1}^{*} \sigma^{*}\left(\varphi_{m}\right)=c_{2}^{m}+\lambda_{2}^{*}(v) \in H^{m}\left(N / R ; Z_{2}\right)$, for some $v \in H^{m}\left(M ; Z_{2}\right)$.
Proof. By (III), we can write $i_{1}^{*} \sigma^{*}\left(\varphi_{m}\right)=\psi(u+v)$ for some $u \in H^{m}\left(P^{n} ; Z_{2}\right)$ and $v \in H^{m}\left(M ; Z_{2}\right)$. Since $\sigma^{*}\left(\varphi_{m}\right)$ depends only on the homotopy class of f, we may assume that $f(D)=y_{0} \in W$ and $\sigma\left(p_{2}(z)\right)=p_{1}\left(z, y_{0}, y_{0}\right)$ for $z \in S^{n-1} \subseteq N \subseteq B$. In this way we get a commutative diagram

where $\sigma_{1}(z)=\left(z, y_{0}, y_{0}\right)$ for $z \in P^{n-1}$. Then it follows just as in the proof of Theorem 33.1 in [2] that $i_{2}^{*} i_{1}^{*} \sigma^{*}\left(\varphi_{m}\right)=c_{3}^{m}$. But $i_{2}^{*} \lambda_{2}^{*}=0$ and $n>m$ imply that $u=c_{1}^{m}$. This proves the lemma.

Next, define

$$
\begin{aligned}
& A_{0}(f)=\left\{(x, y) \in O \cap B_{0} \mid f(x)=f(y)\right\} \\
& A_{1}(f)=p_{2}\left(A_{0}(f)\right) \subseteq B / R
\end{aligned}
$$

Again, an argument as in (33.2) of [2] establishes the following:
For every open neighborhood V of $A_{1}(f), c_{2}^{m}+\lambda_{2}^{*}(v)$ belongs to the kernel of $H^{m}\left(N / R ; Z_{2}\right) \rightarrow H^{m}\left(N / R-V ; Z_{2}\right)$. In particular, $c_{2}^{m}+\lambda_{2}^{*}(v)$ can be represented by a cocycle α_{m} with support in $V \cap N / R$.

LEMMA 4. $0 \neq c_{2}^{n} \in H^{n}\left(N / R ; Z_{2}\right)$.
Proof. Clearly it suffices to show that the map $\lambda_{1}^{*}: H^{n}\left(P^{n} ; Z_{2}\right)=Z_{2} \rightarrow H^{n}(N / R ;$ $\left.Z_{2}\right)=Z_{2}$ is not trivial. But this follows from the fact that $\left(\lambda_{1}\right)_{*}: H_{n}\left(N / R ; Z_{2}\right) \rightarrow$ $\rightarrow H_{n}\left(P^{n} ; Z_{2}\right)$ is an isomorphism.

Now, consider the diagram

where j_{1}^{*} and j_{2}^{*} are induced by the natural inclusions. Suppose that $j_{2}^{*}\left(c^{n-m}\right)=0$.

Consideration of the support of representative cocycles for $c_{2}^{m}+\lambda_{2}^{*}(v)$ and c_{2}^{n-m}, together with (IV), would show that $c_{2}^{n}=\left(c_{2}^{m}+\lambda_{2}^{*}(v)\right) \cdot c_{2}^{n-m}=0$. But this contradicts Lemma 4.

It follows that

$$
\begin{equation*}
j_{2}^{*}\left(c^{n-m}\right) \neq 0 \tag{V}
\end{equation*}
$$

Observe that $A(f) \subseteq B_{0} \subseteq B$. Let $A^{\prime}(f)=p_{2}(A(f)) \subseteq A_{1}(f)$. There is a commutative triangle of inclusion maps

Assume that $j^{*}\left(c^{n-m}\right)=0$. Then there is an open neighborhood of the closure of $A^{\prime}(f)$ such that the support of c^{n-m} lies outside of this neighborhood. In fact, it is easy to see that there is some O and U in Lemma 2 so that the support of c^{n-m} will lie outside some open neighborhood of the corresponding $A_{1}(f)$. Therefore, $i_{2}^{*}\left(c^{n-m}\right)=0$. Since this contradicts (V), we have proved that $j^{*}\left(c^{n-m}\right) \neq 0$, i.e., $i^{*} \neq 0$. It follows that $\operatorname{dim} A^{\prime}(f) \geqslant n-m$ and $\operatorname{dim} A(f) \geqslant n-m$. This finishes the proof of Case 1.

Case 2. W^{m} arbitrary and $n>m$: This case follows from Case 1 as in [2, 33].

Proof of Theorem 1.b. Suppose $f: M^{n} \rightarrow W^{n}$ and $f^{*}: H^{n}\left(W ; Z_{2}\right) \rightarrow H^{n}\left(M ; Z_{2}\right)$ is trivial. As before, the case of general W reduces to the case W is closed. Therefore, from now on we assume that W is closed, and we shall keep the same notation as in the proof of Theorem 1.a.

Define $F: B \rightarrow W \times W$ by $F(x, y)=(f(x), f(y))$. We may assume that $f(D)=y_{0}$ and $F(z)=\left(y_{0}, y_{0}\right)$ for $z \in S^{n-1} \times[-1,1] \subseteq N$, since everything will only depend on the homotopy classes of f and F. Then $F \mid N$ is an equivariant map with respect to R and S_{W}. In fact, $F(N) \subseteq W \vee W=W \times y_{0} \cup y_{0} \times W$. F induces a map

$$
F_{1}: N / R=P^{n} \# M^{n} \rightarrow W \vee W / S_{W}=W
$$

Let $N_{1}=\left(x_{0} \times(M-\operatorname{int} D)\right) \cup\left(S^{n-1} \times[0,1]\right) \subseteq N$ and consider the commutative diagram

Since $f^{*}=0$ and all the horizontal maps are isomorphisms, we get

$$
\begin{equation*}
F_{1}^{*}=0 . \tag{VI}
\end{equation*}
$$

Using the diagram

where $Y=N \times(W \vee W)$ and an argument similar to the one for (33.4) in [2], we see that

$$
\begin{equation*}
i_{4}^{*} i_{5}^{*}\left(\varphi_{n}\right)=c_{2}^{n} \otimes 1 \tag{VII}
\end{equation*}
$$

Let $\sigma_{3}=\sigma \mid(N / R): N / R \rightarrow Y / T$.
LEMMA 5. $\sigma_{3}^{*} i_{5}^{*}\left(\varphi_{n}\right)=c_{2}^{n} \in H^{n}\left(N / R ; Z_{2}\right)$.
Proof. Let $\pi_{1}=\pi \mid(Y, T)$, so that $\pi_{1} \sigma_{3}=1$. Set $\gamma_{n}=\pi_{1}^{*}\left(c_{2}^{n}\right) \in H^{n}\left(Y / T ; Z_{2}\right)$. Then $\sigma_{3}^{*}\left(\gamma_{n}\right)=\sigma_{3}^{*} \pi_{1}^{*}\left(c_{2}^{n}\right)=c_{2}^{n}$ and $i_{4}^{*}\left(\gamma_{n}\right)=i_{4}^{*} \pi_{1}^{*}\left(c_{2}^{n}\right)=c_{2}^{n} \otimes 1$. By (VII) we have that $i_{4}^{*}\left(\gamma_{n}+i_{5}^{*}\left(\varphi_{n}\right)\right)=c_{2}^{n} \otimes 1+c_{2}^{n} \otimes 1=0$. Thus

```
\(\gamma_{n}+i_{5}^{*}\left(\varphi_{n}\right)\) lies in the image of
\(j_{6}^{*}: H^{n}\left(Y / T, N / R \times\left(y_{0} \times y_{0}\right) ; Z_{2}\right) \rightarrow H^{n}\left(Y / T ; Z_{2}\right)\).
```

Consider the diagram

where β^{*} is the following isomorphism: First, the projection $N \times(W \vee W) \rightarrow W \vee W$ induces a map $\beta: Y / T=N \times(W \vee W) / T \rightarrow W \vee W / S_{W}=W$ with $\beta\left(N / R \times\left(y_{0} \times y_{0}\right)\right)=y_{0}$. But $Y / T-\left(N / R \times\left(y_{0} \times y_{0}\right)\right)=N \times W-\left(N \times y_{0}\right)$; and since the projection $N \times W \rightarrow W$ clearly induces an isomorphism $H^{n}\left(W, y_{0} ; Z_{2}\right) \rightarrow H^{n}\left(N \times W, N \times y_{0} ; Z_{2}\right)$, β^{*} has the same property.

However, $F_{1}^{*}=0$ by (VI) and $\sigma_{3}^{*} j_{6}^{*} \beta^{*}=F_{1}^{*}$. Therefore, $\sigma_{3}^{*} j_{6}^{*}=0$. Combining this fact with (VIII), we get that $\sigma_{3}^{*}\left(\gamma_{n}+i_{5}^{*}\left(\varphi_{n}\right)\right)=0$. Consequently, $\sigma_{3}^{*} i_{5}^{*}\left(\varphi_{n}\right)=\sigma_{3}^{*}\left(\gamma_{n}\right)=c_{2}^{n}$, and Lemma 5 is proved.

The rest of the proof of Theorem 1.b proceeds just as the proof in Theorem 1.a.

Namely, one has a diagram

and one shows successively that $j_{2}^{*}(1) \neq 0$ and $j^{*}(1) \neq 0$. Otherwise, $1 \in H^{0}\left(N / R ; Z_{2}\right)$ and $c_{2}^{n} \in H^{n}\left(N / R ; Z_{2}\right)$ have disjoint support, i.e., $c_{2}^{n}=1 \cdot c_{2}^{n}=0$, which is a contradiction. $j^{*}(1) \neq 0$ clearly implies that $A(f) \neq \emptyset$. This finishes the proof of Theorem 1.b.

§ 3. Some Applications and Problems

We begin with some amusing corollaries of Theorem 1.
COROLLARY 1. The antipodal relation on S^{n} with respect to an arbitrary Riemannian metric d always agrees somewhere with the standard antipodal relation, i.e., for every metric d there exists an $x_{d} \in S^{n}$ such that $-x_{d} \in A\left(x_{d}, d\right)$.

Proof. Let $T: S^{n} \rightarrow S^{n}, T(x)=-x$, be the standard involution and consider the projection $p: S^{n} \rightarrow P^{n}=S^{n} / T$.

Note. If M^{n} is not a homotopy sphere, then we always have $A(x, d) \cap A\left(x, d^{\prime}\right) \neq \emptyset$ for arbitrary Riemannian metrics d, d^{\prime} on M.

COROLLARY 2. Let T be an involution of a closed Riemannian manifold M^{n} such that M / T is a C^{∞}-manifold. If $p: M \rightarrow M / T$ is the projection and if $p^{*}: H^{n}\left(M / T ; Z_{2}\right) \rightarrow$ $\rightarrow H^{n}\left(M ; Z_{2}\right)$ is trivial, then $T(x) \in A(x)$ for some $x \in M$, i.e., T sends some point to an antipodal point.

Proof. This corollary also follows immediately from Theorem 1.b applied to the $\operatorname{map} p$.

Another easy consequence is
COROLLARY 3. Suppose M^{n} is a closed Riemannian manifold and M^{n}, W^{n} are oriented. If $f: M^{n} \rightarrow W^{n}$ has even degree, then there is an $x \in M$ and some $y \in A(x)$ such that $f(x)=f(y)$.

It was pointed out by the reviewer that Corollary 1, 2, and probably 3 can be proved directly quite easily without the use of Theorem 1. Namely, one assumes that they are false and uses the minimal geodesics which then exist between appropriate pairs of points to arrive at a contradiction by constructing a homotopy between the
identity map and another map which factors through P^{n} in the case of Corollary 1 and M / T in the case of Corollary 2 . Nevertheless, we decided to list these corollaries here because they fit naturally within the framework of Borsuk-Ulam type theorems. It seems reasonable to expect that in time more substantial applications of Theorem 1 will be found. Perhaps the theorem will first have to be improved and we list some directions which this improvement might take.
(1) It does not appear necessary to have M^{n} either Riemannian or differentiable. M^{n} probably only has to be a closed topological manifold with a given metric. Geodesics would then be replaced by rectifiable paths and $A(x)$ would become the set of $y \in M$ which are joined to x by at least two distinct rectifiable paths of minimal length. The proof of Theorem 1 could then be copied.
(2) Is it sufficient to have W^{m} be a simplicial complex (which is perhaps locally finite and countable so that it imbeds in Euclidean space)? This question is raised in [2] for the special case $M=S^{n}$.
(3) Can one prove a theorem of the following type: Let $f: M^{n} \rightarrow W^{m}$ and assume that $f_{*}: H_{i}\left(M ; Z_{2}\right) \rightarrow H_{i}\left(W ; Z_{2}\right)$ is not one-to-one for some i. Then $\operatorname{dim} A(f) \geqslant k$, where k is an integer which depends only on i (and of course n and m). Probably the best way to study this problem which takes into account the connectivity of f is to consider (2) first.

REFERENCES

[1] Agoston, M. K., An obstruction to finding a fixed point free map on a manifold, to appear.
[2] Conner, P. E. and Floyd, E. E., Differentiable periodic maps (Springer-Verlag, Berlin, 1964).
[3] Kobayashi, S. and Nomizu, K., Foundations of differential geometry, Volume I and II (Interscience Publishers, New York, 1963 and 1969, respectively).
[4] Spanier, E., Algebraic topology (McGraw-Hill, 1966).
[5] Warner, F. W., The conjugate locus of a Riemannian manifold, Amer. J. Math. 87 (1965), 575-604.

Wesleyan University,
Middletown, Connecticut, U.S.A.
Received June 16, 1970; revised January 21, 1971

