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Primitivity in torsion free cohomology Hopf algebras

J. R. HUBBUCK

1. Introduction and Statement of the Main Results

The concept of a Hopf algebra grew out of the study of the homology and
cohomology rings of i/-spaces. Hopf algebras are now considered in many other
situations but it remains an interesting problem to détermine which Hopf algebras

actually occur in one of the situations where they were first considered. In this paper
we consider Hopf algebras which as algebras are generated by primitive éléments and

investigate which of thèse can arise as the cohomology rings of if-spaces.
The use of terms in the literature is not entirely consistent and so before stating

our results we give the main définitions, especially where there is any possibility of
confusion.

Let Xbe a connected complex with finite skeletons which supports an ^-structure,
that is, there exists a continuous multiplication m:Xx X->Xwith two sided homotopy
unit. Generally we shall just say that X is an //-space and assume that a particular
multiplication is given, or more briefly that (X, m)eH. If R is a field or a ring for
which H* (X, R) is torsion free, there is a canonical isomorphism,

H* {X x X, R) s #* (X, R) ® #* (X, R)

and so the multiplication on X induces a comultiplication m* on H*(X, R) giving
it the structure of a connected, associative, commutative, graded Hopf algebra over
R. Let Ui'.XxX-^X, i=l or 2, be the projection onto the f-th factor. The graded
submodule of primitive éléments of H*(X, R), P{H*(X, R)}, is defined to be the

kernel of the homomorphism

m* - 7i* - nî:H*(X, R)->H*(X xX9R).
The quotient module of indécomposable éléments of H*{X9 R), Q{H*(X, R)}, is

defined to the quotient of the ring R*(X, R) by the idéal R*(X, R)H*(X, R). As
usual an élément of H* (X, R) is called indécomposable if its image in Q {H*(X, R)}
is non zéro; otherwise it is decomposable. Let

*:P{H*(X9 R)} -+Q{H*(X, R)} (1.1)

be the canonical homomorphism of graded modules. We say that H*(X, R) is primi-
tively generated with respect to m*, or m*-primitive, if a is surjective.

In addition i?[2] will stand for a graded polynomial algebra over R ail of whose

generators hâve dimension 2 and we shall write E for an exterior algebra on odd

dimensional generators over a ring determined by the context.
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THEOREM 1.1. Let(X,m)eH.
(a) Suppose that H* (X, Z) is torsion-free and m*-primitive; then the ring H* (X, Z)

(b) Suppose that H*(X, Z) has no p-torsion where p is an odd prime and that
H*{X, Zp) is m*-primitive; then the ring H*(X, Zp)^Zp\l\®E.

This is our main resuit. It follows from Theorem 1.1 that a primitively generated
Hopf polynomial algebra in cohomology over Z or Zp(p odd) must hâve ail its gene-
rators in dimension 2, as the torsion conditions are automatically satisfied. Indeed in
the former case we hâve the corollary,

COROLLARY 1.2. Let (X,m)eH and suppose that H*(X,Z) is m*-primitive
and is a polynomial algebra; then X is an Eilenberg-Maclane complex of type

Theorem 1.1 (b) gives an interesting contrast between finite and infinité dimen-
sional //-complexes. For ail known examples of connected finite complexes which
are #-spaces, and for ail odd primes p, the following two statements are équivalent,

H* (X, Z) has no /^-torsion, (1.2)

H* (X, Zp) is m*-primitive for some m. (1.3)

If we consider topological groups, in [9] thèse hâve been shown to be équivalent.
When X has infinité cohomological dimension, there are many examples of #-spaces
which satisfy (1.3) but not (1.2), such as the Eilenberg-Maclane complexes K(Zp9 n).
Theorem 1.1 (b) implies that in thèse cases the primitivity of H * (X, Zp) requires the
existence of torsion in the intégral cohomology, provided that we exclude certain
simple ring structures.

Theorem 1.1 can be combined with gênerai Hopf algebra theorems to deduce two
corollaries which give algebraic characterizations for the cohomology rings of certain
i/-spaces to be primitively generated.

Let (X, m)eHA if the multiplication m is homotopy associative and let (X9 m)
eHAC if m is both homotopy associative and homotopy commutative. (In fact, it is

sufficient to require that the comultiplication induced upon the rational cohomology
ring by m is coassociative or coassociative, cocommutative respectively.)

COROLLARY 1.3. Let X be l-connected and(X,m)eHAC.
(a) Suppose that H*(X9 Z) is torsion-free; then H*(X, Z) is m*-primitive if and

only if the ring H*(X, Z)^Z[2]<g>£.
(b) Suppose that H*(X,Z) has no p-torsion where p is an odd prime; fhen

H*(X, Zp) is m*-primitive ifand only if the ring H*(X, Zp)^Zv\TL\®E.
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COROLLARY 1.4. Let X be 2-connected and (X, m)eHA.
(a) Suppose that H*(X, Z) is torsion free; then H*(X9 Z) is m*-primitive if and

only ifthe ring H*(X, Z)^E.
(b) Suppose that H * (X, Z) has no p-torsion wherep is an oddprime; then H * (X, Zp)

is m*-primitive if and only ifthe ring H*(X, Zp) E.

It should be noted that Theorem 1.1 (b) is false without the restriction that p is

an odd prime, for Q'SO, the loop space on the infinité spécial orthogonal group gives
a counter example when/? 2. Our methods of proof do however yield the following,

THEOREM 1.5. Let {X, m)eH. Suppose that H*(X, Z) has no 2-torsion and that

H*{X, Z2) is m*-primitive; then

(a) the ring H*(X,Z2)^ Z2 [4k+2] ® E, where Z2 [4k+2] is a polynomial algebra
on gênerators whose dimensions are congruent to 2 mod4, and

(b) the Steenrod square restricted to the indécomposable quotient

SqAk:Q{H*(X, Z2)U+2 -+Q{H*(X, Z2)}8k+2

is a monomorphism for each k.
Results somewhat similar to Theorems 1.1 and 1.5 were first considered in [12],

see especially Theorem 1 ; related results can be found in [8], [9] and [23].
This paper is one of several in which complex AT-theory is used to investigate the

cohomology of//-spaces, under torsion free conditions, see [14], [15], [16], [17] and

[18]. More precisely we make considérable use of the generalized cohomology
opérations of [14] and [16]. Thèse are homomorphisms defined on the cohomology groups
of certain complexes with suitable coefficients, which are closely related to higher
order cohomology opérations. In our context they hâve the great advantage over
the latter that under torsion free assumptions we can perform algebraic arguments
with them more simply. One of the most powerful tools in the study of the cohomology
of an //-space is the Bockstein spectral séquence as developed by W. Browder and
others. However to obtain significant results by thèse methods, the existence of torsion
in the intégral cohomology of an //-space can be as essential as is the lack of torsion
in the methods we are describing. Interesting results can arise by combining thèse

techniques, see [15] and [17]. This justifies our continuing to develop our methods.

Now Theorem 1.1 (a) of this paper can be proved more directly than seems

possible for either Theorem 1.1 (b) or Theorem 1.5. The essential différences in the

proofs occur because the hypothèses of Theorem 1.1 (a) imply that the comultipli-
cation m* induced on the rational cohomology ring is both coassociative and co-

commutative, whereas it is not clear that this is true in the other two cases. However

we shall deduce Theorem 1.1 (a) as a corollary to Theorem 1.1 (b) to avoid répétition
and because Theorem 1.1 (a) is a simple corollary of a rather deeper resuit which the

author hopes to prove on another occasion. In section 2 we shall develop the proper-
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ties of the multiplicative i/^-modules over Qp introduced in [14] and [16]. The em-
phasis hère is on the case when p is an odd prime as many of the corresponding
results for p 2 were proved in [16]. Section 3 contains two short technical lemmas
which are used in section 4 where the key theorems are proved. The proofs of the
results of this introduction are completed in section 5.

The first draft of this paper was written at Princeton University, while the author
was on "leave of absence" from Manchester University during 1968-69. It is a pleasure
to express my gratitude to both universities.

2. Multiplicative ^-Modules over Qp

This section is concerned with establishing some properties of the cohomology
and unitary X-theory of finite complexes under torsion-free assumptions. We use an
axiomatic approach as in [16] and [17] and consider certain "Multiplicative ij/k-

modules over Qp". We establish the existence and some properties ofhomomorphisms
S1 and Ql in torsion-free cohomology rings, with suitable coefficients. The S1 are
related in a simple manner to the cyclic reduced powers, while the Q1 are essentially
the higher order cohomology opérations studied by Maunder in [21]; both are
defined using the Adams operators in complex X-theory (or equivalently, using the

Chern character). It will be shown that the S1 and Ql satisfy generalized Adem type
relations, Corollary 2.12, and generalized naturality properties, Corollary 2.28. We
could also establish a generalized Cartan formula, but as we hâve no use for it hère,

we give a simplified version, Corollary 2.20. In the case of the prime 2 much of this

was considered in section 2 of [16] and we shall follow this closely for gênerai primes.
The main différences occur because we use a "Splitting Theorem" of Adams and the

proof of this theorem, which we only sketch, leads to improvements in some of the

proofs of [16]. Where this is the case, we provide détails; otherwise, when a proof is

a simple extension of that given in [16] for the corresponding resuit with p 29 the
extension is left to the reader.

The material of this section has been used in more than one context and has

undergone numerous revisions during the last few years. It now incorporâtes several

ideas and suggestions due to J. F. Adams, in addition to the "Splitting theorem" and

is now very différent from the first version. I am most grateful to Professor Adams
for the generous guidance he gave while I was writing the material for this section.

Let Qp be the subring of rationals with denominators not divisible by the prime/?.
M will be a finitely generated ôp-module equipped with linear maps ij/k:M^M, for
each integer k9 and filtered by submodules

M MozdM1 DM2D-oMgDMg+1 =0

such that \lfk{M^aMi for each i.
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Let N=Ydo^i^g Ni be the associated graded module, iVf=
The module M and the maps \j/k will always satisfy six axioms; those concerned

with the additive structure are Al, A2 and A3.
Al. The Splitting Condition. N is a free graded gp-module.
A2. The Commuting Condition. ^V ^ty*-
A3. The Integrality Condition. Let ueMn; then there exists a finite set of éléments

t/fGMn+f^.!), ()</</*, such that w '£0^i^hp~iui satisfies ij/k(w) knw in M®Q for
each k, and u — uoeMn+1.

M is called a i/fk-module over gp if it satisfies Al, A2 and A3. As indicated above,
the reason for considering such modules is that if Zis a finite complex whose intégral
homology is free of ^-torsion, then M K(X, Qp) is a i/^-module over Qpi where

K( » Qp) is ^e tensor product of the unitary ^T-theory of [7] with Qp. For the Atiyah-
Hirzebruch spectral sequency with (^-coefficients collapses, and therefore

H2n(X, Qp) s K2n(X, Qp)/K2n+1(X9 Qp),

Lot Mi K2i(X9 Qp) K2i_1(X, Qp) and let \l/k be the Adams operators of [2]. Then

Ni=MiIMi+1^H2i(X, Qp). The vérification that M satisfies ail the properties of a

i/^-module is straightforward ; the integrality condition is proved using the "Integrality
theorem on the Chern character" of [1]. This proof is thus a simple generalization of
that given as Lemma 2.1 of [16] in the case p 2. Thus for Zas above,

LEMMA 2.1. M K(X, Qp) is a ^-module over Qp.

We return to the gênerai case.

LEMMA 2.2. Let M M1®M2 be a \\tk-module over Qp with ^(M^cM1 for
each k; then the quotient module M2 is a \\ik-module over Qp.

The proof of Lemma 2.2 is clear. Another simple conséquence of the axioms is

Lemma 2.3.

LEMMA 2.3. Let ueMn; then \j/k(u) knu modMn+ufor each k.

Proof. This follows from A3, see Lemma 2.4 of [16].
Thèse last two lemmas will be used in the proof of the "Splitting theorem" which

we now state.

THEOREM 2.4 (Adams). The Splitting Theorem.
Let M be a ^-module over Qp; then there is a canonical direct sum splitting

(a) a runs over the residue classes mod(/?— 1),

(b) each M" is a il/k-module over Qp,
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This theorem is a weaker version of Corollary 8 of [4] and as our application is to
take M K(X, Qp), the reader can refer to this for a proof. In fact as far as this paper
is concerned we can do without the splitting being canonical and this is how the
author originally proceeded (a remnant of this approach can be seen in the Appendix
to [17]), but the method was less illuminating. Therefore we shall outline a proof of
the theorem in our notations. It is similar to the proof of Corollary 8 of [4] and is
also due to Adams.

Suppose thatMg+1 =0 and that ueMt. Let kh ki+u...9 kg be any g — i +1 integers,
then it follows from Lemma 2.3 that

n (^-(/c/)(u)=o. (2.D

Now take a fixed integer k of modulus greater than one and write i// for \j/k. Let / and

Ip be the ideals generated by rio</<g 0A — &0 i*1 ôDA] and ôpM respectively, and
form the quotient modules i? g[>]//and Rp Qp\)l*~]IIp. It follows from (2.1) that
R and Rp act on M® g and M. We use Lagrange's interpolation formula to define

Then Xo^i^g et= 1 in ôM and eî ei9 ^j 0 (i^j) in R, and so thèse idempotents
give a splitting

M®g £ **h where Hf ^(M®Q). (2.2)
0^i<g

Further

^(w) rfM, if ueHi9 (2.3)

for any $*. It follows from (2.3) that Ht is independent of k and in the particular case

of a i/^-module considered in Lemma 2.1, if we identify M® g and Heven(X, Q) by
means of the Chern character, the et are precisely the idempotents considered before
Theorem 5 of [4]. (See section 2 of [5].)

Now we further restrict A: to be a primitive root mod/?, and let Ea=YJi€a eh where

a is a residue class mod(/?~ 1). The central point of the proof of Theorem 2.4 is to
show that the idempotents Ea lie in fip[^]. We sketch the proof.

Let Pa=rio<«<g O-A:l>Z[>], and so Ea=Aa £[*#« Pp, where AaeQ[_\l/'] and the
iea

degree of Aa is less than that of Pa.

Therefore

The coefficients of each Aa lie in Q and so suppose that the lowest power ofp which
occurs in any Aa is pf with/<0. We reduce (2.4) modpf+1 and obtain an identity
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where Pp îs Pfi reduced modp and at least one A'a is non zéro. The integer k was chosen

to be primitive mod/? and so the Pp are copnme. But Pa' divides each summand except
A'a Ylp*<x Pp and so !t divides A'a9 which îs impossible considenng degrees. Thus/>0
and so each coefficient of Aa lies in Qp.

The idempotents Ea enable us to wnte M=£ Ma, where Ma Ea(M) Condition
A2 ensures that for any ij/\ \l/t{Mct)cMa. One now checks that the sphtting îs essen-

tially independent of g.
It foliows from Al that

which implies that the sphttmg îs independent of the particular primitive root used

in îts construction. We also establish that

Mt Mn( £ Hj). (2.6)

The filtration on M* îs defined by settmg (M'X^M'nM^ Then

M, I(An and Wl }^ *«.

It is now a simple matter to verify that Ma îs a i/^-module over Qp, The truth of Al
follows from Al for M and (2.6), A2 is immédiate and A3 follows from Lemma 2.2.

This complètes the proof of Theorem 2.4.

We now proceed as in [16]. Let IS:MS^NS be the quotient map. We filter
N=Ydo^i^g Nt with the obvious decreasing filtration Xj<»<« Ni for eac^7.

LEMMA 2.5. There exists an isomorphism J:N->M offiltered Qp-modules such

that J(Ns)c:Ms and the composition of J: Ns-+Ms with IS:MS-+NS is the identity map
on Na.

Proof See Lemma 2.5 of [16].

It is convenient to consider a particular type of sphtting J:N-+M. Take the

canomcal direct sum décomposition ofM given by Theorem 2.4 (a) and let Ja:Na-+Ma
be a sphtting of Ma as given by Lemma 2.5, then we take J.N-+M to be of the form
Yjg Ja- In the type of argument that we shall be usmg later, it is often simpler to work
in a graded module rather than a filtered module. This is especially true when we

introduce ring structures where the relations among generators in the filtered ring
are more comphcated than in the associated graded ring, and examples in the theory
of Hopf algebras where this is the case do indeed occur, though they will not be

considered in this paper. Thus we use the sphtting just constructed to lift ij/k to an

endomorphism of N.
Define the hnear map $)\N-+N by requinng that the following diagram is stnctly
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commutative,

*k 1 I < • (2.7)

MyN
An immédiate conséquence of the définitions and A2 is,

LEMMA2.6. #5^ ^#$.
We also record for later use, the form which Lemma 2.3 now takes.

LEMMA 2.7. Let xeNn; then ^(jc)=fc"xmodXi>n Nt.
The restriction of the choice of splitting to the form £a /a has ensured that <Pj

possess a very convenient property.

PROPOSITION 2.8. <^(iVn)c:£^0 NH+Hp-i)9 for ail k and n.

Proof. This follows from Theorem 2.4 (c).

It remains to interpret A3 in terms of the &j.

THEOREM 2.9. (a) Let xoeNn; then there exists a finite set of éléments

i xi(J,x0)eNn+i(p.1), UKf, such that x Y4o^i<tP~i*i satisfies <Pj(x) knx in

(b) Xi Xi(J, x0) is unique for z>0.

Proof The proof is a simple generalization of that given for Theorem 2.8 of [16],

using Proposition 2.8.

This resuit enables us to define the S1 and Q1 mentioned at the beginning of the
section. In fact what we do is to break up <Pj to demonstrate the précise way in which

it dépends upon the integer k.
Define homomorphisms S]: -/Vn-^iVw+€(p_1) by setting Sjxo xq.

Let Sj(0 £«>o Sj*9> and let 6/(0 îl«>o Qj*q be its formai inverse. Finally let

When there can be no confusion, the suffix / will be omitted from thèse notations.

LEMMA 2.10. Restricting to Nm <Pk=knR(l ; k) kn £^0 **(&).
Proof See Lemma 2.9 of [16].

COROLLARY 2.11. k»Rq(k) (Nn)a Nn+q(p.iy
If xe Nn9 Lemma 2.10 implies that the component of <Pk (x) in dimension n+q (p — 1)

is

knp~q(Sq + fc'-^-'fi1 + k2(p-l)Sq-2Q2 +.-+ kq{p'X)Qq) (x). (2.8)
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Therefore we set T]{k)=pqRqj{k). It follows from the définition of Qq that

Tq(k) (1 - fc*'-^) Sq 4- (fc(p"1} - k^'^) S*"1^1 +... + (fcta-iK*-1)

-fc^-^S^"1. (2.9)

Corollary 2.11 implies that

COROLLARY 2.12. Generalized Adem relations. Let (&,/>)= 1, z.e. let k and p
be coprime; then Tq(k) 0 modpq.

The relationship that Corollary 2.12 has when p 2 with the Adem relations in
the mod2 Steenrod algebra was partially explained in [16]. For the purposes of this

paper we shall require just one relation modp, but before deriving it, we wish to show

that Corollary 2.12 is the best possible resuits which can be deduced from the axioms.
The Sq hâve been constructed from the <Pfc, but Lemma 2.10 enables us to reverse

the process; given homomorphisms Sq: Nn-* JV^^-d from then can be constructed

THEOREM2.13. Mis a ^-module over QpifandonlyifknRq{k) (Nn)cz Nn+qip_1)9

for ail n, q and k.

Proof. See Theorem 2.10 of [16].
Now we return to the dérivation of the Adem relation mentioned earlier. The

following identity is extremely useful and will be used in the proof.

LEMMA 2.14.

Proof. See the proof of Lemma 2.12 of [16].
Now choose k prime to/? and combine Corollary 2.13 and Lemma 2.14 to deduce

that (1 -kq{p-x)) S^k^-^T1 (k) S*"1 modp2, or (1 -^(p"1)) Sq=k{p~1)(1 -k{p~l))
xS1Sq~1 mod/?2. Now for suitable k. for example k 2 iîp is odd or k 3 ifp 2,

or see Lemma 4.3, this implies that

(1 + k(p-1)+-~+k(q-iHp-i)) Sq lçte-^S*-1 modp,

and since k{p~x) \ mod/?, this implies that

(2.10)

The last resuit we prove before introducing the multiplicative structure enables

us to explain in more détail the relationship between the Sq modp and the reduced

powers in cohomology.

LEMMA 2.15. (a) Let ueMn; then there exist éléments ^eMfJ+i(p_1),
such that typ{u) YJo^i*knPn~~iVi and u-voeMn+1.
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(b) Let xoeNn9 then there exist éléments yl^Nn+l{p^1), O^i^s for some s, such

that ^W Eo<^s^"% where xo=yo
(c) S] (x0)=yq modp, 0 < i < s.

(d) Sqj(x0) Omodp,q>n.
(e) If xo=In(u), then ^, /II+ï(l,_1)
Prcw/. Parts (a), (b), (c) and (e) are similar to Lemma 2.13 of [16]. Part (d)

follows from (b) and (c)
In particular (c) and (e) imply that SJ îs mdependent of the choice of / used m

îts construction. Also if we consider the particular case descnbed in Lemma 2 1, ît
follows from the results of [6], see especially Proposition 5.6, that S] modp restncted
to N®ZP îs just the cychc reduced power Pq(Sq2q, ifp 2). The précise relationship
between the Qlj and higher order cohomology opérations will not concern us hère

In fact, only m those results where Pq exphcitly occurs do we need the identification
on the pnmary level.

Now we mtroduce the three further axioms mentioned earher
A4. M îs a commutative filtered ring, that îs, M îs a commutative ring and

A5. \j/k îs a ring homomorphism for each integer k.
A6. \j/p(u) — up mod/?, for each ueM.
If M satisfies ail six axioms, we call ît a multiplicative i/^-module over Qp. We

wnte iVTor associated (stnctly commutative) graded ring. The application îs of course

agam that descnbed m Lemma 2.1.

LEMMA 2.16. M=K(X, Qp) is a multiplicative \j/k-module over Qp.

The analogue of Lemma 2.2 is,

LEMMA 2.17. Let M M1®M1 be a multiplicative \jtk-module over Qp, where
M1 is an idéal in M such that i^k(M1)czM1 for ail k, then the quotient module M2 is

a multiplicative ^-module over Qp.

Before discussing the relationship between the multiplicative structures of M and

N, we mention one other resuit,

LEMMA 2.18. Let xeNn, then Snx xp modp.
Proof Let J(x) u, then m the notation of Lemma 2.15, vn up modp by A6,

where x is x0. Thus yn=Ipn(up) modp=xp modp, and the resuit follows from Lemma
2.14 (c).

It is clear that in gênerai ît will not be possible to choose a sphttmg J: N-+M which
is a ring isomorphism, though this will be possible m most of the later arguments of
this particular paper. The most gênerai multiplicative resuit involving an arbitrary
sphttmg is the next lemma.



Primitivity in Torsion Free Cohomology Hopf Algebras 23

LEMMA 2.19.

(a) JiSjip-^ixy^JiSjip-^xyjiSjip-^y) in M®Q.
(b) Qj{p-1)J-1{J{xyj{y))^{QJ{p-1)x)\QJ{p-1)y)'mN®Q.
Proof. Let xeNn, then by (2.6), J(x) enJ(x) modMn+1®Q.

ButJ(x)=J(SJ(p~1)x)modMn+1®Q and so J(SJ(p~1) x) enJ(x)modMn+i®Q.
Lemma 2.9 (a) implies that il/k(J(Sj(p~l) x)) knJ(SJ(p'~1) x) and it follows there-
fore from (2.2) and (2.3) that /(S,^"1) x)eHn. Thus

j(SJ(p~1)x) enJ(x). (2.11)

Now let yeNs and zeNt $nd so yzeNs+t. Since

es+,(Jr(^z)) es/(j)-ef/(z)modMs+t+1®e and so

and part (a) follows from (2.11).
Part (b) now follows precisely as in the proof of Lemma 2.4 of [16].
From this lemma we can deduce the necessary Cartan formulae. As mentioned

earlier, thèse are not the most gênerai results but are sufficient for our immédiate

purposes.

COROLLARY 2.20. Cartan Formulae.

(a) IfJisa ring isomorphism; then Sj(xy) J]i+j=q S}(x)'Sj(y).
(b) IfJ(xy)=J(x)-J(y); then 0(^)=L+y=a Ô^W'ÔiW-
Making use of the proof of the Splitting theorem, we can now give a simple proof

of Lemma 4.3 of [16].

LEMMA 2.21. N®Q and M®Q are isomorphic as rings.
Proof. Apply (2.6) and obtain

Nt ® Q (MJMi+l) ® fi s M, ® Q/Mi+l ®Q C£ Hj)lÇ£ Hj) s Ht,
jzi j>i

and the isomorphisms préserve the ring structures. Thus N® Q and Yji^o Hi are lS0"

morphic as graded rings and the resuit follows.
The two final results on the multiplicative structures are trivial conséquences of

the axioms.

LEMMA 2.22. Let J.N-+M be a ring isomorphism; then #j is a ring homomor-

phism.

LEMMA 2.23. Let J.N-+M be a ring isomorphism; then <P% (x) xp modp, for
ail xeN.

It remains to consider naturality relations for (multiplicative) ^-modules over

Qp. Let L and M be two (multiplicative) (^-modules, where \//k is written for the
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homomorphism of either. A (ring) homomorphism/: M-*L is called a morphism if
it commutes with the \j/k, for each k.

Let L I}@Û and Af=Àf1©M2, where L1 and M1 are stable under the action
of the \l/k and if L and M are both multiplicative i/^-modules, then L1 and M1 are
ideals.

LEMMA 2.24. Letf:M-*L be a morphism such that f(Mx)czl}; then f induces

a morphism of quotient modules f2:M2-+l}.
A morphism f:M-+L commutes with the \//k and therefore it commutes with the

idempotents et used in the proof of Theorem 2.4. Using (2.6) it follows that/is fîl-
tration preserving. Thus if N and P are the associated graded (rings) modules corre-
sponding to M and L, then / induces a (ring) homomorphism of graded (rings)
modules /* : N-+P.

LEMMA 2.25. Letf and g be two morphisms from M to L such thatf*=g*; then

Proof. By linearity it is sufficient to show that if h:M-+L is a morphism with
h* 0, then A 0. The hypothèses imply that if ueMn, then h(u)eLn+1. We argue by
induction in Mn for decreasing n. If ueMg where Mg+l 0, then \j/k («) kgu by Lemma
2.3. Thus xj/k (h(u)) k8h(u). But if h(u)eLg+t where f >0 is chosen as large as possible
\l/k(h(u)) kg+th(u)modLg+t+1. Therefore kgh(u) kg+th(u)moûLg+t+1 which
implies that h(u) 0 modLg+f+1, and as t was chosen as large as possible, that h(u) 0.

Now assume that h(v)=0 for any veMn+1 and let ueMn. Then \l/k(u) knu-\-w where

weMn+1, by Lemma 2.3. Therefore xj/k(h(u)) knh(u) and we complète the inductive
step as in the particular case when n=g. This complètes the proof.

Let J: N-+M and K.P-+L be splittings of M and L respectively, then/also induces

a linear ma.pfJK:N-+P defined by requiring that (2.12) is strictly commutative,

Jl j*. (2.12)

M->L

When L M and J=K, rather than write/jj, we shall write/j.
Now a morphism / will also commute with the idempotents E" which gave the

splitting of Theorem 2.4. Thus f(Ma)ciLa for each residue class mod(p-l). An
immédiate conséquence is,

LEMMA 2.26. /^(AQcJ^o PH+iip-iy9for each n.

It is convenient to write ont fJK | Nn explicitly as £,->o/i(w)> where fi(n):Nn
p_1) is linear. In particular f0(«)=/* | iVn.
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THEOREM 2.27. For each

Z ^¦7€-,(n + i(p-l))

Proof. The définitions imply thatfJK€>j 0kKfJK. We apply this equahty to xeNn
and write this expression out exphcitly in the notations introduced above, using
Lemma 2.10. The resuit follows by considermg the coefficient of ktl+s{p~1) m dimension

«+#(/?—1).
In particular if we take the cases .5 0 and s — q we obtam,

COROLLARY 2.28.

(a)S|/*= I pt-'f^in + iip-tysy.N^

If/=Identity:Af->M, then Corollary 2.28 (a) gives an alternative proof that
SJ modp îs independent of the particular splitting used.

We shall need one more resuit. The proof îs obvious.

LEMMA 2.29. Iff:L->M is a morphism of multiplicative \j/k-modules and the

sphttings J'.L^M andK:P-+L are ring isomorphisms, thenfJK:N-+P is a ring homo-

morphism.

3.

In this short section we prove two lemmas on the unstable action of the S1 under
the assumption that there exists a splitting of multiplicative i/^-modules which is a

ring isomorphism. The existence of this ring îsomorphism is not necessary in most

parts of thèse lemmas, several parts are just concerned with the additive structure,
but to prove more gênerai results for the remainder would require considermg more

gênerai Cartan formulae than we hâve done hère.

Let D(N) Dx{N) Y.i>o N, and D1(M)=M1. Define DJ(F) inductively fory>l
by DJ(F) DJ-1(F)-D1(F), where F=N or M, and QJ(F)=D1(F)/DJ + 1(F). We

write Q(F) for Q1(F). Then QJ(M) is a multiplicative ^-module by Lemma 2.17,

and if J.N-+M is a ring isomorphism, QJ(J):QJ(N)->QJ (M) is a splitting of QJ(M)
which is a ring isomorphism.

Suppose that J:N-+M is a ring isomorphism.

LEMMA 3.1.

(a) (jp=2) (5w
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(b) (p 2) Sn+2 (Nn)c 2D2 (AT) mod4,
(c) (/>=2) 5"+'(NB)=0mod4,/orf>2,
(d) (p>2) Sn+t(N»)=O modp2,for t>0.
Proof. Letp=2, then from Lemma 2.10 and Lemma 2.23, we deduce that

2B2-"-'(S"+' + 2Sn+'"1e1 +4Sn+'-2Q2 +•••+ 2n+tQn+')(Nn) <=2N2n+t,

for »0. Thus if t>0, 5"+'+2SI1+'-1Ô1=0mod4. When < 1 this gives (a). By
Lemma 2.18, Sa+1(Q1(Nn))czD2(N) and so (b) follows by putting t=2. If t>2,
Sn+1-i(Ql(Na))=0moà2, by Lemma 2.15 (a), and so Sn+t(Nn)=Omod4, which

proves (c).
The proof of (d) is similar but rather simpler.

LEMMA 3.2. Suppose that Dp+1(M)=0.
(a) (p=2) (Sn+2S"-1Q1)(D2 (N\)=0 mod4,
(b)(p=2) S»-i(D2(N)n)=0moâ2,
(c) (/>=2) S"-2(D2(N)n)^i+J=ntJ
(d)(p>2) S"(D"(N)n)=0modp2,
(e)(p>2) S-'i
Proof. (a) Let xeNt and yeNj where i>0,j>0 and i+j=n.
(Sn + 2Sn~1e1) (xj^) S"(x>;) + 2Sn-l{QxX'y) + 2Sn"1(^'Ô

by Corollary 2.20 (b), which equals

2 X Sl(Qlx)-Smy + 2 £ S'(

by Corollary 2.20 (a). We apply Lemma 2.15 (a) and Lemma 3.1 (b) and (c) to write
this expression as

Si+1x-SJ~xy + Slx-SJy + Si~1x-SJ+1y + IStyx-S3'^ + 2S'"1x-S-/eV mod4

(Si+1 + l&Q^x-S'^y + ^"^-(S^1 + 2SJQl) y mod4,

by Lemma 2.18, and this is zéro by Lemma 3.1 (a). This complètes the proof of (a).
Part (b) is a conséquence of the Cartan formula, Lemma 2.18 and Lemma 2.15 (a).
Part (c) follows similarly. The proofs of the corresponding results when p is an odd

prime are again similar but are a little simpler.

4. The Comultiplication in a Free Commutative Hopf Algebra

Before giving the technical détails of this section we digress to motivate our
arguments.



Primitivity in Torsion Free Cohomology Hopf Algebras 27

Let (X9 m)eHAC and let H*(X9 Qp) be torsion free. Suppose that the algebra
structure of H* (X, Qp) is known and that we wish to détermine the coalgebra structure.

Then to détermine the comultiplication m* on H*(X, Qp) it is sufficient to
détermine the homomorphism induced in cohomology by the //-space squaring map,

(mA)*:H*(X9Qp)-+H*(X,Qp)9

where A is the usual diagonal map. We indicate briefly why this is true.
Assume that A*m*:H*(X9 Qp)-+H*(X9 Qp) is given and that m* is determined

in dimensions less than n. Let xeHn (X, Qp) be indécomposable and A *m* (x) 2x + w,
where w is decomposable. If there exists keQp such that kx is decomposable, then

m*(x) is immediately determined by the inductive hypothesis. Otherwise kx is

indécomposable for ail k9 and since H*(X, Q) is m*-primitive (see for example, Theo-

rem 7.20 of [22]), there exists a particular keQp and a decomposable élément u such

that (kx+u)eHn(X, Qp) is primitive. Thus

m*(x) x® 1 + l®x- k~1{m*(u)-u® 1 -
But A*m*u=2u—kw and this condition completely détermines w, for if ut and u2 are

two choices for u, A*m*(u1 — u2) 2(u1~u2) from which it is not difficult to deduce

that wt — u2 is zéro or primitive. But is also decomposable and there are no
decomposable primitive éléments in H* (X, Qp). Thus u is well defined and m* (w) is known
by the inductive hypothesis; therefore m*(x) is determined. More generally, rather
than just use the i/-space squaring map, we shall use an #-space Mh power map.

m(m x l)(m x 1 x l)...(m x 1 x ••• x 1) (A x 1 x ••• x 1)

...(A xl xl)(A x 1) A.X-+X, (4.1)

(2t—2 factors), whose induced homomorphism in cohomology will also détermine

m*, given the ring structure of H*(X, Qp).

Of course, if the i7-space is not homotopy associative, homotopy commutative,
in gênerai m* is not completely determined by A*m* but we do obtain useful
information about it, which is sufficient for our purposes.

Thus our tactic is to apply the generalized naturality relations of section 2 (Theo-

rem 2.27) to the maps induced in the cohomology and Â-theory by thèse t-th power
maps, ft say. The essential features offt*:H*(X, Qp)-^H*(X, Qp) is that modulo

decomposable éléments it is just multiplication by the integer t. Now if (X9 m)eH,
H*(X, Z) has no /7-torsion and H* (X, Zp) is m*-primitive, it is not difficult to prove
that H*(X, Qp) is a free commutative algebra over Qp (Theorem 5.2). Our results

give no information on that part of H*(X, Qp) which is an exterior algebra and so

we consider the polynomial Hopf algebra, H*(X, Qp)l(Hodd(X9 Qp))9 where

(Hodd(X9 Qp)) is the Hopf idéal generated by classes with odd dimensions. Further,
for notational convenience, we truncate our polynomial algebras at height/7 + 1.
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There remains one other obvious point which needs to be discussed ; the results
of sections 2 and 3 were proved for finite complexes whereas if H * (X, Qp) is a poly-
nomial algebra, then X is not a finite complex. The simplest way of resolving this
difficulty is to replace the /f-space X in the arguments which follow by one of its
finite skeletons of sufficiently high dimension and, if necessary, to alter ft up to
homotopy to ensure that it is cellular.

Let A Y,i^o At be a connected graded ring of finite type over Qp with strictly
commutative (not graded commutative) multiplication. We say that A is spécial if
for each integer s there exists a multiplicative i/^-module over Qp, M say, whose
associated graded ring JVis isomorphic to A as a graded ring in dimensions <,s. This
is the algebraic analogue of taking finite skeletons of an infinité complex. A ring
homomorphism g:A-+B of spécial graded rings is a morphism if, for arbitrary s,

g =f*;N-*Pin dimensions <s whereP^Band N^A in dimensions <s, and/:M-»L
is a morphism of multiplicative i/^-modules over Qr

Let A be a truncated polynomial algebra of height p +1 over Qp9 that is, A has a

homogeneous multiplicative basis l,x,y9z9... such that x*yfizy...=0 if and only if
(a+j?+<y + ...)^/? + l, and there are no other relations among the generators. Then

N is also a truncated polynomial algebra of height p +1 over Qp modulo éléments of
high filtration (considered as a filtered ring), using Lemma 2.21. It follows that there
exists a splitting J.N-+M which is a ring isomorphism, again, modulo éléments a

high filtration. Ail splittings considered will hâve this property. We shall agrée to call
M and N truncated polynomial algebras, where s has been chosen sufficiently large

to perform ail arguments, and ail statements should be taken as being true modulo
éléments of high filtration. The symbols A and N will be interchanged without
comment.

A morphism g:A->A is a f-map if Q(g):Q(A)-*Q(A), the homomorphism in-
duced on the indécomposable quotient, is just multiplication by t. We are concerned

with finding what restrictions are put upon the structure of A if it supports a J-map.
This is precisely what was done in [17] when A was finitely generated, but whereas

there we took t=p, hère we shall choose t to be prime to p, The advantage in doing
this is that we are able to give a direct sum décomposition ofN and a splitting /:N-+M
with respect to which the opérations of section 2 are well behaved. This is Proposition
4.6 and the first few lemmas which follow are directed towards giving a proof. We

continue to use the notations of section 3.

The first lemma is self évident. F is either M or N.

LEMMA 4.1. D\F) is an idéal and a direct summand ofDj(F),for i
Since xj/k is a ring homomorphism, ^k{D^(M)}cl^(M) and so Lemma 2.17 and

Lemma 4.1 imply that Ql{M) is a multiplicative i/^-module and Ql(A) a spécial

graded ring. If J:N-+M is a splitting (and a ring isomorphism), then f&
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g'(M) is a splitting for Q'(M) and there exists a commutative diagram

Q'V) i l QKJ) (i^j), (4.2)

where we write a for the quotient homomorphisms. Also c:Ql(M)^Qj(M) splits
as a homomorphism of filtered <2p-modules, for i

LEMMA4.2. Let f.M^M induce a t-map g=f*:N-+N; then Q(f):Q(M)~*
-»g(M) isjust multiplication by t.

Proof. Let h:Q(M)^Q(M) be multiplication by t. Then h is a morphism of
(multiplicative) i/^-modules and /j* ô(/#) ô(/)*. Lemma 2.25 implies that

Next we need some results from number theory. Let Gm be the multiplicative
group of units Zm. If ÀeQ, define vp(X) to be the exponent ofp when X is expressed

as a product of powers of distinct primes.

LEMMA 4.3. Assume always that the integer t is not divisible by the prime p.

T/, _ 1 v 4v l, if s#0mod2,If p 2; then v2(f - 1)>< '
/N .« AF 2 v y 2 + v2 (s), if s 0 mod 2.

If p>2; then vp(f - 1)></ ,\-c a jV aF pV y ^l + vp(5), if s 0mod(jp - 1).

The equalities are attained in the following cases.

(i) p 2, s is odd and t is a generator of G4,

(ii) p 29 s is even and t is a generator of G8/(± 1).

(iii) p>2, and t is a generator ofGp2.
Proof. We refer to section 2 of [3] for détails of this lemma.

Let g:A-+A be a Mnap induced by f:M->M. Define jR(M)c=gp"1(M) and

R(N)aQp-1(N) to be the submodules where Qp'1(f) and Qp~x{f\ are just
multiplication by /.

LEMMA 4.4. {p odd) Let f:M-+M induce a t-map, where t is a generator of
Gp2; then a \ R(M)-*Q(M) (a \ R(N)^Q(N)) is an isomorphism offiltered (graded)

Qp-modules.

Proof We shall give the proof involving R(M). The proof for R(N) is formally
almost identical.

First we show that a is surjective. Let ueQ(M)n and choose veQp~1(M)n such

that a(v) u; then (Qp-1(f)v-tv)eD2(M) by Lemma 4.2. (We write D\M) for
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Di(M)IDp(M) throughout this proof.) Therefore as inductive hypothesis suppose
that we hâve found vsQp~1(M)n such that {Qp~1(f)v-tv)eDi(M) for some i>2
and a(v) u.

Lemma 4.1 enables us to write

Dl (M) Bl@Di+1(M)9 (4.3)

for some B\ and so let Qp~1(f) v~tv b + wu where beB* and w1eDi+1(M). Thus

Qp'x{f) (v + Xb) k(v + kb) + {k{tl - t) + 1} b + Wl + w2,

where w2eZ)i+1(M). But if fis a generator of Gp2, vp(f£-f) O by Lemma 4.3, and

as required. Since Dp(M) 0 in g11"1 (M), we deduce

the existence of veQp~1(M)n with o(v) u and Qp~1(f)v tv.
We must also show that cr | R(M)I is injective; that is R(M)nD2(M) 0. Let

2), thenby(4.3)

and so w b2+b3-\—+*p-i. Lemma 4.2 implies that Qp~1(f) (w) Y<2*zi*kp-i

(r^+Cf), where cf 0 if bt 0, and cteBi+1 ® ••• © J?'"1. If bs is the first non-zero
component of w, then the component of Qp~1 (/) w in 5S is fsbs. Therefore w$R(M).
This complètes the proof of the lemma.

COROLLARY 4.5. (p odd). Letf:M->M induce a t-map, where t is a generator

ofGpi\ then a:Qp~1(M)-+Q(M) splits uniquely as a morphism of ^-modules over Qp.

Proof. \jjk{R(M)}czR(M) for each k; for if ueR(M% then/(^*(w))
\l/k(tu)=t\l/k(u). Therefore we hâve a splitting of ^-modules,

q (M) (g|*(M)r: g"- » (M)^ Q (M).

The splitting is unique since the image of Q(M) for any i:Q(M)-*Qp~1 (M) must
be contained in R(M).

When/? 2, both Lemma 4.4 and its corollary are vacuous.

PROPOSITION 4.6. Letf: M-+M induce a t-map, where ifp is odd, t is a generator

ofGp2; then there exists a splitting J.N-+M and a filtration preserving monomorphism

i:Q(M)-+D(M) such that the composition

is the identity on Q(M) and

Î © W, for each k.
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Proof. First we construct a multiplication ^-module splitting K:Qp~1(N)->
-*QP~1(M) so that K{R(N)}=R(M). Let /:ep~1M->fiP"'1(*O be any splitting
and xl9 x2,... a homogeneous multiplicative basis for QP~1(N) contained in R(N).
Suppose that x^Q^1 (N)t and Jr(jci) «i+i;i, where uieR(M) and t;feiD2 (M)/Z)P(M).
Set K(xi) ui for each / and extend K to be a ring isomorphism; then /t(wf) xf.

Now consider the diagram

Let a(v^) ui9 where v^M/, if j, It (vt)9 then a(iyi) xj. Therefore define a splitting
J:N-+M by setting /(j,-) i\- for each f and extending to a ring isomorphism. Thus
K= Qp~i(J). Now define the monomorphismy* : QP~1(N)-^D(N) by settingy* (jc,)

=>>,- and extending in the obvious manner. Then y* is induced from>/:gp~1(M)->
->D(M) defined by setting j{u) vt and the composition (rj:Qp~1(M)->Qp~1(M)
is the identity. The homomorphism i\Q{M)-*D(M) which we require is the
composition

(|*(M))1 ep"1 (M) -^ D (M). (4.4)

That it satisfies the required properties is clear by construction and Lemma 4.4. This
complètes the proof.

It is clear from the définition of SJ and Proposition 4.6 that

In the light of thèse last two results, we shall assume that there always exists a mor-
phism g:A-+A which is a r-map, where f is a generator of Gp2, p^2. We use the

f-map to define the graded homomorphism

h : Q (N) ®Zp-+Dp (N) ® Zp (4.5)

which under certain conditions is an obstruction homomorphism to primitivity, as

will be made explicit in section 5. Let i:Q(M)->D{M) be as in Proposition 4.6, and

for xeQ(N) define h'(x) =/*(ï* (x))-ti*(x% where / induces the f-map g:A-+A.
Lemma 4.4 and (4.4), which gives the définition of i, together imply that h' (x)eDp(N)
and we set h as thé réduction of h' modp.

LEMMA 4.7. The homomorphism h of (4.5) is well defined.

Proof. Lety and k be two choices for the monomorphism /: Q(M)-+D(M) given

as (4.4). Then/*(y*(jc))=(/#(jc)+Wi &ndf*(k*(x)) tk*(x)+W2, where wx and w2

belong to Dp (N). Butj* (x)- k* (x)=w3 say, lies in Dp (N), and so/* (j* (x) - fc* (x))=
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tpw3. Thus wt — w2 (tp—t) w3 and so by Lemma 4.3, wt w2 modp, and /* is well
defined.

We can now state the two main technical results of this section. As we shall even-

tually identify Sq modp with the cyclic reduced power Pq as in the remarks which
follow Lemma 2.15, we shall write Pq for Sq modp.

THEOREM 4.8. Suppose that n^\ mod/7 and that h vanishes in dimension pn;
then P1:Q(N)n.p+1®Zp^Q(N)n®Zpis surjective.

A conséquence of Lemma 2.18 is that Pn:Q(N)n®Zp->Dp(N)pn®Zp is well
defined, and is non zéro whenever Q(N)n^0.

THEOREM 4.9. Image{P"
®Zp)}cz Image/*.

The proofs of thèse two theorems will occupy most of the remainder of this
section, but before starting them we shall deduce the relevant conclusions.

COROLLARY 4.10. Suppose that h vanishes everywhere; then

(a) (p 2) A is a truncated polynomial algebra on odd dimensional générâtors,

(b) (p > 2) A is a truncated polynomial algebra on generators of dimension one.

Proof. Given that h vanishes everywhere, Theorem 4.8 implies that

P1 : Q (N\.p+ (g) Zp -> Q (N)n ® Zp is surjective, n^lmodp, (4.6)

and Theorem 4.9 implies that

Pn~x : Q(N)n ®ZP^Q (A0B+o,-1) (p-1) ® ZP is injective, for ail n. (4.7)

We shall show that thèse together imply that Q(N)n 0 for n^ 1 modp by using the

Adem relation given as (2.10). In the calculation which follows, we shall need to write

Q(N)t®Zp where fis a rather cumbersome expression, so just for this proof we shall

write Q(t) for Q{N)t®Zp.
We argue by contradiction. Suppose that Q{t)^, where f#l modp. Then (4.7)

implies that Pt~~1\Q(t)-+Q(t+(t-\)(p-\)) is injective. The Adem relation (2.10)

implies thatP^^^^-^P'"1 and soP1:ô((f-2)/?+2)->e((*-l)/? + l)has non
zéro image. Consider the séquence of vector spaces and homomorphisms,

C Q((t -2)p + 2)^<2((* - 1) P + 1). (4.8)

Condition (4.6) implies that each P1, save the last, is surjective and we know that the

last is non zéro. But repeated applications of (2.10) give, P1P1...Pi=k\Pk, where
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there are k factors on the left hand side. There are p maps in (4.8) so that (JDl)p=0,
which gives the required contradiction.

When p 2 this is the required resuit, but to prove part (b) we use a subsidiary
resuit on the action of the P1.

LEMMA 4.11. (p>2). Suppose that P1 vanishes everywere on N®Zp; then P1

vanishes everywhere for ail />0.
This resuit can be proved for the cyclic reduced powers using the theory of higher

order cohomology opérations, as developed in [20]. A more elementary proof is given
in [19].

Now we complète the proof of part (b) of Corollary 4.10. If Q(t)^O with t>\
and tï= 1 modp; thenPt:Q(t)-^>Q(t + (t-1) (/?-1)) does not vanish. ButP1 vanishes

everywhere for dimensional reasons, since Q(t) O if t^\ modp. This contradicts
Lemma 4.11 and so Q(t) O unless t=\. This complètes the proof of the corollary.

Now we return to the proofs of Theorem 4.8 and 4.9. Suppose that yneQ(N)n
and let /: Q(M)-+D(M) be as in Proposition 4.6. Both results follow from a detailed
considération of the équations,

(a) (p 2) (Sn + 2S""1e1)MU(yn)) f*(Sn + 2Sn~lQl) i*(yn) +

(b) (p > 2) SnU (U 00) f*S" 0* 00) + Pfi (n + (P - 1) (n - 1)) > (4.9)
2

which follow from Theorem 2.27 and its corollary. We shall write zn for f* (yn) and

/f for/f(A:) and let the context dictate where it acts.

LEMMA 4.12.

(a) (p 2) (Sn

(b) (p > 2) Snf*zn tSnzn modp2.

Proof. Lemma 4.4 implies th2itf*zn=kzn + w, where weDp(N). The results follow
from Lemma 3.2 parts (a) and (d).

The proof of Theorem 4.9.

Suppose that yn modp lies in the kernel of Pn~x \ Q(N)n®Zp. We shall show that

there exists ypneQ(N)pn such that h(ypn)=y'np=Pny'n9 where y'H and y'pn are yn and ypn

reduced modp.
First we note that if weDp(N), then/j(w) tpw, by Lemma 2.29 and Lemma 4.2.

Thus/1(w) 0. Proposition 4.6 implies that Sn~1zneDp(N) modp, and so fiSn'lzn
=0 modp. Hence by (4.9)

(p 2) (Sn+2Sn-1Q1)f*zn=MSn+2Sn-1Q1)znmod4,
(p>2) \
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Using Lemma 2.18 we write zp+pzpn for {Sn+2Sn~1Q1)zn when p 2 or for Snzn

when/» 2. Thus by Lemma 4.12, t(zpn+pzpn) tpzp+pf*(zpn)modp29 ox f*(zpn)
tzpn+p~i(t--tp)zpmodp. Since t is a generator of Gp2, Lemma 4.3 says that

Vp(r-rp)=l and so a=p~x(t-tp) is a unit in <2P. Therefore if jpneÔ(iV)pw is the

image of a~izpn in the indécomposable quotient, h(y'pn)=y'np as required. This
complètes the proof.

The proof of Theorem 4.8 is not quite as simple. It is hère that we see something
of the reflection of the difficulties which seem to be intrinsic in calculating with higher
order cohomology opérations. Thus for example, when we further restrict our choice

of the splitting / to ensure that the image of a homomorphism takes a particular
form, intuitively what we are doing is to restrict the image of a higher order cohomology

opération within its indeterminancy class; in certain circumstances this type of
relationship can be made quite précise.

The proof of Theorem 4.8.

Let yneQ(N)n where n+\ modp and set zn i*(yn). The conclusion of Theorem
4.9 implies that Pn~1:Q(N)n®Zp-^Q(N)n+(n.i)(p^1)®Zp is injective, and so

zm+(p-l) Sn~1zn is indécomposable modp, where m n + (n — 2) (p — 1). The Adem
relation (2.10) implies that

S1Sn~2zn (n - 1) Sn~1zn modp,

and so zm=Sn~2zn is indécomposable mod/?. We hâve

Slzm (n - 1) zm+ip-» modp. (4.10)

We now assume that (4.11) is true.

(p>2) S"zn zpnmodp2. \
(411)

If this is not true originally, we alter the splitting so that it becomes true, without
affecting the conclusion of Proposition 4.6. Let K.N-+M be a second splitting, then

(p 2) (SI + 2SnK~ 1QÏ) zn (Sj + 2Sj~iQ\) zn + 2g1SnJ~xzn mod4,
fD > 2) °n ~ ~ C"1"" ' " °n~1~ 1 ~2 * v^"*1^/

by Theorem 2.27 and its corollary, where g:M-+M is the identity map. Let the first

term on the right hand sides of (4.12) equal zp+pv9 where vei*{Q(N)}®Dp(N).
Also let zm+(p_1)=z^(p_1)+z^(p_1), where z^l^^ei^lQiN)} and z^(p_1}e
epD (N), and so z^l(p-i) is indécomposable mod/?. Now we take a basis for /* {Q (N)}
one member of which is z^lip^ly Let the splitting K coincide with / everywhere on
this basis, except that we set ^(z^(p_1))=/(z^(p_1)+t;). Now gi(zw+(p_1))=

=£i (zm+(P-i))> fr°m the définition of K, and gt (z(^lip.t))= -v. Thus the right hand
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side of either équation (4.12) becomes zpmodp2 as required. Since vei*{Q(N)}®
®DP(N) the conclusion of Proposition 4.6 remains unaltered.

Therefore from (4.11) and Lemma 4.12 we deduce that for p^2, pfiSn~1zn

(t-tp) zP modp2. The integer t is a generator of Gp2 and so by Lemma 4.3,

/i Om+(p-i)) <*z*9 where a # 0 modp. (4.13)

We now consider the equality

^'{//(zm)}=/J4>t(zm) (4.14)

in dimension m+2(/?—1). We need further notations. Let

#'(**) tmzm + xm+(p_1} + xm+2{p_1) + higher dimensional éléments,

where xtGNi. In the notation of Lemma 2.10,

x.+(f-i, ^k1(0 *m rp'1^ -1*-1) slzm.

Thus by (4.10),

xm+(p_1) p(n - 1) zm+(p_1) modp, where jS(n - 1) ^ 0 modp. (4.15)

Also let ^m+2(P-i) ^m+2(1>-i)+^m+2(p-i) where the first summand lies in i*{Q(N)}
and the second in DP(N). Therefore /*(
Finally letMzm) tzm + wm9 where wmeDp(N).

The left hand side of (4.14) in dimension m +2{p-1) is

tmR2(t) wm

and the right hand side component is

tmf2 (Zm) + h (*m + (p- 1)) + /* (*m + 2(p- 1)) •

We equate thèse expressions and after some rearrangement obtain,

x +2(l)) ~ tXm+2(p-iy) + (tP — 0* +

Now x»+2(p-i)e Wp,, and h \ Q(N)pn®Zp vanishes. Thus the first term in parenthèses

on the left hand side vanishes modp. We reduce modp and obtain

*p(n - 1) zp tmR2{t) wm + r+o-^R1 (0h(zm) modp, (4.16)

since

(p) by (4.15),

aj8 (n - 1) z£ mod p, by (4.13).
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The proof now breaks up into separate arguments for p 2 andp>2. The latter
is the easier and so we give it first. We need the following lemma,

LEMMA4.13. (p>2).f*(zm) tz
Proof. Corollary 2.28 (a) implies that Sn~%(zn)=f^Sn~2znmodp. The conclusion

foliows from Lemma 3.2 (f).
Thus when p is odd, the first term on the right hand side of (4.16) vanishes. But

if p is defined as in (4.15). Therefore by (4.16),
and so Sisfl(zm)eDp(N)9 there exists weDp(N) such that S1w z%modp. A simple

conséquence of the Cartan formula for S1 in a polynomial algebra is that there exists

zn-(p-i)e^n-(P-i) sucn tnat S1zn-.ip^1)=znmodp and modulo decomposable
éléments; and in the indécomposable quotient there exists jM_p+1eQ(N)n_p+1 such that
Siyn-p+1=ynmodp. ThusP1 | Q(N)H-P+1®ZP is surjective as required.

LEMMA 4.14. Mzm)~tzm+Z+j=n S^WSj~\ mod2, where v^
Proof. Again Corollary 2.28 implies that Sn~2f*{z^=f*Sn~2znmod2. The

conclusion now foliows from Lemma 3.2 (c).
Thus wm Xl+i=n5rf"1t;/-5-/~1yJ.. We wish to consider R2(t)wm, where R2{t)

2~2{(1 -t2) S2 +(t-t2) S1^1}. Now S2wm 0 mod2, by the Cartan formula, and
S1wm Y.i+j=n2v2i'Sj-1vfj,wheTQVfie^{Q(N)}h by Lemma 2.18, and so 5rlg1wm

-SlSxwm=-2 £,+,-„ SVa,-^-1*; mod4. Therefore R2(t) wm=Y,i+J=nSlv'2i
xSj~1Vj mod2, by Lemma 4.3 since t is a generator of G4. The right hand side of

(4.16) is hence of the form ]T v'i'S1^^ where v'[ and v) both lie in £i>0 Ni9 as the
second term on the right hand side of (4.16) has the same form as when/?>2. Therefore

£ v'i'Slvtrj aLP{n—\)zl mod2 and so there exists an élément zn_1eNn-1 such

that S1zn_i=zn mod2 and modulo decomposable éléments. Equivalently there exists

an élément yn-1eQ(N)n-1 such that Siyn-1=ynmod2 and so S1 \ Q{N)n-1®Z2 is

surjective. This complètes the proof of Theorem 4.8.

5.

Let (X,m)eH and suppose that H*(X,Z) has no /?-torsion. We recall from
section 3 of [18] the ring structure of H*(X, Qp).

LEMMA 5.1. As an algebra H*(X9 Qp) is isomorphic to a tensor product ofHopf
algebras of the following types,

Wl. An exterior algebra on a single odd dimensional generator,
W2. A polynomial algebra on a single even dimensional generator,
W3. An algebra with an infinité séquence of even dimensional gênerators, 1, xl9 xr,
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xr+1, where x^ xr for some finite integer r, and x%+1 =pxr+l+1 for ail i ^ 0, and
there are no other relations among thèse generators.

THEOREM 5.2. Suppose that, in addition to the above hypothèses, H*(X, Zp) is

m*-primitive, then H*(X, Qp) is a free commutative graded algebra
Proof We need to show that if H*(X, Zp) is m*-pnmitive, then H*(X, Qp) has

no factors of type W3. Let C and C" be the Hopf ideals in H* (X, Qp) and #* (X, Zp)
generated by Hodd(X, Qp) and Hodd(X,Zp) respectively, and consider the Hopf
algebras B=H*(X,Qp)IC and B' H*(X,Zp)IC. Then B' remains a pnmitively
generated Hopf algebra and as an algebra is a tensor product of algebras of types
W2 and W3

Let j B-*Bf be the quotient map, réduction moàp. Suppose that xt is the first
generator of positive degree (the quasi-generator) in a factor of type W3, where we
choose the factor so that xx has least possible dimension. We shall show that this
leads to a contradiction and thus there are no factors of type W3.

We first show that j(xx) is primitive in B\ for m*(x1) x1®l -\-\®x1 +£ x'®x"
and so (in the notation of Lemma 5.1), m*(xf) xf® 1 + l®xf+ (£ x'®x")pr modp,
where xf 0mod/?. Therefore (^jc'®x")pr 0mod/? which is only possible if
Y, x'®x" 0 mod/?, for ît lies within a polynomial subalgebra of B, since xt has least

possible dimension for any factor of type W3.

Now choose a homogeneous basis for Br composed of primitive classes zi9 z2,
which we may assume contains y1 =j{x1), since is both primitive and indécomposable.
The non zéro monomials in the zx form a vector space basis for B' over Zp and lead

to a basis for B'®B'. Now

m*(

and so

m*(;

Thus if

.- y (pr\x><z>xpr->- L \ t )xi & xi >

yyi '•- / il 1 11 A../\ I I I f\S\ H _l_ X yi~l ~ I \)J r fVl 1>^*^ J/P

and ail terms in the summation on the nght hand side are non zéro. Thus yr+l is

indécomposable but is not primitive. Therefore there exists a decomposable élément

weBf such that

m*(w) w ® 1 + 1 ® w - Y P'^ P! ^ ^pr'± ** "ip-J)pr~



38 J.R.HUBBUCK

so that yr+l + w is primitive. But if z\zfi2... is any non zéro monomial in the zi with
dimension that of jr+1, then

m*(z\zfi2 (Zi ® 1 + 1 ® zOa (z2 ® 1 + 1 ® z2/...

and the right hand side is linearly independent of j{pr~1®j(1p~-/)prl, K/<(/>—l),
unless z1=z2 ---=j1. But for dimensional reasons the monomial must then be j>f
which is zéro. This gives the required contradiction and complètes the proof.

We suppose therefore that (X, m)eH and that H*(X, Qp) is a free commutative
algebra over Qp. Let C be the Hopf idéal generated by Hodd(X, Qp) and let B be the

Hopf algebra H*(X, Qp)/C, which is a polynomial algebra. We write B for the
natural augmentation idéal of the graded ring B and define Ac=Yui>o A\ to be graded
ring B/(B)P+1. Thus Ac is a truncated polynomial algebra of height/? +1 on generators
which necessarily hâve even dimensions, and so Ac2i+i =0 for each /. Finally let A be

the strictly commutative graded ring (not graded commutative) obtained from Ac by
setting At equal to Ac2i.

THEOREM 5.3. The ring A is a spécial truncated polynomial algebra of height

p + \ over Qp, in the sensé of section 4, which supports a t-map f\A-*A, where t is a

generator of Gp2.

Proof The vérification is routine. The détails can be found in section 3 of [18],
and so we just sketch the arguments hère.

First we replace X by a finite skeleton Xn of arbitrarily high dimension and let

M K(Xn9 Qp) and N=Heyen(Xn, Qp), as in Lemma 2.16. The continuous map
ft\X-*X is as defined in (4.1) and we suppose that it is cellular so that/f (Xn)aXn.
We now make repeated use of Lemma 2.24. First we divide out by the idéal which
consists of those ueK(Xn, Qp) for which u2 0, so that the quotient ring ofK(Xn, Qp),

modulo éléments of high filtration, is a polynomial algebra. We next truncate this

polynomial algebra at height /? + l, and let this be M. The fact that both \j/k and

ftl:K(Xn, Qp)-+K(Xn, Qp) are ring isomorphisms imply, by Lemma 2.24, that M is

a multiplicative ^*-module over Qp. The associated graded ring, which is the corre-
sponding quotient ring of H*(Xn, Qp)9 is then a truncated polynomial algebra of
height p +1 over Qp, again modulo éléments of high dimension, and the homomor-
phism induced by/r is the required /-map. This complètes the proof.

Now we introduce the obstruction homomorphism of section 4.

LEMMA 5.4. Suppose that (X, m)eH,H* (X, Z) has nop-torsion and H*(X, Zp)
is m*-primitive; then in the notation of section 4 and Theorem 5.3, h\Q{N)®Zp~*
-*Dp(N)®Zp vanishes everywhere.

Proof Let B, Ac and A be defined as in the paragraph before the statement of
the last theorem and let B\ Ac> and A' be the corresponding rings where we hâve Zp
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not Qp coefficients. Then Br is a primitively generated Hopf algebra and so we choose
a multiplicative basis yuy2,.-- composée of primitive éléments. Thus (/,)*y^tyi9
for each L In the quotient ring, yi9y2,~- form a multiplicative basis for Acf or A! and
still (/,)*yi tyt. Now let i*:Q(N)-+D(N) be as constructed in Proposition 4.6 and
let zl9 z2,... be a basis over Qp for i*{Q(N)}9 and therefore a multiplicative basis for
N. Then (/f% z4 (/,)* Zi fz, + H>,, where wfeZ>p(A^). Lety:^->^' be réduction modp
and assume, without loss of generality, thaty(zf)=ji+J]2^s<1, ws, where ws is a poly-
nomial in the yt of total degree s. Now as #*(.T, gp) is torsion free, /(/,)* zf

Therefore7(^) ^2<s<;,(f-r)ws from which it follows that ws 0

andjf(^) 0, using Lemma 4.3. Therefore if /* (yt) zi9 where yteQ (N), then A (7(yt))
0 for each f, which complètes the proof of the lemma.

The proofof Theorem 1.1.

(b) Theorem 5.2 and Theorem 5.3 ensure that the hypothèses of Theorem 4.8 and
Theorem 4.9 are satisfied. The additional hypothesis of Corollary 4.10 follows from
Lemma 5.4. Therefore Theorem 1.1 (b) follows from Corollary 4.10 (b).

(a) IfH* (X, Z) is torsion free and m*-primitive, then H*(X, Zp) is w*-primitive.
Thus H*(X, Qp) is a free commutative algebra for ail primes p, including/? 2, by
Theorem 5.2. Therefore H*(X, Z) is a free commutative algebra over Z, and ifp is

an odd prime, H*(X, Zp) is a free commutative algebra over Zp. Further the dimensions

of the generators of the indécomposable quotient of this latter ring coincide
with the dimensions of the generators of the indécomposable quotient of the former.
Hence part (a) of Theorem 1.1 follows from part (b).

The proof of Corollary 1.2.

Theorem 1.1 (a) implies that H*(X, Z)^Z[x2,^2»---] is a finitely generated

polynomial algebra, where the generators ail lie in H2 (X, Z). If iX9 iy9... : X-*K(Z9 2)
realize thèse generators, ixxiy x :X->K(Z9 2)xK(Z9 2)x induces an isomor-
phism of cohomology rings, and therefore of homology groups in each dimension.
A theorem of Whitehead implies that ix x iy x is a homotopy équivalence.

The conclusion of this corollary implies in particular that the jfiT-space structure

on such an X is well determined up to homotopy, and is both homotopy associative

and homotopy commutative.

The proof of Theorem 1.5.

Part (a) is proved in a manner similar to Theorem 1.1 (a), except that we use the
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weaker resuit Corollary 4.10 (a) in place of part (b). Part (b) of Theorem 1.5 is an
immédiate conséquence of Theorem 4.9, identifying the P* of that proposition with
Sq2i, as in the remarks which follow Lemma 2.15.

The proof of Corollary 1.3(b)

If H * (X, Zp) is a coassociative, cocommutative Hopf algebra, a : P {H * (X, Zp)} ->

-+Q{H*(X, Zp)} is an isomorphism in ail odd dimensions by Proposition 4.23 and
the remarks which follow in [22], Thus if H*(X, Zp) is a tensor product of a poly-
nomial algebra with generators of dimension 2 and an exterior algebra, to show that
it is primitive we must show that a is an isomorphism in dimension 2. But

H1 (X, Zp) s Ht (X, Zp) s H± (X, Z) ® Zp s nx (X) ® Zp 0,

since H* (X, Z) has no /7-torsion and X is simply connected. Thus any élément of
H2 (X, Zp) is primitive for dimensional reasons. This complètes the proof of the

corollary in one direction. The converse restâtes a particular case of Theorem 1.1 (b).

The proof of Corollary 1.4 (b)
If H*(X, Zp) is a coassociative Hopf algebra and as an algebra is an exterior

algebra over Zp {p odd), then by the Samelson-Leray theorem (see for example,
Theorem 7.20 of [22]), H* (X, Zp) is m*-primitive. If Xis 2-connected, then H2 (X, Zp)
=0 by an argument similar to that used in the proof of Corollary 1.3 (b), and so by
Theorem 1.1 (b), H*(X9 Zp) is an exterior algebra if it is w*-primitive.

The proofs of Corollaries 1.3 (a) and 1.4 (a)
One can prove thèse results using Theorem 1.1 and gênerai Hopf algebra theorems.

However the author does not know of explicit références for the Hopf algebra results

needed, so instead we prove a lemma which enables us to deduce parts (a) of Corollaries

1.3 and 1.4 from parts (b). This lemma is Hopf algebraic, though we state it for
cohomology Hopf algebras.

LEMMA 5.5. Let (X,m)eH. Suppose that H*(X,Z) is torsion free and that

H*{X, Zp) is m*-primitive for each prime p; then H*(X, Z) is m*-primitive,
Proof. Theorem 5.2 implies that H*(X, Qp) is a free commutative algebra over

Qp for each primer, since H*(X, Zp) is m*-primitive. Therefore H*(X, Z) is a free

commutative algebra over Z.
Suppose that a:P{#*(X, Z)}-*Q{H*(X, Z)} is surjective in dimensions <n.

Choose primitive représentatives in H*(X,Z) for a basis of the indécomposable

quotient in dimensions <n,yt say, so that we may choose monomials in the yi9 Uj

say, which form a basis for H*(X, Z) in dimensions <n and for the well defined

direct summand of decomposable éléments in Hn(X, Z). The set of éléments of the
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form us®ut which lie in H*(X9 Z)®H*(X, Z) in dimensions ^n form a basis in
this range of dimensions. We subdivide the subset of basis éléments in dimension n
into subsets {vt}, {vf}, {uf*},..., where u&Uj and us®ut belong to the same subset

if and only if utUj ±usut. In particular let the first subset consist of those ut®Uj for
which UïUj=0.

Let uk—y\y\... be a decomposable élément of the basis in Hn(X, Z). Then

m*uk (yt ® 1 + 1 ® y^)01 (y2 ® 1 + 1 ® y2Y (5.1)

Therefore m*uk uk®\ +l®uk+Y 6?*"'a?*'", where ail the vf*'" belong to the
K, A. ^-r K, J^J J J 7 J O

same subset of basis éléments {vf*'"}9 (k + \ asterisks), and the bf*'" corresponding
to each member of this subset is non zéro. Also it is clear that for ail such uk9 \bf*'"| <
<K9 where ^Tis some constant depending only upon «.

LetxeHn(X, Z)beindecomposablewithm*x x® 1 + l®x+Y,atvi+Ysaîvf "^—>

summing over the différent subsets of base éléments. Since H*(X9 Zp) is primitive
for each p, there exists a decomposable élément w, possibly depending upon p, such

that (x + w) modp is primitive in H*(X9 Zp). Let w £ ckuk, then,

a**'" + ckb**'" ° modp, (k + 1 asterisks), for each i. (5.2)

The first conséquence of (5.2) is that at=0 for each i9 since the corresponding bt

are ail zéro and we may take p to be arbitrarily large. Otherwise (5.2) implies that
a**--/,**'- =a**'~b**-~ modp for ail p and each pair of integers i and j. Thus
a**m" :b**m"^a**'" :b**"\ There are three cases to consider.

First suppose that û,**'"=0 for some i. Since ail the b?*'" are non zéro, this

implies that af*"'=0 for ail /, and so Ja,**"#iî,**#"=O. Second suppose that
\af*'"\^\bf*"'\9 necessarily for each /. We may therefore choose ck so that a**"' +
+ ckbï*'" =0 for each i9 which implies that we may choose w so that £(tf**"" +
+ ckb?*'") t;f*'"=O. Finally suppose that 0<|af*'"|<|6l**'"| for each /. By exam-

ining (5.1) one sees that the bf*'" hâve no common factor of modulus greater than

one unless uk (ys®l +l®ys)qr for some ys and some prime q. Then we must hâve

q\af*'"\ \bf*'"\ for each i, and

But by considering x modq in H* (X, Zq) one can show that H * (X, Zq) cannot then

be primitive (as in the proof of Theorem 5.2). Thus the third possibility cannot in fact
arise.

Therefore we can choose w so that x+w is primitive in H*(X, Z), which
complètes the inductive step and thereby proves the lemma.

The proofs of Corollary 1.3 (a) and Corollary 1.4 (a) are now easily completed,

for the implications which do not arise almost immediately from the theorem follow
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from Lemma 5.3 and the Hopf algebraic results quoted in Corollaries 1.3 (b) and
1.4 (b), using the additional fact that H*(X, Z2) is strictly commutative in the sensé

of(7.17)of [22].
This complètes the proofs of the results of section 1. Finally we mention a com-

panion resuit to Theorem D of [17], which is implicit in Theorem 5.9.

Let Y be a complex with finite skeletons, whose cohomology ring with Qp
coefficients is a finitely generated polynomial algebra, possibly truncated at height greater
than p, with even dimensional generators, yt say.

A continuous map/:F-»ris a f-map if f* (yi) tyt modulo decomposable
éléments of the polynomial algebra.

THEOREM 5.6. Suppose that Y supports a t-map, where t is a generator ofGp2;
then each yt has dimension 2.

This follows from Theorem 4.9 by choosing 2n to be the highest possible dimension

for a generator of H* (Y, Qp).
In particular this implies that if (X, m)eH, then H*(X, Qp) is not a finitely

generated polynomial algebra, as does Theorem D of [17]. In fact neither is a particularly
strong resuit, but we shall not extend the results hère. Such information has
applications in deciding when a map between classifying spaces of Lie groups is homotopic
to a map induced from a homomorphism of the Lie groups.
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