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Déformation of Homeomorphisms on Stratified Sets

By L. C. SlEBENMANN

Introduction

Edwards and Kirby hâve presented in [14] an attractive and powerful method for
deforming homeomorphisms of topological manifolds, which élaborâtes the "torus
unfurling" technique of Kirby [20], and offers an alternative to the "meshing"
technique of Cernavskii [8] [9]. In this article I shall develop the method further to
deal with non-manifolds.1) In particular I shall prove the new

THEOREM 0. The topological group H(X) of homeomorphisms of a finite sim-

plicial complex X onto itself is locally contractible.
This resuit does not extend to ENR's (euclidean neighborhood retracts). To see

this let a space X be obtained from S3 =R3uoo by crushing to a point each of a

séquence of mutually disjoint wild non-cellular arcs in R3:Ai9 A2, A3i... such that
each An9 n^ 1, is a copy of the same wild arc A in the unit bail in R3 translated by
the vector (4«, 0, 0). This X is an ENR; indeed Xx R is homeomorphic to S3 xR
=R4r — 0 by a resuit of Andrews and Curtis [4], Clearly this compactum admits

self-homeomorphisms h:X-+X arbitrarily near the identity which nontrivially
permute the images of Al9 A2, A3,.... But no such h is isotopic to the identity because

thèse are isolated points at which X fails to be a manifold. (See also the fish skeleton

of§0.)
The treatment of non-manifolds rests roughly speaking on a method for deforming

homeomorphisms on Rm x cX, cX being the open cône on X, once one is given such

a method on Rm+1xX. Then the proof proceeds by induction on the depth of X.
Hère Xis regarded as a stratified set, and depth is the greatest différence of dimensions

of nonempty strata of X.
Stratified sets are vital to the proof because their open subsets are themselves

stratified sets, and often of a lesser depth. Thus it will only clarify matters to deal

from the outset with suitable stratified sets. I take this opportunity to introduce classes

of pleasant stratified sets that may corne to be the topological analogues of polyhedra
in the piecewise-linear realm or of Thom's stratified sets in the differentiable realm.

This technique of proof almost automatically provides strong relative and respect-
ful déformation theorems (§4.3, §5.10), which a counterexample (§2.3.1) suggests are

x) Presumably one could equally well hâve extended Cernavskii's method, but perhaps not so
briefly or clearly.
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the best possible. For one, the space of those homeomorphisms of a finite simplicial
complex X, that respect (alternatively fix pointwise) a given subcomplex, is proved
locally contractible. This contains some new information even if X is a manifold
cf. [14].

I hâve compilée a long list of elementary conséquences of the déformation theorems

proved. Most certainly, they lack glamor, and for several reasons. Many are straight-
forward enlargements on corollaries drawn by Cernavskii, Lees, Edwards and Kirby,
Cheeger and Kister, or Gauld. Again many hâve well known differentiable analogues
that can be proved instantly by Thom's device of choosing suitable vector fields and
integrating.

This article was inspired by R. D. Edwards' proof (summer 1970) of Cernavskii's
theorem asserting local contractibility of spaces of embeddings of manifolds in co-
dimension ^ 3. In it Edwards combined the torus furling and unfurling methods of
[14], my inversion device in [31], and a horn device of Cernavskii [8]. I noticed that
inversion converts this horn device into conjugation by a "horn like" expansion
(which has become 0 in §3) in the normal direction, and suddenly the methods were
adéquate to deform homeomorphisms on Rm x (cône), and hère the inversion device
became unnecessary. The text is an expansion of lectures given at Orsay, France, fall
1970.1 am indebted again to Edwards for his generous assistance in eradicating errors.

List of Contents

Introduction; §0. Philosophical remarks; §1. Locally cone-like TOP stratified
sets (=CS sets); §2. Déformation theorem; §3. Proof of handle lemmas; §4.
Déformations respecting subsets; Edwards' wrapping lemma; §5. WCS sets; §6. Familiar
applications: respectful versions &(X;<$?); Cernavskii's noncompact version;
extensions of isotopies; submersions; foliations; line fields normal to a codimension

one foliation; counting CS sets.

§0. Philosophical Remarks on Déformation Principles (optional reading)

For a space X (which is assumed locally compact and Hausdorff throughout this
section) the following déformation principle (=axiom or property which may or
may not hold) seems to be the center of interest.

t (X) | For each open set UaXandeach compactum BczU îhe following statement

holds:

x(X; B; U) \ If h:U-*X is an open embedding sufficiently near to the identity
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inclusion i:U-+X (for the compact-open topology) then there is a rule assigning to h

a homeomorphism h' : X-> X equal h on B and equal the identity outside U. For h near i
the rule h\—>h' can be continuous and send i to id | X.

One might call h' a déformation of the identity id | A'induced by the perturbation
h of the inclusion i:U-»X.

The déformation property @(X) (see §2) that we will establish for pleasant
stratified sets X is similar but more complicated. It is obviously as strong as 2X (X);
in fact it is stronger even for ENR's as the property @x holds (while 2 fails) for the
3-dimensional ENR of the introduction. This is an easy conséquence of^ (R3 — uf^4f).
Nevertheless @x fails for certain compact ENR's. For a simple example let X be the
fish skeleton, the 1-point compactification of Z+ x [— 1, 1] u [0, oo) x0. (Hère Z+ is

the integers ^0). It is a retract of [0, oo) x [— 1, 1] uoo, a 2-disc. Although 3fx holds
for this X, it fails for the cône on X.

If one insists on a powerful déformation principle which may still hâve very wide

applicability, then one might first fix a pointed topological space (A, 0) of parameters
and consider

tx (X) For each open UcX, each compactum BczU, and each continuous rule

q: X\-*hx mapping a neighborhood ofO in A into the space of open embeddings U~*X
(with compact open topology) thefollowing holds:

i1 (X; B; U) \ Suppose ho=i. Then there exists a neighborhood N of 0 in A and

a continuous rule Qf\X\-+h'x definedfor XeN such that h\\X-+X is a homeomorphism,

h\ equals hx on B, and h'k is the identity outside U. (One could adjust Qf so that

h'0=id\X.)
Clearly @x(X) implies @i(X) for ail A; and conversely, using embeddings to

parameterize themselves. The first question is perhaps: Does @f(X) hold for ail
ENR's XI (It does hold for the cône on the fish skeleton.)

@* (X) should be thought of as an isotopy extension principal - for local extension
in parameters A. Indeed @*(X) (in place of &(X)) is quite enough to prove our
isotopy extension theorem (§6.5 part I) if we restrict attention to parameter space A
(called B there); and conversely, for locally connected X, this implies @f(X).

Note that if @\ (X) holds, then the mapping q:AxU-*AxX given by (Â9 x)t->
h-*(A, hx (x)) can be shown to be an open embedding by using conditions 3f\ (X; B;U)
suitably. In the absence of3i\ (X) one needs to assume that X or A is locally connected

to prove this (Lemma 1.6).

In case &* (X) turns out to be often valid we make the

Observations (generalising §6)
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1) With few exceptions2) each topological application 6.8 to 6.35 of @ is proved
on the basis of an isotopy extension principle2) £iï\, and does not require 2, (And the
appropriate A is easy to spot. Hère we are letting the base point in A vary.)

2) In thèse same applications the hypothèses that certain spaces be locally
connectée become superfluous when an isotopy extension principle of the form Q)\ is

hypothesized. This occurs because ^(X) implies that q:(à9 x)h-»(A, hx(x)) as

mentioned above, is an open embedding even if X, A are not locally connected.
To conclude, we try to clarify the relation of3t (X) to the stronger principle @(X).

The property 3fx (X\ B; U) above can be given a relative version @t (Xf; A, A\ B'; U)
where A, A' are closed subsets of Xand A' is a neighborhood ofA. It differs by treating
only embeddings h that equal the identity on A' n U and in return it promises an h'
equal the identity on A.

If to this property @t (X; A, A', B; U) we add that for h small, there exists an
isotopy ht, 0<f<l, of ho=id | JTto hi=hr so that the rule hh+{ht9 O^t^l} is con-

tinuous and each ht \ A =identity, then we hâve a property Q)(X\ A, A\ B; U) which,
taken for ail such A, A', B, U in X, is obviously équivalent to the property @(X),
provided X is locally connected, see §2. Thus the statement @(X) is two steps more
complicated than 3f± (X).

However there are two implications proving that the real différence is slight and
vanishes for very pleasant X.

(i) 9X (X) implies ®x (X; A, A\ B; U). Indeed 2X (X; B\ Uf) implies it if we set

U' V—Z, where Z=Bkj(X—U)kjA and V is a small open neighborhood of Z,
and set B' equal the (compact) frontier of a smaller closed neighborhood of Z. (Draw
a diagram!) V should be so small that it lies in a neighborhood of Z of the form

l/iUl/jU/ where U1 and U2 are disjoint neighborhoods respectively of B and

(X- U). Work on (h \ l/Ju(id | A)u(id \ U2) to get the desired h'.

(ii) For spaces X that hâve a basis of open sets that are (abstractly) open cônes on

compacta, the property @i{X) implies @(X). The dérivation from @i{X) of
3(X; A, A\ B; U), or @{X\ A, A\ B; U) of §2, uses Alexander isotopies on many
open cônes as follows. One uses properties of type ^x (X; Ao, A'Q, Bo; Uo) to express h

as a finite composition hshs^.x... hxh0 where h0: U-+X is the identity near B and hj9

7 1,2,..., s, is a homeomorphism X-^Xfixing points outside a compactum Bj con-
tained in a cône in U—A. Each of h0,..., hs dépends continuously on h near /: U-+ X

2) Ail of which corne from the second argument in the proof of 6.13, which is not needed if the
parameter space B in 6.13 is an ANR. So ail exceptions vanish if ail parameter spaces involved are
ANR's. Alternatively ail exceptions vanish if we abandon the isotopies ht in 6.13, 6.19, 6.20, 6.23.
The loss is slight and, incidentally, the normality assumption there vanishes.

8) Sometimes in a relative form parallel to @(X; Sf) of 6.0. Unfortunately the proof of an
implication B{X)^ @(XxB; Sf) in 6.1 fails for ^i. Badly indeed, since @i{Xx R; Sf) easily implies
B(X). In particular ®i(X x R; SO fails if X is the fish skeleton.



Déformation of Homeomorphisms on Stratified Sets 127

and equals the identity for h=i; also Bl9..., Bs are independent of A. Then we define
h! hs... h and ht h\s) o h(ts "*} o... o h\*\ 0 <^ 1, where h\j) is the Alexander isotopy,
cf. 5.3, of hj to id | X (arising from the cône containing Bj).

§1. Locally Cone-Like TOP Stratified Sets

We will use a simple notion of topological stratified set suggested by work of Cerf
or of Armstrong and Zeeman [6]. It is just a filtered topological space having a few

pleasant properties. Recall that abstracting the differentiable properties of algebraic
varieties, Thom has produced a notion of differentiable stratified set [35] [24].

It is a filtered space with lots of extra equipment - certain manifold structures and
submersions. Although the définition is complex, it is so formai that one can define

piecewise-linear and topological stratified sets in the sensé of Thom. Our CS sets

are simpler, cruder and (as unfiltered spaces) slightly more gênerai [33].

DEFINITION 1.1. A stratified set X will in this article be a metrizable space X
equipped with a filtration X=D..-3X(n)^Jf(w"1)iD---=3X("1) 0 by closed subsets

X(n\n> -1, (called skeleta) such that, for each«^0, the components of JT00-Jf01""1*

are open in JT(B)-Ar(""1). A vertex of X is a point in X(o\
It is a TOP stratified set if, for each n^O, xin)-Xln~iy is an «-manifold without

boundary, which is called the (total) w-stratum of X. The symbol TOP signifies that
topological manifolds are involved.

Let X be a compact stratified set. Note that the open cône cX, obtained from
Xx [0, oo) by smashing Xx 0 to a point, has a natural stratification (cX)in)=c(X(n~1))9

n^l, and (cX)° =cone point. The cône on the empty set is a point. Likewise there is

an évident join of two compact stratified sets; and a product of any two.
Every open-subset of a stratified set is a stratified set.

An isomorphism h:X-+ Y of stratified sets is a homeomorphism of topological
spaces such that h(X(n)) Y(n) for ail «^0. The symbols «, dénote respectively
homeomorphism, and isomorphism of stratified sets.

DEFINITION 1.2. A stratified set X is locally cone-like if for each point x in Z,
with x in Ar(B)-Ar(""1) say, there exists an open neighborhood Uofx in Jf(ll)-Ar(""1),
a compact stratified set of finite formai dimension4) L called a link of x in X, and an
isomorphism oïUxcL onto an open neighborhood of x in X. (Regard U as stratified
with U=Un-U(n-i).)

Notation. A locally cone-like TOP stratified set will be called a CS set.

4) The formai dimension of L is sup {n \ !,<"> - Un~^ ï 0}.
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Remark.5) Similarly one defines piecewise linear CS sets by working from cate-

gory ofpolyhedra and piecewise-linear maps rather than the category of metric spaces
and continuous maps.

Remark. We hâve not assumed that the links L in a CS set are TOP stratified
sets although one might conjecture that they can always be even CS sets by a suitable
choice. Certainly cL may be a TOP stratified set although L is not one. To see this
let L be the ENR mentioned in the introduction.

Remark. Examples of Milnor [25] show that another link L' for x in X may not
be homeomorphic to L even if both L and L are closed manifolds, in view of the
topological invariance of torsions for manifolds [21] [22]. Contrast this with the fact
that in piecewise-linear CS sets links are unique up to piecewise linear isomorphism [19].
We must be content with a fattened uniqueness theorem proved as 4.12 and 4.13 below.

EXAMPLES OF CS SETS 1.3. 0) A topological m-manifold X. Hère Xin)=X
for n>m, X(m"1)=5Z=(the boundary of X), and X(l) 0 for i^m-2.

1) A locally finite simplicial complex X. Hère Xin) is the union of simplices of
dimension ^n.

2) A polyhedron X with its intrinsic stratification in the sensé of Armstrong and
Zeeman [6]. Hère X(n) is the intersection of ail simplicial «-skeleta for piecewise linear
triangulations of X. This is a piecewise-linear CS set.

3) A differentiable stratified set X in the sensé of Thom [35] [24]. Hère X(n) is

the union of ail of Thom's strata of dimension <«.
4) A manifold pair (X, Y) where F#0 is locally flat in X. Supposing dX=Q dY

we form just two non-empty strata, X— Y and Y. The equipment required to make
this a TOP Thom stratification certainly would include a normal microbundle to Y
in X, which may not exist [26A].

5) In [33] I construct a compact CS set that is locally triangulable but not a

simplicial complex. Also I construct a CS set that is not locally triangulable.
Questions 1.4. (Stratification conjectures). Is a metrizable topological space X of

finite dimension homeomorphic to a CS set if and only if for each point xeXthere is

a compactum K, an open neighborhood F of x in X9 and a homeomorphism VœcK
carrying x to the cône point? Does the space underlying a CS set hâve a unique
intrinsic (minimal) stratification in the sensé ofArmstrong and Zeeman? Its «-skeleton
should be the intersection of ail possible w-skeleta of CS stratifications of the space.

DEFINITION 1.5. The depth d{X) of a stratified set Zis

d(X) sup{m - n | X(m) - X^'^ * 0 # X(n) - Jf(""1)}

5) Other species of stratified sets are expérimentée with later on. But one can still conjecture
that each coinsides with the CS sets or else with the more inclusive species the WCS sets in §5 below.
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Note that d(XxM)=d(X) if M has one stratum. More generally d(Xx Y)
=d(X)+d(Y), for any two stratified sets. Also, ifL is a link for x in X, d{Ux {cL — v)) <
<d(U x cL)^d(X)9 v being the vertex of the cône cL.

To convince himself of the utility of depth (as distinct from dimension), the reader

can give a trivial proof of Sullivan's discovery [37] that a compact piecewise linear CS

set has zéro euler characteristic if each nonempty stratum has odd dimension. Hint :

Carve out a nice regular neighborhood of the stratum of lowest dimension (a closed

manifold), then double to get a compact piecewise linear CS set of lesser depth.
Now calculate by induction on depth.

It is appropriate to recall hère that if X and Y are locally compact and locally
connected Hausdorff spaces and/r:X-> Y, tel, is a path of open embeddings6) for
the compact open-topology, then the continuous map/:IxX-+IxYdefined by the

rule/(/, x)=(t,ft(x)) is itself an open embedding. Thus/f is automatically what is

called an isotopy (through embeddings). This is relatively easy to see if there is an

compactum KcX such that each ft fixes ail points outside K(a.nd X need merely be

Hausdorff). In gênerai one shows roughly that a continuous family ofopen embeddings
cannot suddenly uncover points. The détails are collected in a lemma.

LEMMA 1.6 (known but not well known cf. [11]). Consider a continuous map

f :BxF-+BxF' of cartesian products of topological spaces, such thatf respects the

first factor projection pt onto B, i.e. pif=p1. Suppose that for each point beB the

map fb\F-*F' defined byfb(x)=p2f(b, x) is an open embedding.
Then f is an open embedding in case either condition (I) or (II) holds:

(I) F' is Hausdorff and locally compact, and B is locally connected

(II) F' is Hausdorff locally compact, and locally connected.

Proof of 1.6 (by border watching): It will sufRce to show that, given a point x in
an open set Uof F with compact closure 0, and a point aeB, one can find a
neighborhood N of a in B and a neighborhood V offa (x) such that fb(U)^>V for ail b in N.

Case L Let C, D be compact neighborhoods of * in U with CaÙ (=interior of
D in F). Choose a connected neighborhood N of a in B so small that

\)p2f{NxC)czfaÙ
2)p2f(NxôU)c:F'-faD,

where ôUis the (compact!) frontier of U in F; i.s.fb{ÔU)c:F'-faD for ail beN.
We define V=faC. For each yeC and beN, the set Pif{Nxy)c:Fr misses the set

fb(ÔU)=ôfb(U) by 1) and 2), Le.p2f(Nxy)czfb(U)u(F'-fblj). Asp2f(Nxy) is

connected and has the pointfb(y) in common withfb(U), we must ha.\Qp2f(Nxy)cz
afb(U), for each y. So V=fa(C)cfbU as required.

6) An open map is one that carries open sets onto open sets.
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Case IL Let Ce C/be a compact neighborhood of x that is connectée. There exists

a neighborhood N of ûf in B so small that for each b in N
1) AW lies in the neighborhood F=/a(C) of/a(x), and

2)fb(SU) lies in F'-fa{C) where <5£/ dénotes the (compact!) frontier of U.

(Observe th3Ltfb(ÔU)=ôfb(U)).
To complète the proof we show that/fc(C/)=) V=fa(C) for ail b in TV. Since/aC

is connected, and faCcF'-SfbU=fbUu (F'-fjf), we conclude/aCcz/6(7 from the
fact that fb(x)efbUnfaC.

Remark 1.6.1 (data of 1.6). Iff :Bx F-> B x F' is open, and K is a compactum in

fa(F), then Kcfb(F)for ail b near a, The proof is trivial.
Remark 1.6.2 (data of 1.6). Iff is open and there exists a compactum Ce F such

that for x$C,fb(x) is independent ofbeB, then fbF=faFfor ail b near a. (Proof: For
b near a, 1.6.1 assures fbF=>faC, hence fbFiDfaF; and fbFcfaF is more trivial.) Hence,

ifB is connected, then fbF=faFfor ail beB. (Proof: b~c iïïfbF=fcF is now an open
équivalence relation on B).

COROLLARY 1.7. Let h\F-*Ff be an open embedding of locally compact locally
connected Hausdorjf spaces. Let C be an compactum in F. Ifg:F-+F' is another open
embedding sufficiently near h in the compact-open topology then h(C)czg(F). Further,

tfg=h outside C, and g is sufficiently near h, then h(F)=g(F).
Proof of 1.7. Let B be the set of open embeddings F-+F', equipped with the

compact-open topology. DGÛnef:BxF->BxF' by/:(g, Jc)h->(g, g(x)). Then 1.6

applies; so/is open. Now the above two remarks complète the proof.

COUNTEREXAMPLES 1.8. Lemma 1.6 breaks down for lack of local compact-
ness for the family of homeomorphisms of separable Hilbert space, / : [0, 1] x l2 ->

->[0, 1] x/2 given in [5, §5]. This example suggests the following finite-dimensional

example/ : [0, 1] x F-> [0, 1] x F where F is the origin union the positive half plane,

F= {(0,0)} u {(#,y)eR2;x>0}. The formula/(/, x,y)=(t, x, gt{x)y) defines/where
gt:R-+R has the graph

t 2t

for 0 < t < 1 and £0 =identity.

M
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Lemma 1.6 breaks down, for lack of local connectedness, on the ma.pf:BxF-*
BxF defined as follows. Let F be the subset of the 2-point compactified line

— oo, +oo}givenbyZu{ + oo}. Let2?=Z+ u{ + oo}. ForbeZ+ (=integers ^0),
we define/6:F-»jFto be the cyclic permutation n-+n— 1 modulo 2b on the segment

[ — b9 b) ofF and set/fc equal the identity elsewhere. For b + oo, we define/6 (n)=n — 1

for n e Z a.nâfb + oo)=+oo.To show/ ~* is not continuous, note that fb — b)=b — l
for ail beZ+.

§2. The Déformation Theorem

We will often work within the category LOC of continuous maps of locally
compact, locally connected, Hausdorff topological spaces. Let X be a space in LOC.
Our study ofhomeomorphisms centers on the foliowing deformability statement @ (X),
which generalizes the statement of Theorem 0. Our first goal is to prove it if X is

any CS set.

| Let AczA' be closed subsets of X such that A' is a neighborhood of A.

Let BczX be compact, and let UcX be an open neighborhood of B. Then thefollowing
statement always holds.

2)(X\ A, A\ B; U)\ If h: U->X is an open embedding equal to the identity inclusion

i:U-+X on A' nU and h is sufficiently near to i:U-+X (say for the compact-open

topology), then there exists an isotopy hu 0<f<l, of h through open embeddings

ht:U->X such that hx=i on Akj B, and ht=hon A and outside some compactum K in U

(independent of t and even ofh). Further, the isotopy is standard in the sensé that it is
constructed to be a continuous function ofh (for the same topology) as h varies suffi-
ciently near i. Also ht—i in case h i.

By 1.6.2, it is inévitable that hU==htU, 0<;<l. Thus, for example, if gt\X-*X
is defined for h near / by gt{x)=x for x$hU and gt{x)=hh^1 (x) for xehU, then gt
is an isotopy through homeomorphisms fixing A and points outside hK, from g0 id | X
to a homeomorphism gt equal h on B. One can think of the rule h-+gt as assigning

to a perturbation h of i: C/-> X a déformation gt of the identity homeomorphism id | X
to coincide with h near BcU. This is the description of @(X) which suggested the

title of this article.
Convention. When we speak of a statement £iï(X\ A, A\ B; U) for certain sets

X, A, Af, B, U the assumptions made above about thèse sets are automatically pre-
sumed to hold unless some contrary statement is explicitly added.

Remark 2.1. Note that as U and A' become smaller (while X, A and B remain

unchanged) the statement @(X; A, A\ B; U) becomes stronger. Thus in testing @(X),
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U may as well hâve compact closure 0, and h hâve a continuous extension to Û.

From this we easily conclude that in case X is metric one might as well use the
uniform (epsilon) topology on the open embeddings U-+X.

Remark 2.2. £&(X) is true if (and only if) X is covered by open sets U such that

@(U) holds. To see this first prove that, for U1 and U2 open in X, ^(Uj and @(U2)
together imply ^(Ul u l/2), by taking advantage of A, A' in 2{JJ%\ A, A', B, U).

DEFORMATION THEOREM 2.3. Suppose X is a CS set. Then the statement

@(X)is true.
Our main task will be to prove this (in §2 and §3) and then generalize it. A

complément concerning subspaces is proved in §4, and results are extended to locally
weakly cone-like stratified sets in §5.

Remark 2.3.1. Supposing Zis a manifold, Cernavskii asks whether & (X; A,A\B;U)
is true when A=A' in défiance of our convention that A' be a neighborhood of A.
Theorem 4.3 below implies that it is true if A =Ar is locally tame in X. However, it is

not true in gênerai even if A is a manifold. For example @(S3; A, A, S3; S3) is untrue
if AczS3=R3uoo is the wild circle described as follows.

Let Bn be the bail of radius \ about the point (n, 0, 0), n =0, ±1, ±2,..., and form
an arc An in Bn from (n — i, 0, 0) to (n+i, 0, 0) in which two trefoil knots are tied

One arranges that Anr\dBn dAn, where d means boundary, so that A={unAn}uco
is a circle in S3 =R3 uoo with one wild point, at oo.

There is a homeomorphism hn of S3 =R3 uoo fixing A and the complément of Bn

such that hn induces a map oïn1{S3-A) distinct from the identity. Namely hn can

corne from interchanging the two trefoils in Bn (slide one through the other). Now hn
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converges to id | S3 as n tends to infinity. This shows that the group H(S3 re\A) of
homeomorphisms of S3 fixing A is not locally connected.

Proofof Déformation Theorem. The proof exploits the Alexander isotopy on cônes
and induction, in a simple way illustrated by the following trivial

Test Case ofQ)(X\ A, A', B; U): where X= U=cM is the cône on a compact topo-
logical manifold M without boundary; A=A' =0; 2?=vertex of cM.

Proof of test case: If h:cM->cM is near the identity, then

h(M x (i, oo)) c cM - B M x (0, oo),

and ^(Mx (0, oo)), (which is known to be true [14]), provides an isotopy of h to an
embedding K'.cM-^cM which is the identity near Mx 1. Define h":cM-+cM by

{x) for x 6 CiM, the quotient of M x [0,1] in cM
for xeM x [1, oo).

Then the Alexander isotopy Ht9 0<r< 1, of h" to identity (see [3] or §5) permits us

to define

ht Hth"~lh, 0<*<l,
which is the required isotopy of h. The rule h^h! is continuous by hypothesis

9(Mx (0, oo)). So the rule h^ht, O^t^l, clearly is too. Also ht=id if /*=id.
Thus test case is proved.
Setting the above case aside we now reduce the Déformation Theorem to cases

where X=Rmx (cône), which will be proved in §3.

First note that the case where X is of finite dimension really includes the gênerai

case, because X is locally of finite dimension. (See Remark 2.1 or 2.2.)
We deal with the case of finite dimension by induction on depth. Thus suppose

inductively that @(Y) is truefor each CS set Y ofdepth <d<oo. We proceed to prove
^(Z) for any CS set Z of depth d. Beware that the inductive assumption persists until
the end of this section (2.5 and 2.6 excepted).

As usual, it will suffice to prove handle lemmas.

Notations 2.4. 5m [-l, l]"ciP" and Bm (-1, l)mczjRm. If SaRm, ÙS

{XxeRm | xeS). We identify Rm=RkxRn when k+n=m. If cL is an open cône,
cxL [0, X) x L/0 xLccL and cÀL [0, X] x L/0 xLacL, is its closure. The vertex
of cL is denoted by v.

2.5. HANDLE LEMMA (index 0). The statement @{X\ A, A\ B; U) is true in

case: X=RmxcL, where L is a compact stratified set and @(Rmx(cL—v)) holds;

A=A'=Q;B=Bmxc1L; U=10Êmxc10L.
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2.6. HANDLE LEMMA (index k). The same as index 0 except that

A A! (Rk - Èk) x Rn x cL, k + n m.

Observe that for k>0, A' is not a neighborhood of A.

First note that the handle lemmas applied stepwise finitely often to some handles
of a suitable array of small handles in Rm will prove

ASSERTION (1). Let X=Rm x cL be CS depth d; let BaRmxvbea compactum;
and let U be an open neighborhood ofB.

Let closed sets A a A' X be given with A' a neighborhood of A. Then there exists

a compact neighborhood B' ofB in U such that @(X; A, A', B'; U) holds true.
The handles can correspond to the simplices of a linear triangulation of a

neighborhood of B in Rn x v so fine that no closed star meets both A and Rn~A'. Cf.
arguments in [14], [31, §3].

ASSERTION (2). ®(X) is true ifX=Rm x cL is a CS set of depth d.

Proof of (2): According to Assertion (1), there exists a compact neighborhood B'
ofBn(Rmx v) in X such that ®{X\ A\ A\ B'\ U) holds for AccAmcz <=A'. Hère
Scz ciTmeans closure (*Sr)czinterior (T).

Choose a compactum B" so that Bn{Rmx v)c aB"cz czB'. Since B-È" is a

compactum in X—Rmxv, which has depth <d, the inductive hypothesis that

®{X-K* x v) holds shows that

3{X\A\jB\ A"uB',B- È"; U)

holds true (cf. Remark 2.1). This is the same statement as

But together with @(X; A\ A\ B'; U) this implies ®(X\ A, A\ B; U) simply by
composing isotopies. So assertion (2) is established.

If X is a CS set of depth d9 it is covered by open sets, each isomorphic to Rm x cL
for suitable Rm and L, and each of depth <*/. Since each @(RmxcL) holds by
Assertion (2), @(X) also holds in view of Remark 2.2. Thus the Déformation Theorem
is established by induction on depth assuming, of course, the proof of the handle
lemmas in the next section.

§3. Proof of Handle Lemmas 2.5, 2.6.

We will use the uniform epsilon topology of standard metrics throughout.
First consider index 0. We proceed to construct a séquence gu g2, g3, g4, gs of

open embeddings ail of which we stipulate must
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1) be equal honBmx
2) be a continuous function ofh as h varies near i, and

3) be the identity when h identity.
Thèse properties will usually not be explicitly mentioned again as the construction

proceeds.

gx\Tmxc9L-+TmxcL where Tm is the m-torus Rm/$Zm which contains 3Bm

quotient of 3BmczRm. This gx is constructed by wrapping up h, m-times successively,

once along each co-ordinate axis of Rm, using each time the "wrapping-up" idea of
R. Edwards in a form that we will state as 4.9 in the next section. The reader un-
acquainted with this method should examine closely 4.9 or [14, §8.1], as the
construction of gl is basic.

g2:TmxcL-*TmxcL |, a homeomorphism equal the identity outside Tmxc2L. It is

obtained by applying @(Tmx (cL — v)), which is équivalent to @(Rmx(cL — v)) by

Remark 2.2, to the restriction Tm x (c9L- c1L)^7'm x (cL-v). This is defined when h,

and hence gi9 is near the identity.
This lets us alter gt outside Tm x cxL to be the identity near the frontier of Tm x c2L.

Then by fiât we change it to equal the identity outside Tm x c2L thus obtaining g2.

By 1-7, gi is a homeomorphism.

g3:RmxcL-+Rmx cL is the homeomorphism covering g2 that is near the identity
and equal the identity outside Rm x c3L.

g4:Rm x cL-^>Rm+cL |, will be defined to be 0 ig30 where 0 is a "horn"
homeomorphism of Rm x cL defined as follows.

Let yt:cL-+cL, 0<*<l, be defined byytq(u,y)=q((l —t) u, y) where #:[0, oo)x
x L -+ cL is the quotient map. It is an isotopy for t < 1, and yt (cL) v.

Let /?: [0, oo)-> [0, 1) map [0, 2] to 0 and give a homeomorphism [2, oo)-+ [0, 1).

Now define 0(x9 z)=(x, ^dOO) fo* (*> z)^Rm x cL-

Observe that g4 has properties 1), 2), 3) and also three more:
4) It is bounded on the Rm factor, i.e.

supflx -pxgA{xy z)\; (x, z)ejRm x cL} <oo

where pt is projection to Rm.

5) For each neighborhood N of v in cL there exists a radius R(N) such that
g4(x, z) (x, z) if |*|>i*(A0 and z$N.

6) It equals the identity outside Rm x c4L.

7) To make this always meaningful we will identify 3Bm x cL with its quotient in Tm x cL.
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| g5:RmxcL->RmxcL |,isdefinedusingaraypreservingembeddingj:Rm->Rmonto
5Èm that is the identity on 2Bm.

Let /=jx (id | cL):RmxcL-*RmxcL and define g5 by

g5 (x) JgAJ~x (x) for x e Image J)
(x) — x otherwise.

In view of 4) and 5) it is a homeomorphism. And it clearly equals the identity outside
5Bm x c5L.

We now use g5 to construct hu 0</< 1. Being the product (cdBm) x (cL) of two
open cônes, Rm x cL is naturally an open cône. So there is an Alexander isotopy
Gt, 0<f^l, of g5=G0 to the identity (see remarks preceding 5.4 below), and Gt

will certainly fix the complément of 5Bm x c6L.
Define

Now hl=g$1h certainly equals the identity on Bmxc1L. Also ht—h outside
h'1 (5Bm x c6L\ which lies in the compactum 9Bm x c9La 105m x c10L U if h is near
the identity. Thus the rule h^ht establishes the handle lemma for index 0.

About the handle lemma for index k>0. We will indicate the changes required in
the above proof for index 0.

To the stipulations 1), 2), 3) about gl9..., g5, add that each gt
0) be equal the identity on A (Rk-Èk)xRnxcL or on Â (Tk-Èk)xTnxcL

(whichever set meets the domain ofgj.
To assure this, one need only change the construction in two minor ways.
First, in changing g18) to be the identity near the frontier of Tm x c2L, one must

at the outset alter gt to g{ equal the identity on a small neighborhood of ÂnTmx
xFr(c2L). Hère Fr indicates frontier in cL. This is to be done by conjugating gx by
a fixed small self-homeomorphism of TmxcL that maps Â into Â, maps ÂnTmx
x Fr(c2L) into the interior of Â and fixes Tm x cxL and the complément of Tm x c3L.
Then by building g2 from g[ (rather than gx) we can assure 0).

Second, one must alter the construction of g3 from g2. Observe that the universai

covering g'3:RmxcL-*RmxcL of g2 near the identity equals the identity on the
frontier (dBk) xRmxcLofA but not on the translates of Bk xRmxcL by 8Zfcc8Zm.
So we just set g3 =identity on A and set g3 —g3 outside A.

After thèse two modifications the construction of ht becomes valid for index k>0.
At ail other points of the construction, condition 0) is automatically verified.

The handle lemmas hâve now been proved.

8) For which 0) is assured as we wrap up trivially along the first k factors of Rn.
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Déformation of Homeomorphisms on Stratified Sets (Continuée)

by L. C. SlEBENMANN

§4. Déformations Respecting Subsets

DEFINITION 4.1. A sub stratified set Y of a stratified set X consists of a closed

subspace Y of the space X equipped with the filtration Y(n)=X(n)n Y, such that,
for each n, y<»>- y*»-1* is open (as well as closed) in X^-X^'^. We write Y<X
to indicate this.

DEFINITION 4.2. Let U be an open subset of any space X. We will say that
an open embedding h.U~*X thoroughly respects a subset Ce X ifh gives by restriction
an open embedding UnC-*C.

We shall prove the

4.3. COMPLEMENT TO THE DEFORMATION THEOREM. Let XbeaCS
set. The statement &(X) remains valid when thefollowing statement is appended to it.

| For each Y<X it is true that whenever h\U-*X thoroughly respects Y or

pointwise fixes Y, then ht does likewisefor ail t.

As préparation for the proof of this complément we insert some lemmas. In them
X will dénote a stratified set.

LEMMA 4.4. A closedsubset Yofa TOP stratifiedset Xis a sub stratifiedset ofX if
(andonlyif) Y^-Y^-V^Yn^-X^'") is a topological n-rnanifold without
boundary for each n^O.

Proof 4.4. Clearly Y{n)-Y{n~l) is closed in Ar(B)-Ar(ïl"1). Also yW-yC»-1) is

open in X(n) — Ar(n~1) by invariance of domain.
We can now find ail sub stratified sets of X. Consider the space X (not Hausdorff

in gênerai) obtained on dividing X by the équivalence relation which equates pairs
of points that belong to the same connected (open and closed!) component of some

stratum of X. It has one point for each such component.

LEMMA 4.5. Let q:X-+£ be the (continuous) quotient map. A subset Y of X
constitutes a sub TOP stratified set of X if and only if Y=q~1C where C is a closed

subset of%.
Définitions hâve been expressly chosen to make this trivially true.

LEMMA 4.6. Let M be a connected manifold without boundary. Then, for each

Z<XxM9 one has Z=Yx Mfor some Y<X.
Proof of 4.6. In view of 4.5 this amounts to observing that ^«(IxM)A by

sending the quotient of a stratum component S to the quotient of S x M.
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LEMMA 4.7. Let X=Rm x cL, where L is a compact stratified set. The sub TOP
stratified sets ofX are precisely the sets Rm x cKfor K<L.

Proof of 4.7. Suppose Y<Rm x cL. Then Y-Rm x v<Rm x (cL- v)^Rm+1 x L,
v being the vertex of cL. Hence Y- Rm x v Rm x (cK- v)^Rm+1xK, for some K< L
by Lemma 4.6. It follows easily that Y=Rm x cK as required.

An immédiate conséquence of this lemma is the

LEMMA 4.8. IfXisa CSset, then every sub-stratifiedset YofXis itselfa CS set.

(Call it a sub CS set.)
We now give

Proof of complément 4.3. We assert that the construction of ht, O^t^l, from
h:U->Xdescribed in proving the original déformation theorem automatically satisfies
01 (X) if a little extra care is taken in specifying it.

More specifically, the proof of @ (X) can be repeated with the addition of a state-

ment of the form 0t{X) to each statement of the form ®(X\ or @(X; A, A\ B; U)
encountered in it. Only the complemented handle lemmas require further proof.

As for thèse handle lemmas add to their proof in §3 as follows. For the construction

of gl9..., g5 add the extra stipulation that
(*) For each RmxcK<RmxcL, each gt thoroughly respects [fixes] RmxcK or

Tm x cK (whichever makes sensé) whenever h thoroughly respects [fixes] Rm x cK.

Fortunately the construction as given guarantees (*). This is évident for g2,gs> g4>

g5. To check (*) for gt : Tm x cqL->Tm x cL we recall Edwards wrapping up process.

PROPOSITION 4.9. Let A be a metric space in LOC. Let AzdBzdC where B, C

are open and the closure C of C is a compactum in B.
Consider open embeddings

h:(10Èm)xB-»RmxA.

If h is sufficiently near to the inclusion i:(10Èm)xBc+RmxA (say for the uniform
topology9) of the metric on RmxA), then there exists a construction producingfrom
h an open embedding

h':TmxC-+TmxA
where Tm=Rn/SZm. The rule h^h' has the following properties:
(a) h equals h' on 2Bm x C, when we identify 3Bm with its quotient in Tm.

(b) h' is a continuous function ofh (for the same uniform topology).
(c) hr is a product with id | Tm when

h is a product with id | \QÈm.

9) Equivalently one could use the compact-open topology. Then 4.9 holds without a metric on A.



Déformation of Homeomorphisms on Stratified Sets 139

(d) For each closed subset DaAit is true that whenever h thoroughly respects or fixes
Rm x D, then h' does likewisefor Tm x D.

The proof of 4.9 can easily be adapted from that of Lemma 8.1 in [14]. Hère I
simply define h' and leave a diagram to help readers to complète the proof by
inspection.

An m-fold application of the case Rm — R yields the gênerai case. Hence we can
assume m 1 for the proof.

Writing ^i^x^-^^/SZjx^^r1 xA Sx xA for the quotient map define

h'(qx) =qh(x) for points qx in qW& W, where

Jf {*<=[_ 2, 6] x C|/71/i(x)^2}c:JR1 x C.

It remains to define h' on qWœ W\ where

JT' {;ce[-2,6] x C | pxh{x) > 2} c R1 x C,

as the composition of homeomorphisms

Hère a:.R->-R is any homeomorphism sending 2 to — 6 and fixing points >5 while
fS:R-+Ris any homeomorphism sending 6 to — 2 and fixing points ^ — 5, so that fia
maps [2,6] linearly onto [—6, —2]. To assure the continuity of h"1 hère as a function
of A we need 1.6 and ^eLOC.

This complètes the construction of h\ valid for h near /. For A=B*=C it is the
construction I made in [24, §5],

The complément 4.3 is now established.

This section concludes with a digression.
There is a variant of Edward's proposition that is more truly a generalization of

the proposition XxR&YxR=>XxS1&YxSi for compacta X, Y, which suggested
it. We mention it because it proves a topological analogue in CS sets of the PL
invariance of links in polyhedra.
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4.10. VARIANT OF 4.9. Suppose we alter the data of 4.9 by considering open
imbeddings

h:(- 10,10) x B-+R x A*

where A* is a locally compact metrie space distinct from A. Then for certain such h

there is a construction producing an open embedding

h'iT1 x C-+T1 x^*.
And the rule h^h' satisfies conditions (a), (b), (c), (d) o/4.9 (for m 1). Thefollowing
conditions on h are quite sufficient to guarantee that h' be defined.

(i) Pih:{—10, 10) xB->R is near the Ist factor projection onto (—10, 10), say
everywhere within distance 1 ofit.

(ii) /*((-10,10) x B)z> [- 8,8] xp2h ([-2,6] x C) where p2 is projection RxA*-±
-+A*.

The proof of 4.10 is essentially identical to that of 4.9.

A straightforward m-fold application of this variant yields :

PROPOSITION 4.11. Let C, C* be locally compact stratifiedsets with one vertex
each v, v*. Suppose h'A0Bm x C-^Rm x C* is an open embedding inducing an isomor-

phism onto Us image, and equal the natural identification Rmxv-+Rmxv* on 10J5m x v.

Then there is a neighborhood Co ofv in C andan open embedding h':TmxC0-+TmxC*,
realizing an isomorphism onto its image, such that h=h' near Bmx v, and h! extends

the identification Tmxv=Tmx v*.

COROLLARY 4.12 of 4.11. In this situation, ifC, C* are open cônes cL,cL*, then

(i) Tm x cL^Tm x cL* by an h! as in 4.11,

(ii) r
(iii) R
Proof of'4A2 from 4.11. In 4.11 we can arrange that Co —ckL with À>0 (notation

of 2.4). Applying the theorem of uniqueness of open cône neighborhoods [23] (which
is clearly valid in a stratified version) we find that h! (Tm x cÀL)^Tm x cL fixing a

neighborhood of Tm x v*.
This proves (i); and (ii), (iii) follow from it.
The salient conclusion to draw from 4.12 is that if L, L* are two links in X for

xeX(m)- Ar(m'"1), then Tm x cL^Tm x cL*. More precisely we get

COROLLARY 4.13 of 4.12. STAR UNIQUENESS (cf. 5.12 for WCS sets). Let
X be a CS set and let C, C* be two open cônes on stratified sets. Suppose Rm x C,

RmxC* isomorphic to open neighborhoods ofone point ofX^m) — Z(m~1) by embeddings
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Then there exists an isomorphism 6:RmxC^RmxC*. Further if j(Rmxv)
j* (Rm x t;), then 6 can equal j*)"1 °j near Bmxv in Rm x C, and on Rm x v. Further 9

can cover an isomorphism TmxC^TmxC*.

§5. The Généralisation to WCS Sets

DEFINITION 5.1. A stratified set Xis locally weakly cone-like if it is locally of
finite depth, and for each n^O and each point x in X(n) — Ar(lI"1) there is a mock open
cône C with vertex v (to be defined presently) and a homeomorphism 0:RnxC-*N
onto an open neighborhood of x in X so that 0~~1Ar(n) =Rn x v.

Notation. A locally weakly cone-like TOP stratified set is called a WCS set.

DEFINITION 5.2. A mock open cône C with vertex t; is a locally compact metric

space C equipped with a homotopy yt : C-» C, 0^ ?< 1, such that
(1) yt, 0^t< 1, is an isotopy of id | C (through homeomorphisms).
(2)yo=id|C, y^Q^veC, and yt(v) v for ail t.

Call such a homotopy yt a crush (of C to v).
Open cônes on compacta are the trivial examples.

5.3. NON TRIVIAL EXAMPLES OF MOCK OPEN CONES. Consider C=
Wue+ where

(a) W is an open TOP manifold of dimension >5 that is proper homotopy
équivalent to (or even properly dominated by) KxR where K is a finite connected

complex.
(b) s+ is one of two end points e_, e+ of W.

For this example a crush yt of Wue+ to s+ can be constructed by an engulfing
argument so that (1) and (2) hold and, for each t, yt fixes points outside a compactum
in ^(depending this time on t). See [28, §2] [30, §7] [32]. If an obstruction cx(e+) in
^oTi^is non-zero, then C= Wus+ is not an open cône [27] [28] [21]. AU the mock

open cônes I know of that fail to be open cônes, are built from thèse examples and
variants of them where W has boundary.

Observe that if h: C-+ C is a self-homeomorphism of a mock-open cône fixing ail
points outside a compact set Ka C, then there is an Àlexander isotopy of h to the

identity defined by

ythy^ for t<l
ht id\C for *=1. K }

To see that ht varies continuously with t observe that ht fixes yt (C—K) C— ytK9 and

that yt(K) lies in any prescribed neighborhood of v for t sufficiently near 1.
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Note that each WCS set X is locally compact, locally contractible, and locally
finite dimensional, and so is locally an ENR (globally if dimX< oo).

The évident fact that the product of two mock open cônes is a mock open cône
shows that the product of two WCS sets is a WCS sets.

Now we prove

5.4. DEFORMATION THEOREM (generalized). @ (X)istruefor each WCS set X.
The proof for CS sets has been so constructed that after a few changes (mostly

notational) our proof for CS sets can be reread verbation. Hère are the changes.
Substitute "WCS set" for "CS set". Substitute "mock open cône" for "open cône".
Substitute a mock open cône C with vertex v for the open cône cL with vertex v,
wherever cL is mentioned.
Let yt:C-+C, 0< *< 1, crush Ctov and substitute this yt for the yt used to defineg4.
Let Cx c C2 <= C3 c be any séquence10) of open neighborhoods of the vertex v in C
with compact closures Cl9 C2, C3,... such that for each A^ 1 and each /e[0, 1], one
has yt{Cx)c:Cx+1. Now substitute Cx for cxL and Cx for cxL for 1 ^A^ 10.

Consider next the problem of making isotopies respect subsets of the WCS set X,
The discussion of §4 generalizes trivially ifwe restrict attention to "orderly" WCS sets.

DEFINITION 5.6. Let C be a mock open cône with vertex v that is simulta-

neously a stratified set. A crush yt : C -> C, 0 < t< 1, of C to v is orderly if, for each n ^ 0

and for each t<l, yt maps C(ll) homeomorphically onto C(lï). Then C is an orderly
mock open cône.

An orderly crush yt clearly has the property that for each t<\9 yt maps each

component of C(n) — C(n"1) homeomorphically onto itself. From this we immediately
deduce:

LEMMA 5.7. Let yt:C-+C, 0<f<l, be an orderly crush of a locally compact
stratified set C to v. Then for each D<C, yt gives an orderly crush of D. In particular
D is a mock open cône.

DEFINITION 5.8. An orderly WCS set is defined by replacing mock open cônes

by orderly mock open cônes in the définition of WCS sets (5.1 above), while insisting
that 9 be an isomorphism of stratified sets.

Remark. Conceivably every WCS set is orderly.
An immédiate corollary of 5.7 is

10) It is important that Cio can be as small as we please when one (re)proves assertion (1)
below 2.6.
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LEMMA 5.9. If Y<X and X is an orderly WCS set, then Y is also an orderly
WCS set.

5.10. GENERALIZED COMPLEMENT TO DEFORMATION THEOREM.
Let X be an orderly WCS set. The statement @(X) remains valid when the statement

M{X) of 4.3 is appended.

Proof of 5.10. In the proof of the complément for CS sets given in §4 we merely
make the same substitutions as we hâve made above to prove the Déformation
Theorem for WCS sets. The two lemmas 5.7, 5.9 above replace analogous results
from §4.

Remark 5.11. If we append only the restricted version of 0t(X) where Y<X is

fixed, then the assumption that X be orderly can clearly be weakened somewhat.
Remark 5.12. The star uniqueness resuit 4.13 holds in WCS sets if orderly mock

open cônes replace open cônes. The proof is as in §4 except that the uniqueness theorem
for open cône neighborhoods must be replaced by a generalization in [32].

Question 5.13. When is a mock open cône C=*Wus of example 5.3 stably cône-

likel i.e. when is RmxC locally cone-likefor some m?

Hère is one step toward the answer. Suppose that, for some compactum L, Rn x cL
embedst in Rn x C sending Rn x (vertex) into Rn x (vertex). By Remark 5.12 and 4.13,

we can find an isomorphism Tn x C^ Tn x cL and arrange that it extends the identity-
isomorphism Tn x (vertex)sTn x (vertex). Hence TnxV&Tn+1xL where V is W
with its two ends glued together as in [30, Chap. II] and the homeomorphism respects
the natural projection of each fundamental group to ZnxZ=Zn+1.

Conversely if Tnx V&Tn+1 xL for some compactum L by a homeomorphism
respecting fundamental group in this way, then we find Rn x C^Rn x cL as foliows.
Passing to a covering ofTn x V& Tn+* x L we get a homeomorphism Rn x W& Rn+1 xL
commuting with action of Zn+1 as covering translations. This extends therefore over
suspension sphères to a homeomorphism !nWttlnJrlL where W= W\j {e_, e+} is the
end compactification of W9 cf. [33, Theorem A, p. 77] [33 A]. Since rrt{e_, e+}
corresponds to In+x (0) « S n we deduce an open embedding respecting strata RnxcL-+
->Rnx{Wvs+}=RnxC, which by 4.13 implies RnxC^RnxcL. This discussion

generalizes immediately to any mock open cône C with vertex v such that @(C—v)
is valid (so that isotopy extensions are available permitting the gluing construction of
[30] and the considérations of [32]).

Applying this for n 1 we get

PROPOSITION 5.14. Let C=Wve+ be a mock open cône from example 5.3,

with dimW^5. Then CxRis locally cone-like if and only if<r(8+)=x-(-l)dimWx

t As an open subset.
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with xgKqTIxW where bar indicates the duality involution [27] depending only on

w1(W):n1W->Z2.
Proof of5.14. CxRis locally cone-like implies YxTx^LxT2 respecting funda-

mental groups, as shown above. This occurs iff Fis invertibly cobordant tolx^1,
and W to L x R. Finally, if W is invertibly cobordant to L x R, then [33] one has

(r(e+)=jc + (-l)dimfrJc, for xeK^n^W, and conversely if dim 0^5. (The élément x
is the infinité torsion of a cobordism from Wto Lx R).

§6. Familiar Conséquences of @(X)

Thèse conséquences are developed in generality to provide a convenient référence

for eventual applications.
6.0. The hypothesis of deformability @(X) is stated in §2. In applications we fre-

quently want a relative form of it concerning a family y of one or more subsets ofX.

&{X\ Sf) dénotes the statement @(X) modified as follows:

(i) Restrict attention to open embeddings h:U->X which thoroughly respect each

Y in y (in the sensé of §4.2).

(ii) Demand that the isotopy ht ofh thoroughly respect each Y in &\
(iii) For any Y in £f, demand that ht | Un Y= (inclusion) for ail tt whenever

h\ UnY= (inclusion).
The same modifications define @(X; A, A', B; U; y) when applied to ®{X\ A, A\

B;U).
Note that ifZis a CS set and £f some family of sub CS sets Y<X, then Qj(X, y)

is implied by 4.3 (complément to the déformation theorem).
The next theorem vérifies @{X9 y) in a rather différent situation.

THEOREM 6.1. Consider a product XxB in LOC and let Sf be the family
{Xxb; b in B}. Then 9{X) implies B(XxB; Sf).

Proofof 6.1. We hâve to prove an arbitrary statement S(Zx B; A, A', C; U; Sf)
given the usual assumptions about A, A\ C, U (cf. §2). The reader will easily check

that for this it suffices to establish the Spécial Case11): Where A, A', C, U are of
the form

A Ao x BuX x Ax;
A' A'oxBkjX xA[;

n) The proof will apply even when Ai A'i. So something stronger than 6.1 holds.
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Proof of Spécial Case, Consider an open embedding h\UoxUl-+XxB which
thoroughly respects each set Xxb, b in B. Define h(b):U0-+X for b in Ux by the

équation h(x, b)=(h(b)(x), b). If/* is near the inclusion @(X; Ao, A'o, Co; Uo)
provides an isotopy h{b), 0<f^l, which dépends (uniformly) continuously on h(b\ and
satisfies certain conditions (listed in §2). In particular h{b) is the inclusion for ail / if
h(b) is - hence if beA[. And h^b)(x)=h(b)(x) for x outside a compactum KocUo.

Let Kt be a compact neighborhood of Ct in Ul and let a: l^ -+ [0, 1] be a con-
tinuous map such that a(C1) l and a(U1 — K1)=Q. Then for (x, b)eUox U1 define

It is an isotopy of h and the rule h^ht establishes @(X; A, A', C; U; S?) in this
spécial case.

EXAMPLE 6.2. Beware that @(T2\ ST) is false if Sf is the foliation of T2

derived from the lines in R2 with a given irrational slope.

Now we give Cernavskii's generalization [8] of @{X\ A, A', B; U). It attempts to
allow B to be any closed set.

If W, X are metric spaces let Map(W/, X) dénote the set of continuous maps
(=functions)/ : W-*X. On it consider two topologies

(a) The compact-open topology
(b) The majorant topology in which base of neighborhoods of/in Map(fF, X)

is the collection of sets

Ne (/) {g e Map (W,X)\d (f(x)9 g (x)) < s (x)}

where s varies over positive continuous functions s: W-* (0, oo) called majorants.
Emb(PF, Ar)czMap(PF, X) will dénote the set of open embeddings of fFinto X.
A homotopy ht: W-> X, 0</< 1, is identified with the continuous function (t, x) -*

-+ht(x) in Map(IxW, X).
Consider the following statement about a metric space X in LOC.

i1(X) I Let A ci A' be any closed subsets of X such that A' is a neighborhood of A.

Let BczX be closed and let i:U-+X be the inclusion of an open neighborhood of B.

Finally let e: U-> (0, co) be a continuous map. Then the following always holds.

\ A, A', B; U; s) | There exists a continuous map ô: £/-» (0, oo) and a rule F

that assigns to each embedding h:U-+Xin Nô (/) and equal ion A' a homotopy T (h)
(ht: U-+X, 0<^l) in Map(/x U, X) such that

(1) r(h) (ht, 0</< 1) is an isotopy12) through open embeddings U-^Xfrom h to

an embedding ht equal i on B.

12) See remarks preceding 1.6.
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(2) ht=h on A andhteN8(i).
(3) r\hv-*{ht) is a continuous function ofh when Map((7, X) and Map(/x U, X)

are assignée either both the compact open topology, or both the majorant topology.
Also F(i) is the constant isotopy ofi.

Question. Is &(X) true if X is separable Hilbert space?

THEOREM 6.3. @(X) implies ®'{X)for any metrizable X in LOC.
The proof will generalize trivially to prove:

COMPLEMENT 6.4. (Respectful version, same data). In X single out a class S?

ofclosedsubsets, and indicate membership Ye&* by Y<X. Then @(X) with statement

M{X) (under 4.3) appended implies @'(X) with 0t{X) appended.

Again, the (weaker) hypothesis @ (X; S?) implies the (weaker) conclusion 21 (X; Sf).
{The latter indicates @'(X) modifiedby (i), (ii), (iii) in 6.0).

Proof of Theorem 6.3. 1) The case where B is expressible as a disjoint union of
compacta Bu B2,... with each Bt open in B.

Proof of 1). Choose disjoint open neighborhoods Uj of Bj in X, each with
compact closure in U. By assumption <&{X\ A, Af, Bj\ Uj) holds for each j. Then if
h: U-+X fixes A' and is (majorant) near i we can define ht | Uj to be the isotopy
(fixing points outside a compactum), offered by this statement. This defines F:h-+ (ht)
and it is routine to verify (1), (2), (3).

2) The gênerai case.

Proof of 2). Every connected locally compact metric space is separable [36,

Appendix 2]. Without loss of generality we assume X connected. Then find a nest

X0cX1czX2^ ••• of compacta in X such that X=ukXk and XkczXk+1. Set Xk=0
for k<0 and define Zltk=X4k+3— XAk\ Z2ik=X4k+1— X4k-2. Define Zj ukZj}k.
Then Zj is closed, Ar=Z1 uZ2, and Zjtk is a compactum open in Z,-.

Choose a closed set A" in X with AczÂ", A" aÀ'.
Let B' be a closed neighborhood of B with Br c U and set B]=B'r\ Zy, Bj=Br\ Zj.

Byl)

®'(X;A",A',B[;U;y) (*)

is valid for any y: U-+ (0, oo). Similarly Step 1) proves

&(X;Av(B-É2)9A"vB'uB2;U;8). (**)

Composing (on adjacent intervais) isotopies offered by (*) for suitable y with those
offered by (**), we obtain a rule r:ht-+(ht) establishing @'{X\ A, A', B; U; e). The

majorant y is suitable if it is ^ the majorant ô =ô (s) offered by (**).
This complètes the proof of 6.1.
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Extension of Isotopies
One of the most useful corollaries of QJ is an isotopy extension theorem.
Consider a continuous family ft: V-+X, teB of open embeddings. Continuous

means that (t, jc)h->(r, ft(x)) is a continuous map/ :Bx V-+BxX. Given a closed
subset Ce V and beB we enquire when there exists a (continuous) family Ft:X-^X,
teB, of self-homeomorphisms of X such that Ft/6 | C=ft \ C. To simplify notation
we identify Vto fbVczX. The inclusion F-»Xis then/6.

ISOTOPY EXTENSION THEOREM 6.5. cf. [8] [23A] [14]. About the above

data, make the following suppositions: X is Hausdorjf locally compact and locally
connected(i.e. ZeLOC); C has compact frontier in V; for each t in B,ft(C) is closed;

@(V—C) holds true. Finally suppose that either B is locally connected or Xhasfinitely
many components.

(I) There exists a neighborhood N ofb in B and a continuous family Ft:X^>X, teN
of homeomorphisms such that Ft \ C=ftfor ail teN,

(II) IfB=In [0, 1]" or any retract ofP then N in (I) can be ail of B,

(III) Further ifKczT is a retract of B=In containing b and Ft':X-*X, teK, is a

continuous family of homeomorphisms with F/ | C=/f | C, then the family Ft, teln,
provided by (II) can be chosen so that Ft=Ft' for teK.

EXAMPLE, (justifying the last supposition under 6.5). Statement (I) fails if
X=V=C=Z; B {0}u{l/n; n>\ in Z}; Z> {0}; /o=id | Z, fi/n(x)=x for

for x>n.

The proof will generalize trivially to prove

COMPLEMENT 6.6. (Respectful version). Theorem 6.5 remains valid when the

data are modified as foliows. Single out a family £f of closed subsets of X, and suppose
that each/r, teB, thoroughly respects [or fixes] each Fin £?. In place of @(V-C)
suppose ®{V- C; ^Q), where ^0 {Yn (V- C) \ Y in Sf). Finally insist that each

Ft or F/ mentioned thoroughly respect [or fix] each Y in Sf.

Proof of (I). Find a closed set DaX with CaÔ and De V such that D-C is

compact and hence D has compact frontier ôD in V— C. Find an open neighborhood
U of ôD in V— C, with compact closure Ûa V— C; and let E be a compact neighborhood

of ôD in U.

Applying @(V—C; 0, 0, E; U) we get a rule that associâtes, to each em-

bedding U-i V—C sufficiently near the inclusion, an embedding gt\U-+ V—C such

that gt=id on E=>ôD, gt=ft outside a compactum in U, and gt(U)=ft(U).
Now if t is sufficiently near b in N the map (7-4 V— C lies within any prescribed
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neighborhood of the inclusion for the compact-open topology. Thus the rule/^g, is
defined for t in a small neighborhood No of b.

For t near b define

Ht(x) ft(x) if xeV-U
Ht(x) gt(x) if xel7.

This is clearly a continuous family of open embeddings Ht: V-+X and Ht | ^D=
inclusion. Define H: NoxV-+X by i/(f, x) =Ht(x).

ASSERTION 1). For t near b, HtD=D (sayfor ail teNaB).
Proof. HtD is the union of the closed set HtC =ftC and the compactum Ht(D — C

So HtD is closed in X and hence HtÛ is closed in X—èD. Also HtÙ is open in X—ôD.
So HtÙ consists of some of the components of X—ÔD.

If B is locally connected, let Nx c No be a connected open neighborhood of &.

For each x in i), the connected set H(Ntx) lies in the same component of Û as does

H (b, x). Thus for ail t in A^, HtÛ=HbÛ=Û, which proves 1).

In case X has finitely many components (and B is not locally connected) we

complète the proof of 1) differently. Recall the

LEMMA 6.5.1. [18, p. 111]. Let M be a connected, locally connected, and locally
compact Hausdorff space. For any compactum K in M and any neighborhood U of K,
ail but finitely many of the (open!) components of M—K lie in U. (Hint: SU may as

well be compact).
This shows that, for t in JV0, and x in Û, Ht(x)=x unless x lies in one of finitely

many open components Ùl9...9 Ùk ofÛ. Choose XieÙh i^k, then choose a neighborhood

NicNo of b in B so small that, for t in Nu Ht(xt)eÛi9 i<fc. Then ^(ÔJ)=JÔi,
and we conclude that HtÛ =Û and HtD =D. This complètes the proof of 1).

Finally define the continuous family Ft :X-> X for t eN by

Ft(x) Ht(x) if xeD.
Ft(x) x if xeX-Ù.

Assertion 1) shows that Ft is a homeomorphism. This complètes the proof of (I).
Proof of (H). First use a retraction q: In-+B to define /, for ail teln by setting

ft=fQ(t) for f£A Find a "Lebesque" number s>0 so small that each set in In of
diameter <e lies in some Na provided by (I) applied with aeln in place of b. Dice /"
into n-cubes of diameter <e, (lexicographically) ordered C1? C2, C3,...so that if
Dk u{Cj \j<k}, then there is a retraction r=rk:Dk+1-+Dk.

Now, for each Ck, there is aeln and a family of homeomorphisms Ft{k):X-+X,
teCk9 with F/fc)/fl | C=/( | C.
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Suppose for an inductive construction that Ft is defined for teDki (k^ 1), so that
Ftfb=fv Thendefine

Ft' GtFm, teCk, where Gt ^(F^)"1, teCk.

Since GJm \ C ft \ C wehave F'Jh \ C ft | C, teCk.

Also F/(0=Fr(0. So we can define Ff=F/ for teCk to complète the induction - pro-
vided we know that Gt is a continuons family of homeomorphisms. But this follows
from Lemma 1.6.

ProofofQIÏ). If #„ tel", provided by (II) satisfies HJb \ C=ft \ C define

Ft HtHe(t) F'Q{t), teln

where q : F -> Â^ is a retraction.
This complètes the proof of the isotopy extension theorem.

6.7. OTHER CATEGORIES. An isotopy extension theorem holds in two more,
familiar catégories.

PL - The objects are metric spaces equipped each with a maximal piècewise

linearly compatible atlas of charts to finite simplicial complexes ; the morphisms are

piecewise-linear maps.
DIFF. - The objects are smooth C00 finite dimensional manifolds possibly with

corners (say as in [22]); the morphisms are C00 maps.
Indeed the isotopy extension theorem holds true in CAT DIFF or PL) when

the statement has been modified as follows :

(a) Assume ail objects and maps mentioned are CAT.
(b) By CAT open embedding understand a CAT isomorphism onto an open subset.

(c) Omitthehypothesis^(F-C).
Call the resulting statement ^(X).

However the CAT proof is radically différent. See [24] for DIFF, [18] for PL.

Respectful CAT versions S(X; S?) (parallel to 6.6 with the assumption
</(F— C; £f0) suppressed) can be produced by reinforcing the existing CAT proofs.
One has to détermine what families S? will work (See [24] [2]). From <#{X) one can

at least prove J(Xx B; Sf)9 where ^ {Xx b | beB}, by making use of (III), cf. proof
of6.1.

As topological companions for DIFF and PL we use two catégories

To - The category of continuous maps of topological spaces.

LOC-The category of continuous maps of locally compact locally connected

Hausdorff spaces.
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Submersions

Next we présent a proof that a proper submersion is often a bundle map.

DEFINITION 6.8. A CAT map (CAT=DIFF, PL, To, LOC)p:E-*Xis a CAT
submersion if for each y in E, there is a CAT object U9 an open neighbourhood N of
p(y) in X, and a CAT open imbedding/ : UxN-+E onto a neighborhood of >> such

that/?/is the projection UxN-+NaX. Then F=p~xp(y) is a CAT object. When/
is normalised so that U is an open subset of E and f(u, p (F)) u for u in UczE,
then we call/a/?rorfwc? c/iarf about Ufor p.

Recall that/?:.E->X is a CAT èwwrf/e if for each x in Z, there is a CAT product
chart/ r/?"1 (x) x N-* E about the fiber p'1 (x) ofp, such that Image (f)=p~1(N).

UNION LEMMA 6.9. (CAT=DIFF, PL or To). Data: p:E-+X a CAT Mè-
mersion; F=p~x (xo)for a point x0 in X; A, B compacta in E; U, V open neighborhoods

of A, B in F;f:UxN'-*E and g:Vx N" -? E product charts about U and V for p.

If CAT To, suppose F is in LOC and 3 (F) holds.

Given this data one can find a CAT product chart h:WxN-*E about an open
neighborhood W of AkjB in F. Further one can choose h so that h =fnear A x x0 and
h =g near (B—U)x x0.

As usual the proof will establish a respectful version. With the data of the union
lemma single out a class S? of closed subsets of E and indicate Ye Sf by Y<E.
A product chart/ :UxN-+E about U for p is said to respect SP if for each Y<E,
f~x Y= (Yn U)xN and/gives by restriction to/ ~x Y a product chart about Yn U

for Y-^X.

FIRST COMPLEMENT 6.10. (Respectful version, CAT DIFF, PL or To). The

union lemma continues to hold when modified as follows: Assumef and g respect £f;
suppose that J{F\ 6?F) holds where £fF {Fn Y | 7 in 5f};finally, insist that h respect
se.

SECOND COMPLEMENT 6.11. (CAT T0). The union lemma continues to hold
when further modified as follows: Forfixed Y<E suppose that, in (YnF)xXffand g
agrée whenever bothare defined, namely on (Yn Un V) x (Nf nN"). Then insist that h

agrée with fin (YnF) x X wherever both are defined, and that h agrée simïlarly with g.
The reader will verify thèse compléments by using the complemented isotopy

extension theorem (6.5, 6.6) to generalize the following.
The proof of the union lemma uses another lemma which is a direct conséquence

of the CAT isotopy extension theorem 6.5, 6.7 (form I)).

LEMMA 6.12. (CAT=DIFF, PL or To). Consider projection p2:FxB->B, and
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identify F to Fxb for some point b in B. Let liaF be open bounded and Ce U be

compact. Letf.UxN^FxB be aproduct chartforp2 about U. In case CAT T0,

suppose that /eLOC and that S!{F) holds.
Then there exists a product chart g:Fx Nf -+Fx B about F for p2 such that f=g

near Cxb, andg (identity) outside KxNf where K is some compact neighborhood of
C in U. (Do not confuse B hère with B in the Union Lemma.)

Proof of Union Lemma. Let A'cU, B'aV be compact neighborhoods of A, B
respectively in F. Using lemma 6.12 we can find a product chart for p about V
g':Vxft-+E such that g'=g on (V-U)xft and g'=/ on (A'nB')xft. Let
W=Â'yjÈ', N=N'nft and define h:WxN-+E by h \ À' xN=f\ A' xN and
h | È' xN=g' | È' xN. This is the required product chart provided it is injective. At
least h is locally injective. And h\(Wxb)is injective - being the inclusion. It follows
that, after W and N are eut down if necessary, h will be an embedding. To see this,
check that for each compactum Wtc:W the set of double points of h | W1 xN is

closed in WxN, and disjoint from the compactum (A u B) x x0. A double point xeK
of any map/:^->L is one such that/(*)=/(>>) for some y^x in K. This
complètes the proof.

The foliowing addition to Lemma 6.12 will be recast as a uniqueness theorem (6.19)
for "transverse" normal microbundles to closed leaves in a foliation.

ADDENDUM 6.13 to 6.12. Given the data of6A2, let A be a closed subset of F
such thatf: UxN-+FxB equals the identity near AxB.
(a) Then g can equal the identity near Axb.
(P) IfCAT To, suppose now that B is Hausdorjfand normal. Then one can find a CAT
isotopy ht, 0<f < 1, ofid | Fx B through CAT automorphisms such that

(i) ht (x) =xfor x in Fx b, near Axb, and outside UxN',
(ii) p2ht=p2,
(iii) ht=g=f near Cxb.

Proof of Addendum 6.13. Part (a), being easy, is left to the reader.

For part (j8) we use two arguments. The first applies if there is a CAT homotopy
0t, 0<f < 1, of id | N' fixing the complément of a compactum in Nf, to a CAT map
01:N'->N' such thatflr1^) is a neighborhood of b. This certainly exists if CAT
DIFF or PL. Define the CAT isomorphism g[a]: F-> F for a in N' by the équation

g(x,tf)=(g[a] (x),a). Then define the CAT isotopy ht:FxB->FxB, 0<*<l, by

ht(x, a) (g[0,(a)]"1 g[a-] (x), a), for a in N'

ht(x, a) (x, a) forainB-N'.
The wanted properties are évident.
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The second argument applies when CAT T0. We use @(F; A", A', Û; X) where
A"czA'dLXQ closed neighborhoods of (F— U)<uAso that g=(identity) near Af x b. This
produces a certain isotopy g[a]t, O^t^ 1, ofg [a] for a in a small open neighborhood
N" oîb in JV'. Using the normality of B, find Q:B-+ [0, 1] a continuous fonction equal
1 near è and equal 0 near B-N".

Now defim ht:FxB-+ Fx B, O^t^l, by

M*, «) ({gW^^ogW (x), a) for a in AT

fc, (x, a) (x, a) for ainB- N"

This complètes 6.13.

COROLLARY 6.14. (to union lemma) CAT=DIFF, PL or To. Letp:E-+Xbe a
CAT submersion that is closed12) (i.e. p maps closed sets onto closed sets). Suppose

p~1(x) is compact for each x in X. For CAT T0 provide that for each x in Xfp~x (x)
is in LOC and ^(p'1 (x)) holds. Then p is a CAT bundle map.

This is explained more precisely by

COROLLARY 6.15. (to union lemma). Adopt the data of 6.9, and suppose F is

sigma-compact. There always exists an open neighborhood Y ofFxx0 in FxX and a

CAT open embedding h:Y-+E with ph (projection): YcFxX^iX. Hence if F is

compact there exists a product chart about F, namely h | FxN, where N is a small
neighborhood of x0 in X.

Proofof6A5. The union lemma 6.9 implies that there is a product chart about a

neighborhood of each compactum in F. When Fis sigma-compact we hâve compacta
Cx c C2 ci C3 cz.• • with Ctcz Ci+ and u C~F, and about each Ct we hâve a product
chart. Applying the union lemma (especially its last part) in an infinité induction, we
alter thèse to agrée and give h.

Proofof 6.14from 6.15. For each x in X, 6.15 says there is a product chart g'.p'1 (x)
xN-+E about p "1 (x) for p. The set S =p (iwmage (g)) is closed in X since p is closed,

and it does not contain x. Let N' =Nn{X— S}. Then p~1(x)xN'-^E has image
equalp~1(Nt) not less. Indeed ifp(y)eN\ thtnp(y)$S so jelmage (g).

Remark 6.16. For CAT T0 the first complément 6.10 of the union lemma gives

an évident respectful version of this corollary. It closely resembles Thom's lst isotopy
theorem [35], [24] or again Rourke's theorem [26] about covering the track of a PL
isotopy.

13) A continuous map ofmetric (or compactly generated Hausdorff) spaces is closed if it is proper
in the sensé that the preimage ofeach compactum is compact. See [34]. Conversely for any topological
spaces, a closed map with ail point preimages compact is necessarily proper, cf. [7; Chap I, §10,

p. 115, p. 118 ex. 4, p. 164]. The proofs are trivial.
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What the second complément 6.11 makes of this corollary is best stated as an
isotopy extension theorem.

THEOREM6.17. EXTENSION OF LOCALLY FLAT ISOTOPIES. Adopt the

category LOC. Letft:M-+ Q, teB= [0, 1]", be a continuonsfamily ofclosedembeddings
such that the map f:MxB-+QxB given by (x, t)-+(ft(x)9 t) is closed, and locally
flat in thefollowing sensé. For eachpoint (y, a) in MxB there is an open neighborhood

f(y, a)UxN of f(y, a) and a local product chart (see 6.8) g: UxN-+ QxB for p2 :

QxB-+Brespectingf(MxB) (see 6.10) so that gt fa(y)=ft(y) for ail (y, t) in

f~1(U)xN.
For each t in B assume @(Q; {ftM}) holds. (Recall that this is a local question in

each pair (Q,ftM) - cf. 2.2; so it is indépendant of t.)
Provide that, for each point x outside a certain compactum in M,ft(x) is constant as

t runs through B.

Thenfor any beB there exists a family Ft:Q-+Q, teB so that Ftfb=Ftfor ail
t in B.

Indication ofproof of 6.17'. The second complément to the union lemma plus the

proof of Corollary 6.15 together provide a local extension as in part (I) of 6.5. Deduce

global extensions by imitating the proof of part (II) of 6.5.

Foliations
For CAT DIFF, PL or To define a CATfoliation of a CAT object X with modelB

to the maximal family <Ç of CAT submersions pa : Ua -? B of open subsets Ua covering
X, subject to the compatibility condition for pairs pa, pp in g • For each point jc0 in
UanUp there exists an isomorphism h of an open neighborhood ofpa(x0) in B to
one o{pfi(x0) so that hpa(x)=pp(x) for ail x near x0.

Every open subset C/of Xclearly inherits from^ a foliation with modeli?denoted

3f|tt
Consider the least équivalence relation ~ on X such that x~y if, for some Ua9 it

is true that x, y both lie in Ua9 pa (x) =pa (y) z and x, y lie in the same component of
p~l (z). The équivalence classes are called leaves, and the décomposition space of
leaves (with quotient topology) is called the leaf space.

The product foliation onFxN, Nopen in B, is given by the submersionspa: Ua->B
compatible with p2'.FxN-*Nc:B. If Fis connected, the leaves are the sets Fx{t},
for t in JV, and space of leaves is identified to N by p2.

A product chart for 5 is a product chart in the sensé of 6.8 for one of the submersions

in gf.

A product chart for g can be described as an open CAT embedding (p:UxN->X
carrying the product foliation to g |Image(ç>). Hence q> carries leaves of UxN
into leaves into leaves of 2f-
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LEMMA 6.18. (CAT=DIFF, PL or To). If cp:UxN->FxB is a product chart
for the product foliation on FxB, and U,F are connected, then there exists a unique
CAT open embedding h making commutative the square

U xN-^F x B
P2l \P2

N ± B

Proof Indeed h is the map of leaf spaces induced by <p. Locally, it coincides with
open CAT embeddings expressing compatibility of Image (<p)^—"-->iVc:i? with
p2:FxB->B.

Let Fbe a closed leaf of 5- Then Fis easily seen to be a closed CAT subobject of
X. Suppose one has a retraction r:E-+ W of an open set of X onto an open subset
W of F. We say that r is transverse to Ç near WiîWis covered by open sets U such

that there is product chart q> : U x N-+ X for $f about U (with ç (x, b)=x for x in U)
such that rcp(x, y)~ç(x, b), for ail (x9 y) in UxN. Such a product chart cp is said

to be parallel to r. Clearly r :F-> W is a CAT microbundle with fiber germ the germ
of B about è. The next proposition is a uniqueness lemma for such r.

PROPOSITION 6.19. (CAT=DIFF, PL or To). Let % be a CAT foliation with
model Boîa CAT object X.

Consider rur2:E-+F two CAT retractions of an open set in X onto a closed leaf
F of 3f, both transverse to 3f near F.

IfCAT T0, suppose that FeLOC, and that 9 (F) holds.

Suppose rx =r2 near a closed subset A a F. Let CaFbe a given compactum and let
Q be an open neighborhood of C in E.

Then there exists a retraction r'2 :E' -> F ofan open set E' to F transverse to 5 near
F such that r2 =r2 near AuC, and r2 =r± near A and outside Q.

IfB is Hausdorffand normal, then r2 can be obtained as h1rl where ht,O^t^l, is a

CAT isotopy o/id I Esuch that ht fixespoint in F, near A, and outside Q, andht respects

Proof Because of the relative form of this resuit, it suffices to give a proof for ail
C in some base of compact neighborhoods in F. Thus we can assume that C and Q lie
in images of product charts q>u cp2 for g about neighborhoods of C that are parellel
to ru r2 respectively, and in addition satisfy Image <p1 z> Image cp2.

This case is équivalent to assuming (1) g is the product foliation of Fx B=X, with
Fidentified to FxB say, (2) rx is projection FxB-* F, and (3) there is a product chart

<p2:UxN-+X about a neighborhood U of C in F so that <p2 is parallel to r2.
By Lemma 6.18 we can even assume that (4) q>2 is a product chart forp2 : Fx B -> B.

But in this situation the proposition follows immediately from Lemma 6.12 and
Addendum 6.13.
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In a standard way one deduces

COROLLARY 6.20. (same data). UNIQUENESS OF TRANSVERSAL MICRO-
BUNDLES. If B is Hausdorff and normal, there exists an isotopy ht, 0< t^l of
id | E through homeomorphisms mapping leaves to leaves so that

(1) h1r2=tl near W
(2) ht | F=id | F
(3) ht (x)for x outside a prescribed neighborhood of F.

COROLLARY 6.21. (same data). EXISTENCE14). If F1 is any closed leaf of g
there exists an open neighborhood E' of F' in X and a CAT retraction r'\E' -*Ff
transverse to g near F' providedjor CAT T0, that F'eLOC and 9 {F') holds.

To deduce the second corollary note that such retractions exist to open subsets

forming a covering {Wa} of F'. Inductive application of 6.19 combines them to give
r'. For this application note that each (open!) component of Wa is a closed leaf of
X-ôWa. Hère ô indicates frontier.

The last corollary is exactly what is needed to complète the topological version of
the classification (by holonomy) of foliated neighborhoods of a closed leaf in a foliation.

HOLONOMY THEOREM 6.22. (well known for DIFF). LetMbe a CAT mani-

foîd offinite dimension (CAT DIFF, PL or TOP) equippedwith a CAT foliation g
with model Rq. Let F be a connected leaf of g that is closed in M and is a CAT
submanifold.

Then the germ of M about F is uniquely determined by the holonomy homorphism

&:ni(F)-+G to the germs of CAT embeddings (Rq, 0) -» (Rq, 0). Uniquely determined

means that ifprimes indicate a similarly described situation and by chance F=F' and

0=&', then there is a leaf-preserving CAT isomorphism of an open neighborhood of F
in M to one ofF' in M'that equals the identity on F=F'.

S is defined by choosing a foliation chart about a base point * in F for which *
projects to 0 in JR* and "sliding" a germ of it about loops in F based at *, always

respecting leaves. (Lemma 6.17 is vital hère.)
For clarifications and proof see Haefliger [16, §2.7] and [17,298-301 and 303-304].

One could retain the generality of Proposition 6.19.

Double Foliations
There is a useful generalization of 6.19,6.20,6.21 that respects a second CAT folia-

14) There is a stronger resuit that applies to ail leaves at once, at least ifB R*. It maps Haefliger's
abstract normal microbundle of gf into Zgiving an immersed normal microbundle to each leaf. One
proof uses 6.23 locally.
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tion $' on X. Let g' hâve model B' and suppose that $ and g' are mutually transverse
(form a double foliation) in the sensé that X is covered by open sets U equipped with
isomorphisms (p:B'oxUoxBo-+U (called double charts) where Bf0, Bo are open in
B\ B respectively, such that g' | 17 is given by p1(p~1:U-*B'ocB', and g | £/ by

1

There results a foliation 5'n 5 with model B' xB from the submersions (projec-

Consider a (normal microbundle) retraction r.E-* W to a closed leaf W of 5?

which is transverse to $. It is said to respect $' if flT is covered by double charts

<p:B'oxUoxBo-+ UczE such that (p (B'o xUoxb) Un W for some beB0 and (p"xrq>

is projection to B'oxUox b.

PROPOSITION 6.23. (CAT=DIFF, PL or To). Ifte propositions 6.19, 6.20, 6.21

remain valid when a foliation 5' transverse to $f w g/ve« <z«</ we #/ter both hypothèses
and conclusions 1) by insisting that ail retractions and isotopies mentioned respect g',
andl) (when CAT T0) by supposing 3(Y)for the leaves15) Ftf/gng' rather than

for leaves of $•
Proofof 6.23. Recall that the proof of 6.19, 6.20, 6.21 boils down to local applications

of 6.12 and 6.13. But as we hâve observed under 6.11, the proposition 6.12 and
6.13 hâve an appropriate respectful version, namely the version respecting the collection

¥ of fibers of a projectionp'\Fx U-> B' to a cartesian factor of i^i.e. F—W x Fo.

This version cornes from the respectful version of the isotopy extension principle
denoted J{F\ Sfo)y 9>0 {axF0\ aeB'} in 6.7 (cf. 6.6), or from S (F, S?o) if
CAT=T0.

Caution. In the proof of 6.23, when we work in a double chart U^Br0 xUoxBo
with UnF=B'oxUoxb (F being a closed leaf of 5 for 6.19 generalized), we hâve to
deal with certain open embeddings/: V-+U, where Va U, which are known a priori
to (thoroughly) respect the leaves of g'. Yet we need to know that/respects the (more
numerous) leaves b' x (Uo x Bo) of Qf' | C/. A similar difficulty explains the counter-
example 6.2. Fortunately we also know that/fixes points of UnF^B'o xUoxb. And
we can arrange that each leaf of g' | Kis connected and meets B'oxUox b. Then/must
respect the leaves of g' | U, as desired.

To show the way toward applications of 6.23 we give a corollary of generalized
6.20 which can be regarded as a version of 6.15 (submersions are bundles) respecting
a foliation.

COROLLARY 6.24. (CAT=DIFF, PL or To). Let g, g' be a pair of mutually

15) The leaves are CAT objects with the leaf topology obtained by allowing as open each fiber
of each submersion defining the foliation.
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transverse CATfoliations on X, with models B9 B' respectively. Suppose that *Ç is given
by a submersion p:X-+B. In case CAT T0, suppose FehOC for each leaf of^ and

@{Y) holds for each leaf offfnff. Then, for any sigma-compact leaf F of $, there

exists a neighborhood U of Fxb in FxB, where b=p{F), and an open embedding

(p:U->X such that 1) pq>=p, and 2) q>* 3f' {(3f' \F)xB}\U, where <p* $' is the

pullback of %' by cp and g' | F is the foliation on F induced by 5' {or by 5n3')-
Proofof6.24. By 6.21 and 6.23 there exists an open neighborhood E of Fin X and

a (microbundle) retraction r :E-> F transverse to $ and respecting $'•
The map ij/:E-^FxB=X given by il/{x)={r{x)9p{x)) is an immersion near F9

hence an embedding on a smaller neighborhood of F. If E' is a sufficiently small

neighborhood of Fwe can define (p as \j/~x

This complètes 6.24.

CONSEQUENCES OF 6.24. (a). In case X=Fx B andp is projection to B, 6.24

asserts a local triviality of a family JÇJ, teB, of foliations on F. And if jPis compact and
2? [O,l],wequicklydeduce an isotopy (p,,0^*<l,ofid |irsothat<pf*5t 5of°r^^-

(b) Suppose 3f' cornes from a family of submersions ft:F-* B\ teB, giving a

submersion f.Fx B->B' xB by f{x, t)={ft{x), t). Then for any bounded open set

UczF, 6.24 offers a CAT isotopy through open embeddings (pt: U-*F91 near b in B,
such that (p? 5î <Sb on U, and hence ft(pt—fb f°r ail ^ near b, This means that every
reasonable family of submersions arises (locally) from pushing the source over itself.16)

(c) A relative form of 6.25 (coming from 6.19 and 6.23) implies the CAT isotopy
extension principle J{X\ gf) for embeddings thoroughly respecting the leaves of a

CAT foliation g of X. For CAT=LOC one assumes ®{Y)9 for each leaf Y of g
(with leaf topology).

Line Fields Normal to a Codimension One Foliation
A foliation with model Rq is regularly called a codimension q foliation. Consider

a codimension q CAT foliation g, CAT (DIFF, PL or To), on a connected CAT
object X. If CAT T0 we assume Xis Hausdorff, FeLOC, and 3 {F) holds for each

leaf F of 5 (with leaf topology). We enquire whether there exists a foliation gf'
transverse to gf so that the leaves of g' are #-manifolds (with leaf topology). Then 3f '

clearly can hâve as model F where F is any leaf of gf, and the double foliation gf, 5'
looks locally like that on Fx Rq.

The answer is no in gênerai. The Hopf fibration S3 -> S29 regarded as a foliation of
S3 by circles, is a simple counterexample (suggested by Haefliger). If there were a

16) This fact was first proved by Gauld [15]. An open question: When does a merely continuous
family ft, teB, of submersions X->Y in LOC provide a submersion f:Xx B->Yx B via the rule
/(*,0 (/<(*),<)?
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transverse foliation each leaf would be a covering of S2, hence a copy of S2 giving a
section of the fibration - which does not exist.

However we show Qf' exists if g l. This is obvious (but useful) if CAT=DIFF;
just find a Une field normal to $f and integrate. The proof for PL and To rests on the

following relative uniqueness theorem for g'. I thank Harold Rosenberg for encourag-
ing me to give a proof.

THEOREM 6.25. (CAT=PL or LOC). Given X and the codimension 1 foliation
3 as aboyé, consider gl9 g2 two foliations by l-manifolds, transverse to $•

Suppose 3fi =§2 near a closed subset AczX. Let BczX be a compactum and UcX
an open neighborhood of N. Then there exists a third foliation 52 by l-manifolds,
transverse to 2f such that 2f2 equals %x near AuB andequals g2 outside U.

Proofof6.25. In view of the strongly relative form of this proposition it suffices to

prove it in case C/belongs to a given base of neighborhoods of X. Thus we can and do

assume that we hâve £/=Fox(—1, 1) relatively compact in X=FxR, and that 2f>

$! corne respectively from projection to R and to F.
Notice that the hypothèses give a foliation 3f2 defined (only) on some neighborhood

V of A kjBu (X- U) satisfying ail other conditions on 2f2.

Consider any leaf Ft =Fx t of %. Now find a neighborhood Nt of t and a foliation
by l-manifolds $2 ofFxNt with model Fso that $2 is transverse to %, and equals ^2
near AvBv(X- V). If t is not in (-1, 1) we can and do choose 3f2 ^2 | ^x Nt> If
/e(—1, 1), note that one some open neighborhood E of Ft the foliations 3fi> 2?2 are

given by retractions rur2:E-+Ft transverse to 5- Then 6.19 offers another r'2:E'-*Ft
whose foliation 5 (^2) would serve as 3f2 if E' contains some Fx Nt. If not, for Nt
small, we can define $2 | Wx Nf 2f2(r2) for an open neighborhood W of U in F
with compact closure, and define Sf^Sf^ elsewhere in Fx Nt.

Since [— 1, 1] is compact there exists a subdivision —l=^0<^<r2<---</s l
such that each interval [f*_i, tk~\ is contained in some Nt, say Nt(k). Write 3f2 (k) for
g2(k) | ^x lh-u h]- The foliations

%2 | i7 x (-00, - 1], 8fa(l), 8fa(2),..., 8f2(j), g2 | F x [1, 00)

agrée on the interfaces FxtOi...9 Fxts and together define a CAT foliation g2 on JT

as required by 6.25.

Remarks (a) Only the last paragraph of this proof breaks down for codimensions

q>\.
(b) This proof does not quite work for DIFF. Our définition of 3f2 allows kinks

in the leaves at the interfaces Fxt0,..., Fxtk. Fortunately, for CAT=PL or LOC
there is no trouble, because of X=XluX2 and/l5/2 are maps of the category defined

on closed subobjects Xl9 X2 that agrée on XtnX2, then there is a unique map of the

category defined on Zand extending/l5/2.
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THEOREM 6.26. (CAT=PL or LOC). Given X and a codimension 1 foliation g
as for 6.25, one can alwaysfind g' afoliation by 1-manifolds, transverse to 3f, provided
X is sigma-compact. If^" is a given foliation by l-manifolds transverse to 3f anddefined
near a closed set CczXt then one can choose $f' equal 3f" near C.

Complément. The same resuit for foliations F with model R+={xeR | x^O},
follows by the device of doubling (Unité two copies of Zby identifying to its duplicate
each leaf of 5 that must project to OeR+).

Proof of 6.26. Since $ ' exists for g | U, where U is any chart for 3f> this follows
from the uniqueness theorem 6.25 by a routine argument.

Theorem 6.25, 6.26 permit one to establish topological versions of many theorems
about codimension 1 DIFF foliations - simply by inspecting existing proofs. The
generalizations of 6.25, 6.26 respecting a foliation transverse to $f (see 6.23) may also

prove useful.

Counting Compact CS Sets

COUNTING THEOREM 6.27. There are only countably many f=X0J homeo-

morphism classes of (Hausdorjf) compacta X such that each point of X has an open
neighborhood that is homeomorphic to a CS set (of§\).

Notice that this class of compacta includes compact manifolds, locally triangulable
compacta, and compact CS sets.

Cheeger and Kister counted compact manifolds in [10].

Proof of 6.27 by induction on depth. Suppose the resuit has been proved for the
smaller class ^a-x of compacta covered by open sets that are (homeomorphic to) CS

sets of depth <rf— 1. Any compactum Xe^d is covered by finitely many open CS sets

of the form RmxC where C is a stratified open cône of depth < d.

ASSERTION 6.28. Such a CS set RmxC is homeomorphic to one oftf0 model CS

setsSuS2,S3,....
Proof By our induction on depth there are up to homeomorphism only No CS

sets of the form Tm+1 xL.ln this proof L stands for a compact stratified set of depth
< d— 1, which may not be a CS set. Hence there are only Ko such up to homeomorphism
respecting projection of fundamental group to Zm+i =n1Tm+1.

Now, passing to coverings with group Zm+1 (as under 5.13 or in [34a, Theorem

A]) and adding the m-sphere Sm at infinity we find that there are up to homeomorphism
respecting Sm, only Ko CS sets of the form Sm*L. Then, by the open star uniqueness
theorem 4.13, there are, up to homeomorphism, only Ko CS sets of the form Rm x cL.
This proves the assertion.

The following proposition now shows that up to homeomorphism there are

<K0 sets in c€d and thus complètes the induction to prove the counting theorem. Fix
a finite collection Al9 A2,..., Ak of spaces in LOC so that @(Ai) hold
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PROPOSITION 6.29. Up to homeomorphism there exist only countably many
metric compacta X such that X is expressible as a union of open subsets A*, A*,...9 A*
with AfttAi9 and dim X < oo.

Proofof6.29. In each At consider a compactum Bt. In this proofvariable subscripts
are understood to range through, 1, 2,... k. Form a metric space Jt depending on
Ah Bh i l,..., k9 as follows. A point of Jt consists of a compactum Zin separable
Hilbert space H and embeddings/fii^-»//, such that Z=u/fBf and each set/fJ3f is

open in X. We write {/J for this point, X being determined as u/fJêf.
We install a rather fine metric17 on Jt. Let Êt the Alexandroff one point compacti-

fication of Èt and fix a metric dt on Êt. Define/fy to be the composed map Bt -> X-> Bj,
where the second map collapses X—fj{Bj) to a point mapping the quotient to

Êfj-1. Define

Thus Jt has a metric inherited as a subspace of Y[t Map(i?f, HxBiX"-x Bk). Now
Jt is separable since any subset of a separable metric space is separable and Map (B, H)
is clearly separable for any compactum B in an euclidean space E. (There is a countable
dense subset consisting of certain maps that extend to simplicial maps of a compact
neighborhoods of B in E to finite dimensional subspaces of H).

Clearly the proposition will follow when we show that, for each such space Jt,
compacta Xup to homeomorphism occur as image sets Z=u/iJB/.

Consider the subset ê<=iJtxH consisting of points ({/)}, x) with xeX=

ASSERTION 6.30. The (firstfactor) projection map n\£-*Jtisa (locally trivial)
bundle map.

Since Jt is separable it has a countable base of open sets, hence also a countable
base over which n is trivial. Thus n has up to homeomorphism ^ Ko fibers which are

just the image sets ufiBt for {fi}eJt. Thus the assertion implies the theorem.

ProofofAssertion 6.30. According to 6.14, which characterises bundle maps with
compact fiber, it suffices to show (a) that n maps closed sets to closed sets and (b) that
n is a submersion.

To prove (a) let Cczé be closed and consider a point {f^eJt — nC. Then the

compactum n"1 {ft} {/J x uifi(Bi)lies in the open set«f- C of S. As X=uifi(Bi)
is compact, n~ {ft} has a neighborhood in é?-C of the form ^n{t/x W) where

UaJt is a neighborhood of {/J in Jt and W is a neighborhood of Z in /T. But if
*7is small, the metric on^ dictâtes that, for every {//}e U, one has Vif/B^ W.Thus
7t~1Ucz£n{Ux W}czê-C. Hence UaJt-nC and we conclude that Jt-nC is

open proving (a).

17) cf. A. Shilepsky's remark in [10].
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To prove (b) consider the maps 0f.JtxB^S given by ©/({/»}, x)
fj(x))e<o. As nGj is projection to Jt it is easily seen that 0j is a homeomorphism
onto its image. Also u^ 0j{Jt x Èj)=é>. To verify that n is a submersion with charts

0j\j?xÈj. we now check that each 0j | Jtx2^. is an open mapping into ^. This
amounts to showing that 0<l{Jtx ÊJ n 0fi{Jt x 2^) is open in 0a{Jt x J5a) for any
index values a, /? among 1,..., k. For this it suffices to show that if {/J is fixed and

fa{x)=fp{y) for some xeÊa, yeBp, then for any compact neighborhood K of x in
Èanf~1fpÈp there exists a neighborhood C/of {/J in Jt so that {//}e£/ implies
fp(Èp)=>fa(K) i.e. Èp^>faP(K). But as {//} approaches {/J our choice of metric on
Jt makesfap:Ba-*Êp approach/^, so U exists. This establishes the submersion.

Assertion 6.30 is now proved and with it Proposition 6.29 and Theorem 6.27.

Historical Remark 6.32. Cheeger and Kister observe in [10] [1, p.3] that their
counting argument also gives the submersion characterisation (6.14) of bundle maps
with compact fibers, a resuit that had already been proved (as in 6.14) to show that
a proper (topological) Morse function on a manifold yields a handle décomposition.
We prefer to deduce the counting from 6.14.

Next we indicate two standard generalizations for the counting theorem 6.27.

DEFINITION 6.33. If in the définition of WCS set §5, we insist that each stratified
mock open cône C be regular in the sensé that it

(i) be orderly in the sensé of 5.8,

(ii) be an isotopy regular neighborhood [32] of its vertex v (in the category of
stratified sets),18»19)

then we hâve the définition of a so-called regular WCS set.

COMPLEMENT 6.34 to 6.27. Theorem 6.27 remains valid if regular WCS sets

replace CS sets.

The only part of the proof of 6.27 requiring adjustment is Assertion 6.28. The CS

sets Tm+1 x L are replaced by regular WCS sets TmxM where M is obtained from
C—vby gluing its ends in the manner of [30, § 5] respecting strata. Hère Cis a stratified
regular mock open cône. To complète the adjustment of6.28 one needs an isomorphism
of C— v with the standard infinité cyclic covering M of M. To get this foliow the proof
of [30, §7.8] and refer to [32].

COMPLEMENT 6.35 to 6.27. There are ^Ko homeomorphism classes of compact

18) Définition of an isotopy regular neighborhood as a nest of open sets each compressible
towards v in the next larger [32] shows that (ii) implies (i) (always).

19) Does (i) imply (ii)? If so, then regular would mean no more than orderly (see 5.8). A suffi-
ciently gênerai isotopy extension principle would prove this.
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(Hausdorff) {n + \)-ads (X; Xl9..., Xn) (a 2-ad is a pair) in which each point has an

open neighborhood homeomorphic (as (n + l)-ad) to a regular WCS (n + l)-ad.
Proof of 6.35. The adjustments to the proof of 6.27 and 6.34 required are strictly

routine. Theorem 6.14 is replaced by its respectful version (see 6.16).
Note that the group H of automorphisms of such an (n +1 )-ad fixing Xt has coun-

table homotopy groups nfl since the maps Sl-+H sufficiently near a given map are

homotopic by 5.10, and H is separable. Hence H is weakly homotopy équivalent to
a countable complex.
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