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Scalar Curvature, Non-Abelian Group Actions,

and the Degree of Symmetry of Exotic Sphères

H. Blaine Lawson, Jr.1) and Shing Tung Yau

Abstract

It is proved that if a compact manifold admits a smooth action by a compact, connected, non-
abelian Lie group, then it admits a metric of positive scalar curvature. This resuit is used to prove that
if En is an exotic //-sphère which does not bound a spin manifold, then the only possible compact
connected transformation groups of En are tori of dimension < [(« +1)/2].

§1. Introduction and Statement of Results

It has been known for several years that if a compact spin manifold M admits either
a non-trivial S1 action or a metric of positive scalar curvature, then Â(M) 0; and it
has been at times conjectured that thèse hypothèses are directly related, in particular,
that the existence of an ^-action implies the existence of a metric of positive scalar

curvature. This conjecture turns out to be false because of the following two results.

THEOREM 1.1. (N. Hitchen [3].) Let In be any exotic sphère which does not
bound a spin manifold. Then In does not admit a riemannian metric ofpositive scalar

curvature.
For n=l or 2 (mod8), the exotic //-sphères which bound spin manifolds form a

subgroup BSpinw of index 2 in the group Qn of homotopy «-sphères.

THEOREM 1.2. (G. Bredon [2].) ¥orn^2 (mod8), the sphères Zne0n-BSpinn
admit non-trivial S1 actions.

The idea of the proof of Theorem 1.1 is that by Atiyah and Singer [1] the
dimension of the space of harmonie spinors (mod2) on a compact, riemannian spin
manifold M can be identified with a certain KO-Theory invariant a (M) of the spin-
cobordism class of M. This invariant was introduced by Milnor and shown by Milnor
and Adams to give a non-trivial homomorphism a:0rt~>Z2 for n l or 2 (mod8).
(See [0], [9].) However, by a resuit of Lichnerowicz [8], if the metric of Mhas positive
scalar curvature (in fact, k^O and £ 0), then there are no harmonie spinors.

In [9] Milnor actually constructes compact spin manifolds of type M8n+1

=JV8lt x S1 for w= 1 and 2 such that a(M8w+1)#0. Consequently, it is not even true
that a free 51-action implies the existence of a metric of positive scalar curvature.

x) Research partially supported by the Sloan Foundation and NSF Grant GP-34785X.
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This failure of the above conjecture motivâtes the principal resuit of this paper.

MAIN THEOREM. Ifa compact manifoldadmits a smooth, effective action by any
compact, connected, non-abelian Lie group (that is, ifit admits a non-trivial S3 action),
then it admits a riemannian metric ofstrictly positive scalar curvature.

Thus, we hâve the following diagram of results.

3 an S1 action

3 an S action —H— Â 0 (for spin manifold s)\ T
3 a metric with

n\
We now recall an elementary differential topological invariant.

DEFINITION 1.3. The Hsiang index of symmetry of a smooth «-manifold Mn
is the integer

S(Mn) sup{dimRG!:G! is a compact subgroup of Diff(M")}.

It is known that S(Àf")<i/i(/i+l) with equality if and only if Mn Sn or RPn.

Furthermore it has been proven by Wu-Yi Hsiang [5] that if Ine0n9 «^40, is an
exotic sphère, then

<S(I")<i/i2 + l. (1.1)

This resuit is sharp since from the Brieskorn représentations one can easily see

one that the Kervaire sphères En, n 4k + l, hâve S(Iw) i«2 + i. However, if
considers exotic sphères which do not bound parallelizable manifolds, the estimate

(1.1) can be improved [4], [6]. Furthermore, R. Schultz [11], [12] has shown that
there exists an infinité family of homotopy sphères for which ©(I71)^-^0-^. As a

conséquence of our main theorem and Theorem 1.1 we hâve the following

THEOREM 1.4. Let In be an exotic n-sphere which does not bound a spin manifold.
Then the only compact, connected transformation groups of In are tori. In particular,

We reiterate that <9ll/BSpinll=Z2 for n= 1 or 2 (mod8).
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ProofofTheorem 1.4. The first conclusion is an immédiate conséquence of the
main theorem and the discussion above. The second conclusion can be seen as follows.

If n is even, any toral transformation group Tk must hâve a fixed point set, and the
induced linear action on the normal spaces to the fixed point set must be effective. Thus,
k^n/2. For n odd, we refer to the work of Ku [7].

Theorem 1.4 raises the question of allowable torus actions on exotic sphères. There

are results of this type due to R. Schultz who has a method ofproving the non-existence
of (Zp)r actions on exotic sphères in 0n for w 2/?2 — 2/> — 2 and p a prime [13]. In
particular it can be shown that there are three exotic 10-spheres for which

As a final note, we point out that the conclusion of Theorem 1.4 holds for any
compact spin manifold M for which a(M)=£0. Since the a-invariant is additive with
respect to connected sums ofmanifolds, it is always possible to change the differentiable
structure of M, in dimensions 1 or 2 (mod8), to make oc (M)^0.

§2. The Basic Construction

Let G be a compact, connected, non-abelian Lie group acting differentiably (and
effectively) on a compact manifold M. The purpose of this section is to outline
a method of using this action to construct a metric of positive scalar curvature
on M.

We begin by considering the simplest possibility, namely, when the action is free.

In this case we hâve a principal G-bundle n:M-+M' M/G. Any invariant metric
on M gives us a connection, i.e., an invariant field of horizontal planes, and we lift
to thèse planes a fixed riemannian metric from M'. Let ^ be the Lie algebra of G with
some AdG-invariant inner product, and carry this inner product over to M by the
canonical identification ^c:3ÊM. Now for each t>0 we hâve a riemannian metric
gt=*gH+t2gv where gH and gv are the horizontal and vertical inner products defined
above.

LEMMA 2.1. The orbits of G in the metric gt are totally géodésie submanifolds.

Proof. Let B dénote the second fundamental form of a fixed orbit. Choose any
and let H be an invariant horizontal field. Then, since <Z, /f>=0 and

(where <., .> dénotes any of thèse metrics and V is the associated riemannian connection),

and the statement is proved.
We shall now apply the O'Neill identities for the curvature of a riemannian

submersion with totally géodésie fibers [10]. Let n:M-*M' be any riemannian submer-
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sion2) and let (•)*, (•)" dénote orthogonal projection onto the horizontal and vertical
subspaces respectively of TXM at any point. Then the fondamental tensor of the
submersion is a (2, 1) tensor which assigns to each XeXM a section Ax of Hom(JM)
given by

Ax(Y) (VxhYhy + (VxhY»)h (2.1)

for YeXM. If JSfand rare both horizontal, then AX(Y)= -AY(X)=i[X, Y]v.
We now consider the family of metrics gt constructed above on the principal

G-bundle n:M-* M', and for each t we let A! dénote the fundamental tensor of n for
the metric gv For any X9 YgTxMwq let Kl{X/\ Y) dénote the sectional curvature of
the (X, y)-plane in the metric gt, and similarly we let K'(•) dénote the sectional

curvature of the common, submersed metric on M'. Let H, H' be local, orthonormal
horizontal fields on M and let V, V be canonical vertical fields which are orthonormal
in the metric gv Set || • || =gi (*, •)• Then it follows easily from O'Neill [10] and the
formula for curvature of a biinvariant metric on G, that :

K*{HaH') K'(n*HAn*H')-lt2\\[H, HJ\\\ (2.2)

^ (2.3)

||[,']||2. (2.4)

Since G is non-abelian, it is clear that for ail t sufficiently small the metric gt has

positive scalar curvature.
For a gênerai action of G on M the procédure is much more complicated and the

estimâtes more délicate. The outline of our construction is as follows.

Step 1. Introduce a G-invariant metric on M.

Step 2. Let G carry a biinvariant metric b and consider the free G-action <f> on

GxMgiven by 0g(h, x) (g-h,g(*)).
There is a natural map n<t>:GxM-+M given by projection along the orbits.

(^(g, x)=g~1 (x).) We now introduce a family of metrics gt on G x M very much as

we did above. Using the product metric on G x Mwe hâve defined an invariant field of
normal planes to the orbits of the ^-action. We lift the metric of M to thèse planes via
n*. Along the orbits we introduce the metric t2b via the inclusion @czXGxM given

by <f>. By Lemma 2.1 the orbits of (\> in the metric gt are totally goedesic.

2) This is defined as follows (cf. [10]). Let n:M->M' be a submersion between riemannian mani-
folds. For xeM there is an orthogonal splitting TXM= VZ®HX into vertical and horizontal
subspaces where Vx is the tangent space to the fiber n^inipc)) through x. Then n is called riemannian if
n+ | Hx:Hx-+TnxM' is an isometry for ail x.
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Step 3. Each metric gt on G x M is invariant under the G action \j/ where
\J/g (h, x) (A -g~l, x). Hence, there is a metric g, on M for which the right hand projection

n:G x M-> M is a riemannian submersion.
We shall show that if the original metric (Step 1) is appropriately chosen near the

fixed-point set of G, then for ail t sufficiently small the metric gt will hâve positive
scalar curvature.

§3. Curvature Estimâtes away from the Fixed-Point Set

In this section we shall compute the scalar curvature of the metrics gt on M away
from the fixed point set MG. Actually, since sectional curvatures increase under a

riemannian submersion (cf. Samelson [15], or [10, Cor. 1]), and since we are only
interested in finding a positive lower bound, it will suffice for us to compute the average
horizontal sectional curvature for the submersion n:GxM-+M.

We assume we are in the situation set up in the beginning of Step 2 above. Fix a

point xeM—M°. Then there is an orthogonal splitting (3=<$x@gPx where &x is the
Lie subalgebra of the isotropy subgroup Gx of x. There is a natural embedding
ix : 0*x c> TXM given by the action of G on M. Let tx dénote the orthogonal complément
of ix»x in TXM. Then

The canonical embedding @c>T(etX)(G x M) is given, with respect to the above split-
tings of thèse spaces, by (d, e)i-+(d9 e, ixe, 0). We now choose an orthonormal basis

{eli...iel} oî£PX (in the biinvariant metric of G) so that {ixei,ixejy afSiJ where

at>0 for ail i. Then for each t>0 there is a basis é&*x of T(ex)(GxM) as follows

=\-rlu-> -*?*> 7^i'-"» ~f€i> %u~-> %i> tfu~-9*im}

where for each i:

where the rji and fjj form orthonormal bases of ^x and tx respectively in the product
metric. Note that the rjt and ^ corne from fields canonically associated by $ to an
orthonormal basis of ^, and, furthermore, that <ji%li, niZj) Sij for ail i,j. (To check

this second fact note that n* (g, x)=g~1 (x), and so for g=identity, we hâve n% (e, v)

~ixe+v.) Thus, we hâve the following.

Fact 3. L ^ is an orthonormal basis of Tiex){G x M) in the metric gt constructed
in Step 2. The éléments in 0&x denoted above with a tilda span the horizontal space for
the submersion n* (and those without a tilda span the vertical space).
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Notice that the splitting into horizontal and vertical spaces for the submersion
n* is independent of /. This is not true of the submersion n, which we must now con-
sider. Let Af cT|(l +c3rf and set

^ic=0h>---> >7m> h\,..., h\)

where for each /,

The following is straightforward to check.

Fact 3.2. y£ and #?x form orthonormal bases respectively of the vertical and
horizontal subspaces of T(ex)(G x M) in the metric gt for the submersion n defined in
Step 3.

The remainder of this section is devoted to finding a positive lower bound for the

average of the sectional curvatures of the metric gt over the space Hx spmJé?x.
To compute the curvature of the metric gt we must know the riemannian connection

V. Actually, it will suffice to relate the curvature for time t to those for time 1,

and we now make the notational convention that : items indexed by t will hâve the

index deletedfor the case t= 1. The first step in doing this relative computation is the

following.

LEMMA 3.3. Let Ctx(Y) VxY-VxYfor X, YeXGxM. Then

where (-)h and (-)v dénote orthogonal projection onto the horizontal and vertical sub-

spaces respectively for the submersion t&.

Proof. It is straightforward to check that the connection V' V-Cf is torsion
free and satisfies V^f=0.

Now for each t>0 we hâve the curvature transformation

and the fundamental tensor A1 (cf. §2) of the submersion n* in the metric gt. We note
that

Cx(Y)=(l-t2)(Ax(Y)+AY(X))h.

A straightforward computation now gives the following.
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COROLLARY 3.4. For ail t>0,

t)T-<yrCt)x-lClx, C'y], (3.1)

)*. (3.2)

It is not difficult to check that

^(Z)), [Ci, C^=0.
Using thèse identities and Equation (3.1 or using O'NeiU's identities and Equation
(3.2) one can without difficulty establish the following resuit

PROPOSITION 3.5. Let x, y, z, w dénote vectors which are vertical and x, y, S, iv
dénote vectors which are horizontal for the submersion n*. Thenfor ail t>0 we hâve

the following identities.

(K.^^>,=t2<Rx,yZ,w} (3.3)

<#,,yz,tf>,=0 (3.4)

<«i, jz, w>, t2 <«,. -yz, w> +12 (1 -12) ([A* A£ (z), w> (3.5)

(R'zJ, w>,-»2<R,,^, w>-(2(l-(2) <^(w), Xf C)> (3.6)

<Ui,jî,w>,-t2<Jl,>j2,w> (3.7)

-12) [2 <^s (j), A2 (#)>
4. (v5>)> -<^(z), ^, (*)>]. (3.8)

In particular, from (3.8) we hâve the following identity on sectional curvature.

(3-9)

Recall that we are interested in Computing the "horizontal" scalar curvature of
the metric gv Hence, we need to compute terms of the form: J£r(A{ a Aj), K^^Afjj)
and K'tfiAfjj). We begin with the most complicated term.

-21/ <Rjf3U>,-2A,l6 </?b'.iX /L
where for notational convenience we hâve replaced Çt by i and |( by i.

j
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Now from Proposition 3.5 we hâve that the second two terms in this expansion are

zéro. Furthermore, as f J,0, the second curvature term in the expansion is 0(1) and

ail other curvature terms are O(t2). We combine this with the following elementary
observations. For t>0,

and if A2 + t2<\9 then

Furthermore,

2,#2*Xf
(3.13)

Finally, we observe that (Rifjijy=\\ \eh ej]\\l9 where || • ||* is the original biinvariant
metric on G. Putting this ail together, we hâve the following.

PROPOSITION 3.6. For each i,j= 1,..., /,

In a similar fashion, we hâve that

(3.14)
Combining this with Equation (3.9) we hâve proved:

PROPOSITION 3.7. For ail ij, K*{h\ Aflf,) 0(l) andKt{
Without any loss in generality we may assume that G=SU(2) or £0(3) since any

connected, non-abelian Lie group has such a subgroup. We normalize the biinvariant
metric b to hâve (constant) sectional curvature 1. Then the term || [ei9 e^\ \\ in Proposition

3 equals 1 for ail i9j. Moreover, at each point xeM—MG we hâve dim^x>2
since G has no subgroups of codimension one. Consequently, if at each jc we index the

At so that At ^k2^..., then for each open neighborhood U of the fixed point set MG
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we have a constant c C(U)>0 such that kx^X2>c throughout M- U. Thus, from
Propositions 3.6 and 3.7 we have the following.

THEOREM 3.8. Let G SU{2) or 50(3) and let U be any neighborhood of the

fixed-point set of G in M. Then there exists t(U)>0 such that for ail t^t(U), the

metric gt constructed in §2 (Step 3) has positive scalar curvature in M—U.

§4. Time Indépendant Estimâtes near the Fixed-Point Set

In light of Theorem 3.8, it remains for us to construct a G-invariant metric y on
M with the property that there is some neighborhood U of M° and some t0 >0 such

that ail the metries gt, 0<t<to constructed from y as in §2, have positive scalar
curvature in U.

To construct this metric we must consider the geometry of the fixed point set MG.

Let F be a component of MG and let p : N-* F be the normal bundle of F in M. Then
G acts naturally on N by linear transformations in each fiber. Furthermore there is a

natural G-equivariant diffeomorphism of N onto a neighborhood Uo of F in M.
Therefore, if we can construct a metric with the desired properties on the total space
of N9 we will be done, since we can extend the metric given on Uo to ail of M without
changing it in a smaller neighborhood U of F, and then average the extended metric
to make it G-invariant outside U. From hère on we shall confine our attention to N.

We may assume that N carries an inner product for which the action of G in each

fiber is orthogonal. If we fix a point xeF and an orthonormal basis é'={e1,...,eq}
in the fiber Nx=p~l (x), we get a natural homomorphism

given by the action of G in Nx. It follows from the equivariance of expx that the con-
jugacy class of i&{G) in 0{q) is independent of x and ^, and that, since G acts ef-

fectively, each ie is an embedding.
We shall now introduce an explicit, invariant riemannian metric on Nin which the

fibers ofp:N-*F2ire totally géodésie and have positive sectional curvature near zéro.
To do this we must make some preliminary observations.

Let P(N) -? F be the principal O (q) bundle of orthonormal frames in N. G has a

natural induced action on P(N) which commutes with the standard action of O(q).
Hence we may introduce a G-invariant connection in P(N). It is easy to see that at

any xeF, the action of G in Nx commutes with the holonomy transformations of this
connection at x. Consequently, we can reduce the structure group of N to the cen-
tralizer of G in O(q). Specifically, for a fixed frame ê at x, let ig:G^O(q) be the

embedding discussed above, and let Z(G) be the centralizer of is{G) in O(q). Then

there is a principal Z(G) bundle p':P'{N)^>F such that Nte the bundle associated
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to the représentation of Z(G) on Rq given by the inclusion Z(G)czO(q). That is,

N=(P' (N) x Rq/Z(G)) where the G-action on N cornes from the représentation iê of
G on Rq in the product.

We want to construct a G-invariant metric on N. This is done as follows. Intro-
duce any metric on F and lift it to the horizontal spaces of the connection on P' (N).
Then carry a biinvariant metric on Z(G) over to the vertical fields as before. Let R*

carry the metric ac of constant curvature c obtained by stereographic projection from
Sq. That is,

4 \dx\2

We set fit=P'(N)xRq and give ff the product metric. There is a natural action

#! : Z (G) -* Isom (fi} given by

We give N=fiî/<Pl the submersed metric. Note that the fibers of the map N-+F are

totally géodésie since the fibers of ft -* F are.
There is a natural action <P2:C/^Isom(GxiV) given by

This action commutes with 4>ls and defines an action on G x N which is exactly the

diagonal action <j> used in Step 2 of the construction in §2.
We now introduce a family of metrics gt on G x $ by modifying along the orbits of

#2 exactly as in Step 2. Thèse metrics will be 4>x invariant and will therefore détermine
a family gt of submersed metrics on G x TV. This is exactly the family of metrics
obtained by modifying our original metric on G x N by the procédure of Step 2.

Now each of the metrics gt is a product of a (modified) metric on G x Rq with the
fixed metric on P'(N). Furthermore p' \P' (N) -? F is a riemannian submersion with
totally géodésie fibers. From this one can easily deduce the following about the metric

gt on N obtained by projecting the metric gt as in Step 3, §2.

LEMMA4.1. For ail t>0 the projection p:N-+F with the metric gt on N is a
riemannian submersion with totally géodésie fibers. Furthermore, the submersed metric
on F is independent oft; andfor fixed t, the fibers Nx=p~x (x), xeF, are ail isometric
to each other.

We are now in a position to state the main resuit of this section.

THEOREM 4.2. Let G SU(2) or SO(3). Then thereexist numbers c>0, t0>0 and

a neighborhood U ofthe zero-section ofNsuch that the metric gt (=gt(c)) has positive
scalar curvature in Ufor ail te(Q, f0].
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Proof. From Lemma 4.1 together with the O'Neill formulas applied to the
submersion p:N->F one can easily see that it suffices to prove the following.

LEMMA 4.3. Let Nx be afiber ofp:N-*F with the induced metric gt{=gt(c))>
and ht ko>0 be given. Then there exist c>0, to>0 and a neighborhood Ux ofO in Nx
such that for ail te(0, f0] the scalar curvature ofgt is >ko throughout Ux.

Note. The scalar curvature in this lemma is that of the manifold Nx.
ProofofLemma 4.3. The metric gt on Nx is obtained as follows. We begin with a

product metric bxôc on GxTlq;we modify as in Step 2 to get gt and then submerse
this metric by right projection onto Nx. The metric ôc is obtained by submersing the

product metric V x ac on Z(G) x Rq, where b' is biinvariant and oc is given by (4.1),
along the orbits of the Z(G) action $v

We first observe that there is a bounded neighborhood Uo of 0 in Rq in which
âc has ail sectional curvature ^ c/2. To see this note that the vertical space above 0

in the projection n0i:Z(G)xRq->Rq is just Z(G)x {0} since Z(G) fixes 0 in R*.

Hence, by the O'Neill formula (2.2) ([10, Cor. 1]) the sectional curvatures âc at 0
are ^ those of ac at 0, i.e., they are ^c. So we can find Uo as claimed.

Recall now that the metric gt is constructed by lifting âc to the normal spaces to
the orbits of the diagonal G action (j> on G x Rq and introducing t2b along the orbits.
It follows again by formula (2.2) that there is some f'>0 such that for ail fe(0, *']
the sectional curvatures of gt in thèse normal spaces (i.e., the horizontal sectional
curvatures for the submersion n*) are >c/3 throughout G x Uo. In the terminology of
§3, we hâve

in G x Uo for <

We must now closely examine the formulas (3.10) and (3.14) for the horizontal
sectional curvatures of the projection n. Again it will suffice to show that the average
of thèse will be as large as desired in GxU0 since submersion increases curvature.
We now fix the value of / and begin by examining Equation (3.10). Note that the values

of the Xi's go uniformly to zéro as x^O in Rq. Furthermore, since G is acting linearly
on Rqt we see from the form of the metric ôc that the two largest eigenvalues Xt > X2

satisfy X2/Xl ^ q > 0 in the neighborhood Uo of 0 in Rq. Now the first term of (3.10) for
(U)=(1, 2) is

1 ^1^2 ,,r_ -T'^ (4.2)

and since G=5(7(2) or SO(3) with curvature 1, we hâve \\[eu e2]||J 1. The exprès-
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sion (4.2) is greater than or equal to

~~t2{t2+k\)2'

Consequently, the term (4.2) will dominate ail the possibly négative terms in the sum

we are considering, plus kt0, provided that

sup \R || + M||2 + k:0 (4.3)

where R1 is the curvature tensor of gt. The inequality (4.3) will hold provided that

rjr r •

(4.4)

If we assume t<ç/2r, then (4.4) will hold provided that

'2 r 3

*^
Q

Hence, we are reduced to the case where ail Xt satisfy

^ ,3/2 < ,5/4-t <t (4.5)

where the second inequality holds for any / satisfying t<(Q/2r)2.
We can now consider the sum (3.10) in détail. Observe first that the last two terms

in the sum are positive by (2.3) (or [10, Cor. 1]) and can therefore be neglected.

(This is also true of the first term, of course.) The third and forth terms are zéro. Recall

now that the remaining curvature expressions are ail bounded by t2rf in Gx O0 for
some r'>0 and for ail t. Thus, the sixth and seventh terms are bounded above by

2V (or 2A/')<2f5/V. The fifth and eighth terms are bounded by products of
expressions of type

Thus, for ail t sufficiently small, thèse terms will be uniformly small in the critical
région where (4.5) holds. However, in this région we clearly hâve the second term of
(3.10) bounded below by
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for ail t^t'. Consequently for c sufficiently large and for ail t>0 sufficiently small, the
contribution from ternis J£'(AJ aAj) is ^k0 in the critical région.

Exactly the same analysis applies to Equation (3.14) to give a similar conclusion
for the terms ATf(/z- Afjj). Of course, the terms K^fjiAflj) are already ^c/3 for t^t'.
This concludes the proof of Theorem 4.2. Theorems 3.8 and 4.2 together give the main
resuit of this paper, stated in the introduction.
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