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Homological Methods Applied to the Derived Séries of Groups

by Ralph Strebel1)

0. Introduction

0.1. Let R be a non-trivial commutative ring with unit and let G be a group. We say
G lies in the class E(l£) if the G-trivial module R has an TÊG-projective resolution

for which the map

1r®d2 : R®RGP2

is injective. We say G lies in the class E, or that G is an E-group, if G lies in E(R)
for every R. The purpose of this paper is to investigate the derived and the lower central
séries of E-groups.

The second homology group with coefficients in R, H2 (G, R), vanishes for a group
belonging to E(R). In gênerai, the converse is false, but it does hold for groups G

whose cohomological dimension cdRG is at most two.
An E-group G can be characterized by the following two properties (see Lemma

2.3):

- GliesinE(Z)
- The abelianization Gab of G is torsion-free.

From this it is clear that ail free groups and ail knot groups are E-groups.

0.2. The motivation for studying E-groups cornes from three fields: from the theory
of knot groups, from the theory of poly-nilpotent groups, and from the theory of
parafree groups. We begin our discussion by presenting the relevant facts about
knot groups.

The multiplicator H2 (G, Z) of a knot group G is zéro, as is the multiplicator
H2(G\ Z) of the derived group of a knot group ([26, p. 156], [24, p. 198, Corollary
(3.1)]). The question arises whether this is true for the multiplicators of the higher
derived groups G(ot) of G.

The abelianization G^ of a knot group G is free cyclic. The abelianization G'ab

of the derived knot group is torsion-free [4, p. 349, Theorem (1.3)] (but in gênerai
not free abelian). Again one may ask whether the abelianizations of the higher
derived groups G(ct) are torsion-free.

*) Part of this work was done at the Battelle Advanced Studies Center, Geneva, Switzerland.
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The answer to both questions is affirmative. It follows immediately from part (i)
of the following resuit on closure properties of the class E.

THEOREM A. The class E has the following closure properties:
(i) Every derived group G(a) (oc any ordinal) of an E-group G is an E-group.

(ii) Every term G^(KjS^co) of the lower central séries of an E-group G is an

E-group.
(iii) If G is an E-group then the quotient G/(f)a G(a)) is an E-group whose coho-

mological dimension is at most two.
We note that statements (i) and (ii) imply that every term of the iterated lower

central séries of an E-group is an E-group. In particular, the multiplicator of every
such term is trivial.

Remark. In the présent paper, we shall not investigate conséquences of statement

(iii). Hère we merely point out that a preliminary discussion may be found in [22,
p. 41, Section 6.4]. There it is shown that the derived length of an E-group is 0, 1, 2,

a limit ordinal A, or A +1.

0.3. A second motivation for investigating E-groups stems from subgroup theorems.

Dénote the lower central séries of a group G by Gj (7=1, 2,...). By définition, Gx

coincides with G. Let k be the symbol (1) or an s-tuple of natural numbers greater or
equal to two,

k==(ku...9ks) (s>l,kt>2). (0.1)

The terms {Gk} of the iterated lower central séries of G are defined by recursion on s

as follows:

The following resuit on subgroups of free poly-nilpotent groups is well-known (see

e.g. [15, p. 117, 42.35] (and [15, p. 76, 26.33])).
(*) Let T be a subset of a free group F and let k be an s-tuple as in (0.1). If T is

independent modulo F2 then Tfreely générâtes in F/Fk a free poly-nilpotent subgroup.
One might ask for conditions on a (not necessarily free) group G which ensure

that a statement analogous to (*) holds, but where the free group Fis replaced by G.

The following resuit indicates a step in that direction.

(**) Let Tbe a subset of a group G whose multiplicator H2(G, Q) is zéro. (Hère
Q dénotes the additive group of the rationals.) If T is independent modulo G2 then,
for every y (2^y<co), the set T freely générâtes in G/Gj a free nilpotent subgroup.

(The above statement can be deduced from a resuit of J. Stallings [17, p. 180,

Theorem 7.3] (see [22, p. 69, Satz 8.1]).)
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We shall prove the following combination of (*) and (**).

THEOREM B. Let Tbea subset of an E (Q)-group G and let k be an s-tuple as in
(0.1). IfTis independent modulo G2 then Tfreely générâtes in G/Gk afreepoly-nilpotent
subgroup.

0.4. The third motivation cornes from the work of G. Baumslag on parafree groups
([1], [2]). We say a group G is (absolutely) parafree if G is residually nilpotent and

if there exists a group homomorphism <p:F-*G from a free group into G which
induces, for every y, an isomorphism (piF/Fj^G/Gj (2^j<co).

Remark. Our définition of parafreeness is not quite the same as Baumslag's
définition, but is équivalent to it. The proof of the équivalence is implicit in an

argument given in Baumslag's second paper [2, p. 522, Proof of Theorem 4.1].
(See also U. Stammbach [21, pp. 162-164, Proposition 4.1, Proposition 4.3]).

Of course, every free group is parafree. The problem is to find non-free, parafree

groups. As shown by G. Baumslag, there are plenty of them. Our contribution to this

problem is the following resuit.

THEOREM C. Let V and W be non-trivial éléments of the free group F on y±

and y2- Let G dénote the group

(<5=±1),

and let (p:F-+ G be the obvious map from the free group on yu y2, y3 into G. Then the

following statements are true:

(i) (piF/Fj^G/Gj is isomorphicfor every j (2<y<co).
(ii) q)'.FjF{2j)^GjG{2,j) is isomorphic for everyj(2^j<œ).
(iii) If V is an élément of Fk then cpiF/F^^-y^G/G^jy is isomorphic for every

(iv) IfWisan élément outside F2 then G is an extension ofafree group by afree
cyclic group. Moreover, G is residually nilpotent.

(v) IfVisan élément of Ê2 then G is not free.

0.5. The paper consists of five sections. In the first one, we set up the basic machinery
used to prove results on the classes E(R). For this we introduce the classes D(i£).
We say the group G lies in the class D (R) if any map between i£(j-projective modules,

whose image under the functor

RG~

is injective, is itself injective. We say G lies in D if G lies in every D(i?). We cite some

results on the classes D(R) (R arbitrary):
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(i) The free cyclic group lies in D (R).
(ii) Any subgroup U<G of a group G lying in D(i?) lies in D(R).
(iii) Any product Y[j Gj of groups Gj lying in D(R) lies in
(iv) If G has a transfinite descending subnormal séries

ail whose factors lie in D(i?), then G lies in
(v) Any direct limit of groups lying in D(JR) lies in D(R).

We remark that by (i), (iv) and (v) every torsion-free nilpotent group belongs to D.
This is, however, not true for an arbitrary torsion-free supersolvable group (see

Subsection 1.5).
In the second section we introduce the classes E(i?). The connection between

D(i?) and E(JR) is given by

LEMMA 2.1. Let G be an extension oftheform N^G-»Q. IfQ lies in D(JR), and

if G belongs to E(R), then N belongs to E(R).
In the remainder of Section 2 Theorem A is proved.
The third section contains the proof of Theorem B. The proof uses properties of

D(Q)-groups and the resuit of J. Stallings [17] mentioned above.

In the fourth section we provide a large number of examples of finitely presented

E(Z)-groups. We say a group G lies in M(Z) if G has a présentation

such that the différence M—N equals the torsion-free rank of the abelianized group
Gab. We say G lies in M if G lies in M(Z) and if Gab is torsion-free. The class M was
studied by W. Magnus in 1939 ([13], see also U. Stammbach [19]). We shall show
that M(Z) is a subclass of E(Z) (Proposition 4.1).

The fîfth and last section is devoted to the proof of Theorem C. For the statements

(i) through (iv) we rely heavily on results obtained in the preceding sections of the

paper, especially on Theorem B and on an isomorphism criterion proved in
Subsection 4.3. The question whether G is free or not can be decided by Whitehead's

algorithm [25].

0.6. The theory of E-groups grew out of an attempt to prove, by homological methods,
results on the derived séries of a given group. This program was suggested to me by
Professor U. Stammbach who also proposed a theorem of G. Baumslag [2] (see

Theorem D, Subsection 5.3) as a test resuit. As Theorem C illustrâtes, the theory
succeeds in the test direction. Moreover, it generalizes results on knot groups. I
would, however, like to emphasize that it deals with only a very narrow class of
groups; for example, few non-abelian soluble groups belong to E (cf. [22, pp. 38-41,
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§6.3]). This contrasts with the results of J. Stallings [17] and U. Stammbach [18]
on the lower central séries.

Many of the results of this paper go back to my thesis [22]. In this article they
are reformulated and new results hâve been added. My work has been expedited by

many people to some of whom I am particularily indebted. U. Stammbach not only
suggested the problem but also supervised and encouraged my work on its solution.
G. Baumslag, K. W. Gruenberg, P. M. Neumann and J. E. Roseblade, through their
comments on various aspects of the theory, indicated new directions. Miss R. Boller
transformed my manuscript into a carefully typed preprint. To thèse and others
who hâve assisted me I express my gratitude.

1. The Classes D(R) and the Class D

1.1. The Basic Définitions
Throughout this paper, R shall dénote a non-trivial commutative ring with unit,

G a group, RG the group algebra, and e:RG-^R the standard augmentation, given

by Z riS&"¥Y, rt- The ring R shall be viewed as a (trivial) RG-module via e. The

symbol j<co shall mean that j is a non-negative integer; co denoting the first limit
ordinal.

We say G lies in the class D(R) if any map between iÊG-projective (left RG-)
modules whose image under the functor

is injective, is itself injective.
Remark. In a picturesque way we can say that G belongs to D (R) if, and only if,

the functor R®RG- detects injective mappings between projective modules.

We say G lies in the class D if G lies in B(R) for every R.

1.2. Residually Nilpotent Modules
We shall dénote the kernel of e:RG-»R by /. It is called the augmentation idéal.

Its powers {P \ I°=RG}J<(O induce, for every left JRG-module A, a filtration {IJA}j<(O
defined by

Note that every RG-module homomorphism rj:A~+B is compatible with the filtra-
tions {IJA} and {PB}.

DEFINITION. A left i?Cr-module A is called residually nilpotent if the intersection

f)J<mPA reduces to 0. (The i*-algebra RG is called residually nilpotent if the left
l£G-module RG is residually nilpotent.)
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We associate with the filtration {IJA}J<a> the graduated G-trivial i?G-module
grA defined by

The proof of the following lemma is straightforward and is omitted.

LEMMA 1.1. Any submodule of an arbitrary product of residually nilpotent
modules is again residually nilpotent. In particular, any RG-projective module is residual-

ly nilpotent provided the group algebra RG is residually nilpotent,

The next lemma will be used in Proposition 1.3 and again in Lemma 1.10.

LEMMA 1.2. Suppose the following conditions are fulfilled:
(i) RG is residually nilpotent.

(ii) rj:A-+B is a map between RG-projective modules.

(iii) ligrRGh®fj:IJ/IJ+1®RGA->Ij/IJ+i®RGB is injectivefor everyj<œ.
Then rj itselfis injective.

Proof. We shall first exhibit a natural transformation

T:(grRG)®RGA->grA

which is an isomorphism whenever A is RG-ûat.
For anyy'<œ and any iîG-module A, the diagram of canonical mappings

A -0
0->IJ+1A -» VA -? (grA); -*0

is commutative. Its rows are exact and the vertical maps are onto. If A is JRCr-flat,

Oj is moreover injective since the top map in the commutative square

V®RGA-*RG®RGA

IjA cç A

is injective. Thus Tj:(gTRG)j®RGA-+(g?A)j is bijective provided A is jRG-flat.

Now every iîG-projective module is RG-ûat. In the présence of condition (ii),
the condition (iii) can therefore be replaced by

(iv) (gTrj)j:IJA/IJ+iA->IJBIIJ+1B is injective for every j<œ. But using Lemma
1.1, the conditions (i), (ii) and (iv) are easily seen to imply the injectivity ofrj. This

proves Lemma 1.2.
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1.3. The Non-Triviality ofthe Class D

PROPOSITION 1.3. Thefree cyclic group belongs to the class D.

Proof. Let R be an arbitrary non-trivial commutative ring with unit, and let

C=(c) be free cyclic. Our first objective is to prove that RC is residually nilpotent.
Every élément xj^O of RC can be written in the form

(1.1)

As we require ro#0 and rg^Q, the integer N, the non-negative integer g and ail the

rteR (K/<g) are uniquely determined. Suppose now that x is in F. Because the
lÊG-module V is generated by (1 — c)J, x has a représentation

x=x(l — c)J, where

It results the représentation

^1 yi+J (1.2)

Since f0 as well as (— 1)J fg are différent from zéro, the représentations (1.1) and (1.2)
are identical. In particular, g=g+j, so that 7^ g. This proves RC to be residually
nilpotent.

Remark. (1.2) shows also that (1—c)J is not a zero-divisor. Therefore V is an
JRC-free, cyclic module and (grRC)j=Ij/IJ+i is iÊC-isomorphic with RC/I, i.e.

with R.

Now let rj:A ->i? be any map between i?C-projective modules, for which ln®cf/
is injective. By the preceding remark, the map I^rq^c^ is> f°r every j<œ,
naturally isomorphic with l*®^ an(i thus injective. i^C being residually nilpotent,
it follows from Lemma 1.2 that rj itself is injective. As rj was arbitrary, this means that
C belongs toD(i?).

1.4. Some Closure Properties ofD(R)

DEFINITION. A System {Uj}jeJ of subgroups of a group G is called inverse

if there exists for every pair (j'9jn)eJxJ an indexée/ such that Uj^UynU^.
Note that the inverse limit in â?* of such a System is canonically isomorphic with the
intersection OJeJ Uj.

In Proposition 1.5 the following technical resuit on inverse Systems of subgroups
shall be needed.

LEMMA 1.4. Suppose {Uj}jeJ is an inverse System of subgroups of a group G.

Dénote Us intersection by U. Let i\\A-*Bbe a map from an RG-projective module into
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an arbitrary RG-module such that ail the induced maps lR®Vjn are injective. Then

lR®vf] is injective.
Proof. (For an arbitrary i?G-module M, we dénote by

iM:R®uM-+l\(R®UjM)

the canonical map given by the maps r®umh+r®Ujm and by the universal property
of the product.) In the commutative square

R®VA R®VB
iR®un

the bottom map is by hypothesis injective. We shall show that the left-hand map iA
is also injective, thus proving the assertion.

Assume first that A is the group algebra RG. Select a right transversal {Ts}seG/u
of G in U. Then every élément x^O of R®VRG has a unique représentation of the
form

Since x^O, there exists an seG/U for which rs(x)^0. As the support supp(x)
{seG/U:rs(x)^0}) is finite, there exists an index j=j(x) in / such that for every

pair (s, s') of différent indices out of supp(x) the élément T^TJ1 avoids Uj. This
means that the set {rs}sesupp(JC) can be enlarged to a right transversal of Uj in G,
and this in term implies that the image of x in R®VjRG is différent from zéro. Hence

iRG is injective.
Next note that for an arbitrary coproduct JJfc Mk of i£G-modules the diagram of

canonical mappings

is commutative and that a is injective. It follows therefore from (1.3) and from the

injectivity of iRG that iA is injective for every iÊG-free module A. One further
application of (1.3) shows that iA is injective for every direct summand A of an arbitrary
jRG-free module, Le. for every JRG-projective module.
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PROPOSITION 1.5. The class T>(R) satisfies thefollowing closure properties:
(i) sD(R) D(R)f i.e. any subgroup U<G ofagroup G lying in D(R) lies in D(R).
(ii) ÈD(R) D(R), i.e. any group G having a transfinite descending subnormal

séries

ail whosefactors Gp/Gfi+l (j8<a) lie in D(R), lies in D(i?).
(iii) n D(R) D(R), i.e. any product JJj Gj ofgroups lying in D(i?) lies in D(R).
Proof. As the three opérations s, È and n are closure opérations, we need only

prove the inclusions "£". (i) sD(R)^D(R). Suppose U<G and G belonging to
D(i?). Let n:A-*B be a map between jR£/-projective modules, for which lR®vri is

injective. The change-of-rings functor

sends ,R£/-projective modules to jRG-projective modules. The map
is naturally isomorphic with lj*®^. Therefore

is a map between iÊG-projeetive modules, for which lR®Gfj is injective. Because G

lies by hypothesis in D (R) the map fj itself is injective which in term implies that r\ is

injective.
(ii) ÈD(R)^D(R). Suppose G has a transfinite subnormal séries

ail whose factors Gfi/Gfi+i (P<oc) belong to B(R). Let t]:A-+B be a map between

i?G-projective modules, for which lR®Grj is injective. Using transfinite induction,
we shall show that ail the maps lj*®G/ï*7 ($<a) are injective which clearly implies
that n is injective.

Inductive step. Suppose p<a. By the induction hypothesis, lR®Gpri is injective.
n may also be viewed as a map between i?(G^)-projective modules. Gfi is an extension

ofGfi+1byGfiIGfi+l. So

is a map between ^(G^/G^+^-projective modules, for which 1r®g/,/g/m.1^> being

naturally isomorphic with lR®Gfiti, is injective. As Gfi/Gfi+1 lies in D(JR) we deduce

that fj is injective.
Limiting step. Suppose A<a is a limit ordinal. By the induction hypothesis, ail

the maps lR®Gfin (j8<A) are injective. Since, from the définition of a descending
subnormal System, GA= f)fi<x Gfi> and since the chain of subgroups

j >G21>- -GA
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forms an inverse System we can infer from Lemma 1.4 that lR®Gxrj is injective.
(iii) nD(jR)cD(iÊ). Suppose G is an arbitrary product Y\jej Gj of groups Gj

belonging to D(i?). Consider for any finite subset FczJ the normal subgroup

Thèse normal subgroups forai an inverse System with trivial intersection. Moreover,
the quotients G/NF YIj^f Gj)9 being finite products of groups belonging to D(jR),
lie by the already established closure property "ÈD(i?) D(i*)" in B(R).

Now let tj:A-*B be a map between jRG-projective modules, for which lR®Gri is

injective. Because for every finite FczJ the group G/NF lies in D(JR), it follows that
ail the maps lR®Nrrj are injective. But OFczj NF=e, so that we can infer from Lemma
1.4 that rj itself is injective.

So far in showing a group G to lie in D(J?) we always considered maps r\\A-*B
between arbitrary i£G-projective modules. It is, however, sufficient to test ail maps
r\\A->B between finitely generated, RG-free modules. This is the content of the next
lemma, which will be crucial in the proof of Proposition 1.7.

LEMMA 1.6. The following statements are équivalent:

(i) GeD(R).
(ii) Any map r\\A-+B between RG-free modules, for which lR®Gt\ *s injective,

is itself injective.

(iii) Any map rj:A-+B between finitely generated, RG-free modules, for which

\R®Gf\ is injective, is itself injective.
Proof The implication "(i)=»(iii)" is évident.

(ii)=» (i). For every JRG-projective module C we sélect a (distinguished) complément

C. We define the construction *v associating to every map rj between projective
modules a map fj between free modules, by setting

Plainly, t\ is injective if (and only if) fj is injective, and lR®Gfj is injective if (and only
if) lR®Gri is injective. The claim follows immediately from this remark.

(ii)=>(iii). This implication dépends upon the fact that every RG-free module
is the union of its finitely generated, free, direct summands. The détails are omitted.

PROPOSITION 1.7. LD(R)=D(R), i.e. if / is a directed System, and G:
#-*<&>!, afunctor such that, for every index j in # the group G(j) belongs to
then the direct limit lim G belongs to D(jR).
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Proof. As L is a closure opération, we need only prove the inclusion "LD(i?)c

Dénote the group HmG by G. By Lemma 1.6 it is sufficient to test a map rj:A-+B

between finitely generated RG-ftee modules, for which lR®Grj is injective. If we
choose in A an iÊG-basis {al9..., aM} and in B an RG-basis {bu..., bN}, the map y\ can
be described in thèse bases by an M x JV-matrix H. In H occur only finitely many
éléments, say gu...,gFi> of HmG. So there exists an index m in # such that each

gk (1 < k < F) has a preimage in G (m). It need not be unique. Fix for every k 1 ^ k ^ F)
a preimage and call it gk(m). Then the matrix H has a corresponding pointwise
preimage H (m) under the ringhomomorphism R(G(m)) -+ R(\imG). We may

suppose that m is the minimal élément of $, so that there exists, for every index j in

/, a map G(m-v):G(m)->G(./).
Define next, for every index y in ,/, a mapping

between finitely generated i£(G(j))-free modules as is shown below:

is *(G(y))-free on fll(j),..., aM(j).
is *(G(y)>frec on ix(/),..., *w(/).
is given in the bases {#s(./)} and {^^(7)} ^y the matrix H(j) which is by

définition the pointwise image of H{m) under the ring homomorphism
R{G{m-+j)):R{G{m))-*R(GU)\

The functor G:J'-*&*, gives rise to a functor A: $-*s#â. It mapsy onto A (y) con-
sidered as an abelian group. If'j-*j' is a morphism of # the induced homomorphism

A(j-*j'):A(j)-*A(j') is given by

^(y') denoting the image of gs(j) under the group homomorphism G(j^>j'\ and

by JR-linearity. Similarily, G gives rise to a functor B:#-*£#&. Thirdly, the functor
G induces a functor

It maps j onto r\{j) considered as a homomorphism between abelian groups. If
j-+j' is a morphism of # the square

AO)^.B(y)
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iscommutative. So weare allowed to definen(j-^y')asthepair {A(j-*j'
The colimit limti exists and coïncides with rj when rj is viewed as a map between

abelian groups.
Now consider an arbitrary map r\(j). By construction the matrices H(j)B and

HE, s denoting the (pointwise applied) appropriate augmentation, are identical. But
1R®Grj, described by H\ is by hypothesis injective. So, for every index7 in / the map
1r®g(j)ti(./)> described by H(j)e, is injective. Since every G(7) belongs to D(i£),
every 11(7) is injective. It follows that limn, which underlies rj, is injective. This
establishes the claim.

1.5. Concluding Remarks

By way of illustration, we state explicitly some easy conséquences of Proposition
1.3, Proposition 1.5 and Proposition 1.7.

COROLLARY 1.8. Thefollowing statements are true:

(i) Every poly-free-cyclic group belongs to D.

(ii) Every torsion-free nilpotent group belongs to D.

(iii) Every free group belongs to D.

We conclude the investigation of the classes D (R) by establishing a necessary
condition for a group to lie in D(S)9 where now S is an intégral domain of charac-
teristic zéro. We first recall the définition of a (locally) indicable group (G. Higman
[9, p. 241ff.], cf. [8, pp. 61-62, §4.5]). A group G is called indicable if every non-
trivial, finitely generated subgroup U<G can be mapped onto the free cyclic group.
Note that one requires precisely that the abelianization Uab of any finitely generated
subgroup U is infinité, or equivalently, that Uab has a free cyclic, direct summand.
The announced condition then reads as follows.

PROPOSITION 1.9. If S is a non-trivial intégral domain of characteristic zéro,
then the class D(5) is contained in the class of indicable groups.

Proof Suppose G belongs to D (S) and let U< G be a finitely generated subgroup
of G. By Proposition 1.5 U belongs to D(S). The augmentation idéal I(SU) is a

finitely generated SCZ-module. So the G-trivial module S has an SU-ftee resolution

/(SU)\S«-SU< F* <-F2<— ••

in which Ft is finitely generated. Let A be any left SU-module. The cohomology
groups H*(U, A) with coefficients in A may be computed from the bottom row in
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the following commutative diagram

Uomv(I(SU),A)^

r r rA > ]]A *UA

(1.4)

By construction / is finite so that we hâve a canonical isomorphism \JS A^f[j A.
Assume Uab is finite. We claim that U must be trivial. If Uab is finite, then

Homz(Uab, 5r)=i/1(l7, S) vanishes, the characteristic of S being zéro. Now
Hom(3!, ls) is easily seen to be the zéro map. Hence HX(U9 S)=0 implies that
Hom(52, ls) is injective. But by hypothesis S is an intégral domain. So it follows
from linear algebra that there exists a finite subset /' such that the composition

is injective. Hère p dénotes the obvious projection. Thus the map

is a homomorphism between S(/-free modules for which 1$®^ is injective. But U
lies in D(S). Thus t] and, consequently, Hom(ô2,lsu) are injective. This forces

Hom(31, lsu) to be the zéro map. Now use (1.4) to compute H° (U, SU). One obtains
that (SU)U=SU. This means that SU is a [/-trivial module. As by hypothesis S is

non-trivial, U must be trivial. This establishes the claim.
Remarks. A poly-cyclic group is indicable if and only if it is poly-free-cyclic.

A nilpotent group is indicable if and only if it is locally poly-free-cyclic, i.e. if it is

torsion-free. This shows that the first two statements in Corollary 1.8 cannot be

improved. We also remind the reader that a torsion-free poly-cyclic group need not
be poly-free-cyclic. Standard counterexamples are the groups

G(*:) <a,è,/:at=a-1,^-è-1, [a,6] f*> (keZ) (1.5)

found by G. Zappa [27] and K. A. Hirsch [11]. If&#0 is even, G{k) is a poly-cyclic
(even supersolvable), infinité group. It is an extension of a torsion-free nilpotent

group by a cyclic group of order two. (As we shall see, this implies that G(k) lies

in D(Z2).) Moreover, if & is a multiple of four, G(k) is torsion-free. However, G(k)
is not indicable, G(k)ab being finite
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A finitely generated perfect group does not lie in D, but this need not be true if
the group is infinitely generated. For example, the group

is perfect, but locally free. So it belongs to D.
We add a word on the group algebra SG of a group belonging to D (S), where

S is any intégral domain. If the characteristic of S is zéro G is indicable and so SG
has no zero-divisors (G. Higman [9]). If the characteristic isp the group algebra SG

may hâve zero-divisors which, however, are bound to be éléments of the augmentation
idéal. The situation is illustrated by Lemma 1.10. The lemma, moreover, shows that
the torsion-free groups given by (1.5) lie in D(Z2), although they do not belong to
D(Z).

LEMMA 1.10. A finite group belongs to D(ZP) // and only if it is a p-group
(p denoting a primé).

Proof. Suppose the finite group G belongs to D(ZP). Take an élément geG of
order a prime, say q, and consider the homomorphism

t,:Zp(g)-+Zp(g),

given by x\-*(l+g+g2-\ {-g9'1)^. It is not injective. Since the subgroup (g)<G
belongs also to D(ZjP), the map lZp®(g)^ cannot be injective either. Therefore q=p.

Conversely, suppose G is a finite p-group. Let n : A -? B be a map between ZPG-
projective modules, for which 1Zp®g?/ ls injective. ZPG is a nilpotent module (cf.
[3, p. 681, Theorem 9]) and the quotients IjIIj+1 (j<œ), being Zp-vector spaces, are

Zp-flat. So we can deduce from Lemma 1.2 that r\ itself is injective.

2. The Proof of Theorem A

2.1. The Définitions of the Classes E(R) and ofthe Class E
As in the first section, R shall always dénote a non-trivial commutative ring with

unit.
We say a group G lies in the class T£(R) if the G-trivial module R has an RG~

projective resolution

such that the image of the second differential d2 under the functor

R®rg" :

is injective.
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We say G lies in E if G lies in E(R) for every R.

Remark. If G belongs to E(R) then H2(G, R)=0. The converse, although false

in gênerai, holds for groups of cohomological dimension at most two.

2.2. Some Properties ofE(R)
We shall first give a lemma Connecting the classes D(R) and E(R). This lemma

will be crucial in the proof of Theorem A.

LEMMA 2.1. Suppose the group G is an extension of the form N<$G^»Q. If Q
lies in D(R) and if G belongs to E(R), then N belongs to E{R).

Proof Suppose G belongs to E{R). Let P*-»i? be an i?G-projective resolution
of R for which lR®Gd2 is injective. Consider

It is a complex of jRg-projective modules for which lR®Q(lR®Nd2) is injective.
By hypothesis Q lies in D(i?). So lR®Nd2 is injective. Because J**-»R is also an

iW-projective resolution of R, we hâve shown that N belongs to E(R).
For future référence we state explicitly the obvious

COROLLARY 2.2. A group G which belongs both to D(i?) and to E(R) is of
cohomological dimension cdRG at most two.

The particular importance of the class E(Z) is shown by the following lemma 2.3.

This lemma also characterizes the class E.

LEMMA 2.3. The following statements are true for any group G:

(i) GeE(Z)=>(GeE(R)oH2(G, R)=0).
(ii) OeE oGeE(Z) and GjG' is torsion-free.

Proof Suppose GeE(Z) and H2(G, i*)=0. Let

be a G-projective resolution of Z for which lz®Gd2 is injective. Then 1Z®G^3 is the

zéro map. Tensoring the above complex with R®z - one gets an iÊCr-projective

resolution of R. Because the map 1R®RG (1jr®z^3) is also zero> H2{G^ R) is trivial
if and only if 1R®RG (lR®zd2) is injective. This proves one half of (i). The converse

is obvious. Part (ii) then follows from statement (i) and the universal coefficient

theorem.

2.3. Additional Properties ofE
We recall the définition of the transfinite séries ofderived groups {G(a)} of a group
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G. It is given by

G(a+1) [G(a), G(a)]

G(A)= H G(a) (A a limit ordinal).

We now state a fundamental closure property of the class E (Part (i) ofTheorem A).

PROPOSITION 2.4. Any derived group G(a) of an E-group G is again an E-group.
Proof. We use transfinite induction on a. The claim holds obviously for a 0.

Now let a>0 be an ordinal such that for every /?<a the group belongs to E. Consider
GIG("\ It has a transfinite descending normal séries (se. {GmjG{cc)}) ail whose
factors are torsion-free abelian (see Lemma 2.3). Therefore G/G(tt) lies for every R in
D(R) (see Proposition 1.5 and Corollary 1.8). Lemma 2.1 then implies that G(a)

belongs to E(R) for every R and hence, by définition, to E. This establishes the claim.

We also recall the définition of the lower central séries {Gfi}1^p^(û. It is given by

J< (O

The next proposition deals with the second assertion of Theorem A:

PROPOSITION 2.5. Any term Gp (l^j^co) of the lower central séries of an

E-group G is again an E-group.
Proof. Suppose G belongs to E. As G\G2 is torsion-free and H2 (G, Z) is trivial,

ail the quotients Gj/GJ + 1 (l^j<co) are torsion-free [23]. It follows that G[Gp

(K/?<a>) lies in D for every /? which, by Lemma 2.1, yields the claim.
An immédiate conséquence of Proposition 2.4 and Proposition 2.5 is

COROLLARY 2.6. For any E-group G thefollowing implications are true:

r. 7 (H2(G(a\Z) is trivial, and
(i) ce any ordinal => <^f(x)l-(a+1)/w |GCa)/G(a+1) is torsion-free.

Z) is trivial and

We are left with the third claim of Theorem A. For convenience we restate it as

PROPOSITION 2.7. If G is an E-group then G/(C\a G(a)) is an E-group whose

cohomological dimension is at most two.



318 RALPH STREBEL

Proof. Let S dénote the smallest ordinal for which Giô) G(ô+1\ Then G(d)

p|« G(a\ Suppose that

is a G-projective resolution for which 1Z®G32 is injective. We assert that

0 -* Z®G(*) P2 4 Z®G(d) Pt -? Z®G(a) Po -» Z

is a G/G^-projective resolution of Z. The modules Z®Gi»Pi (i=2, 1,0) are G/G(ô)-

projective. The map 1Z®G/G<a)d2, being naturally isomorphic with 1z®g^2, is

injective and G/Giâ) lies in D. Therefore ê2 is injective. The homology at Z®Giô)Pi
equals H1(G(6\Z) G(ô)/G(ô+1)=0. Since Z®G(<J) - is a right exact functor, the

complex is also exact at Z®g«ï)P0 and at Z. Thus the assertion is established. It
follows that the cohomological dimension of GjG^à) is at most two. As mentioned

above, 1Z®G/G<d)d2 is injective. This shows that G/G(ô) is an E-group.

3. The Proof of Theorem B

3.1 The Crucial Lemma

LEMMA 3.1. Let ç:F-> G be a mapfrom afree group into a group ofE(R)for
which

(P(R):H1(F,R)^H1(G9R)

is injective. Suppose Q is a quotient of G lying in D (R). Then

<p(RQ):Ht(F,RQ)-+Ht(G9RQ)

is injective.

Proof. Let >O-+I(RF)^>RF4>R be the ifcF-free augmentation resolution of
R, and let P+-»R be an i?G-projective resolution of R for which lR®Gd2 is injective.
View F+-»R as an acyclic complex of JRF-modules via cp. There exists a chain map

t* yielding the commutative diagram

•••-> 0 -*I(RF)^RF-»R
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of jRF-modules. Note that xt factors as

I(RF)

RG®FI(RF)

since Px is an JRG-module.

The map cp:F-+G induces a natural transformation cp(-) between the functors

Hi {F9 — *. •;& 4?/% hq —+ *M<o-u>R

and

This natural transformation q>{ — is defined by the composition Px°(^i)*°l in the
diagram

Y>A®FI(RF) ; >A®FRF

j inV (ti)* *,A®a(RG®FI(RF)) (to>

The injectivity of ç>(yi) can therefore be characterized by (3.1).

(i) (tO* isinjective.
is injectiveo;... >

N/. _ a v A (3.1)
(n) im0Ao(Tl);)nim(l®5)=0 v

If ^4 is the G-trivial module R, the embedding /K is onto and (3.1) may be rewritten as

(i) 1*00^1 isinjective.
is mjectiveo)/.x *

Now define the auxiliary map
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The induced map lR®Grj is injective because lR®Gd2 is injective by the choice of
F*-»R9 and because (i) and (ii) hold by the hypothesis on q>(R). Consider lRQ®Grf.
It is a map between i£g-projective modules, whose image under the functor
\R®Q~:RQJt&d-+RJt&d is injective. As Q lies by assumption in D(JR), we infer that

is injective. In particular, cp(RQ) is injective, as we set out to prove.

3.2. The Iterated Lower Central Séries

DEFINITION. Let K dénote the set consisting of the one-tuple (1) and of ail
the ordered, finite tuples (kl9..., ks) of natural numbers k{^2 (s^ 1). The number s

is called the length of the tuple. For an arbitrary group G, the terms of the iterated
lower central séries {Gk} are defined by recursion on the length of k and given by

Note that ail the terms {Gk} are fully invariant subgroups of G.

In the proof of Proposition 3.2 we shall need an auxiliary, iterated descending
central séries {kG}. It is defined by

Note that every term kG is a fully invariant subgroup of G, and that {kG} is the most

rapidly descending iterated central séries ail whose quotients

G/i2)G,

(ku...,ka

and

are torsion-free.
We are now ready to prove Theorem B which we restate, in a slightly différent

formulation, as

PROPOSITION 3.2. Let cp\F-* Gbea mapfrom afreegroup into an E(Q)-group

for which
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is injective. Then

is injective for every keK.
Proof. We shall first prove the following implication:

If cp : F/(2)F-> G/(2)G is injective then

q> :FjkF -? G/kG is injective for every keK. (3.3)

We use induction on the length of k. The group G lies in E(Q) so that H2(G, Q) is

trivial. Therefore (3.3) follows for ,s=l from a resuit of J. Stallings ([17, p. 180,

Theorem 7.3], cf. [22, p. 69, Satz 8.1]). Consider now (k, ks+1) (kl9..., ks, ks+i)9

s^l. By induction hypothesis

<p:FlkF-+GlkG (3.4)

is injective. It follows that <pv in the composition

Hi (F, Q (FUF))^ H, (F, Q (G/kG)) ^^ >Ht (G, Q (G^G))

is injective. So check the hypothesis of Lemma 3.1. The map

is injective since 9:F/(2)i7-^G/(2)G is injective, since Q is Z-flat, and since

is naturally isomorphic with cp (Q). The group G/kG is poly- (torsion-free nilpotent),
and so belongs to DçD(Q). We can now infer from Lemma 3.1 that (p(Q(G/kG))
in the above composition is injective. As kF/ikt2)Fis torsion-free, it follows that

is injective. Because G/kG lies in D (Q), and because G belongs by the hypothesis of
Proposition 3.2 to E(Q), the group kG belongs to E(Q) so that H2(kG, Q) 0. It
follows from Theorem 7.3 in [17] that for every j

^kGI(kJ)G (3.5)

is injective. From (3.4) and (3.5) one finally deduces that

is injective. This complètes the proof of claim (3.3).
Now note that for a free group F the terms kF and Fk coincide for every keK.

From this fact and the auxiliary resuit (3.3), Proposition 3.2 is readily deduced (see

the proof of Satz 8.1 in [22]).
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4. The Classes M(Z) and M

4.1. Définition and Elementary Properties o/M(Z) and ofM
We say a group G lies in M(Z) if G is finitely présentable and if the deficiency

defG of G equals the torsion-free rank of the abelianized group Gab.

We recall the définition of defG: The deficiency def^3 of a finite présentation
0>=(zl9...,zM:ru...,rN} is the différence M-N. The deficiency of a finitely
présentable group G is sup{def^:^ présents G). As is well-known, defG is at most

equal to rk{Gab) (see also formula (4.7)).
We say a group G lies in M if G lies in M(Z) and if Gab is torsion-free.
Remark. The class M has been investigated by W. Magnus [13] in 1939. We

cite two of his results:

HILFSSATZ 1. [13, p. 310]. Any group belonging to M has a présentation of
theform

xmyn\...ixtCt(xmyn)y, (4.1)

where Ct{xm9 yn) (1 </<;) has zéro exponent sum on ailgenerators.

HILFSSATZ 2. [13, p. 311]. If G has a présentation oftheform (4.1), then the

images ofyu...9yd in G/Gjfreely generate G/Gjfor everyj (2<y<ct)). Thus G/Gj is

free nilpotent ofrank dand of class j— 1. Moreover, the images ofyu..., yd in Gfreely
generate a free subgroup ofG.

For a modem account of Hilfssatz 1, see [14, Section 3.3]; for Hilfssatz 2, see

[14, pp. 351-353, Theorem 5.14 and Corollary 5.14.1] or [19, p. 133, Korollar 1].

4.2. Around Lyndon's Resolution

The relevance of the class M(Z) for our investigation stems from the fact that

M(Z) is a subclass of E(Z), as we shall show in this subsection.

Let R<aF^»G be an extension of groups. There exists an associated short exact

séquence

F^>IG (4.2)

of left G-modules (see e.g. [10, VI. 6] for détails). The G-module structure of Rab in
(4.2) is induced by conjugation.

Suppose Fis a free group. Then the extension R<aF^>G is called a free présentation

of G. Splicing the séquence (4.2) with /G>^ZG4»Z, one obtains the exact

séquence

0 -» R^ ^ ZG®FIF-^ZG A Z -» 0. (4.3)
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(Note that the module ZG®FIF is G-free because IF is F-free.) Choosing a set

whose normal closure in Fis R, one gets a corresponding surjection

iel
Again, one may splice p with (4.3) obtaining

F-^ZG4>Z. (4.4)
iel

This exact séquence is the beginning of a G-free resolution of Z found by R. C.

Lyndon [12, p. 656, Lemma 5.1].
Now apply the functor

Z® G- :

to (4.2). There results the exact séquence

0 -> ker (lz®G k) -> K/[F, ,R] lz®G\ if/IF2 -+ IG/IG2 -> 0. (4.5)

From (4.3) one deduces that ker(lz®GK;) /f2(G, Z). Using the isomorphisms
IF/IF2^Fab and IG/IG2^Gab, the séquence (4.5) can be written as

F^G^0. (4.6)

Remark. If {rf}f6j générâtes jR as a normal subgroup of F, then {rt[R,
générâtes Rab as a G-module, and {rf[jR, F]}f€/ générâtes i?/[F, JR] as an abelian

group.
Suppose next that G is finitely présentable. Let

be a finite présentation of G. For a finitely generated abelian group A, dénote the
minimal number of generators by s (A). Since, in (4.6), kern*<Fab is free abelian, it
follows that

N>s(Rj[F, R~])=s(H2(G, Z)) + rk(ker7iJ|t)

=s(H2(G9Z) + M-rk(Gab).
Therefore

def0>=M-N^rk(Gab)-s(H2(G9 Z))

and

defG<rk(Gflfr)-s(tf2(G, Z)). (4.7)

(The above déduction is taken from [20, p. 295].)
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The inequality (4.7) shows that the deficiency of a finitely présentable group is
bounded by rk (Gab), and is thus finite. So there always exists a présentation 0> of G
whose deficiency equals defG.

Suppose, finally, that G lies in M (Z). Let 9 (zt,..., zM : rx,..., rN> be a présentation

of G whose deficiency equals rk (Gab). Let (4.4) dénote the associated beginning
of a G-free resolution of Z. Consider

The map lz®G/c is injective by (4.6) and (4.7), whereas lz®G/?:]j (Z)ï-»RI[F,
maps a free abelian group of rank N onto an abelian group of rank

M- rk (Gab) M- defG N,

and thus lz®Gj8 îs isomorphic. So lz®Gd2 is injective.
We summarize part of the discussion in

PROPOSITION 4.1. Suppose G has a présentation

whose deficiency M—N equals rk(Gab). Then

R** IF

>ZG®FIF

is the beginning of a G-free resolution ofZfor which 1Z®G^2
Every M(Z)-group is therefore an E(Z)-group.

COROLLARY 4.2. Every M-group is an E-group.

4.3. An Isomorphism Criterion
We recall some notions from the free differential calculus [6]. Let F be a free

group, free on {x^ieI. The corresponding augmentation idéal IF is an F-free (left)
module, free on {1 —x^UI (see e.g. [10, p. 196, Theorem 5.5]). So every élément of
the form 1 —f(feF) can uniquely be written as

-*i) (4-8)

This représentation defines for every iel a function

DXi:F-+ZF.
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From (4.8) one dérives in a straightforward manner the following properties:

^ i k,
otherwise

Property (ii) says the function DXl is a dérivation which, in view of (i), we shall call
the partial derivative with respect to xt. Properties (i), (ii) and (iii) show how to
calculate explicitly the partial derivative DXi of a given élément feF.

Consider now a group G in M. As proved by W. Magnus [13, p. 310, Hilfssatz 1],
G has a présentation of the form

G (xl9...,xt,yl9...,yd:x1Cl(xm9yH),...9xtCt(xm9yn)yK, (4.9)

where every Ci(xm,yn) has zéro exponent sum on ail generators. (The index n ap-
pearing in (4.9) indicates the name of the projection from the free group onto G.)
Let Fbe free on yu..., yd9 and let Fx*Fy dénote the free group

<xl9...,xt,yl,...9yd:}

occurring in the présentation (4.9). The augmentation idéal of Z(Fx*Fy) is naturally
isomorphic with

(Z(Fx*Fy)®FXIFx)®(Z(Fx*Fy)®FyIFy)

(see e.g. [10, p. 196, Theorem 5.5], or [10, p. 220, Lemma 14.1]). Therefore the exact

séquence (4.4) can in our particular case be written as

P2dX{ZG®FXIFx)®(ZG®FyIFy)d-XzG'^Z. (4.10)

Dénote the projection from (ZG®FXIFX)®(ZG®FyIFy) onto its first summand

ZG®FXIFX hy px. The announced criterion reads then as follows:

PROPOSITION 4.3. Let k be an s-tuple out ofK, let F be free on yu yd, let

G (x1,...,xt,yu...,yd:xlCl(xm,yn),...9xtCt(xm9yn)yn9

where Ci(xm9yn) has zéro exponent sum on ail the generators, and let cp:F-*G be

given by ynt-*yl (1 ^n^d).
Then the mappings ç?:F/F(k>J)^G/G(k>i) are isomorphic for ail j (2<j<co) if and

only if
2) (4.11)
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is isomorphic, and q> in (4.11) is isomorphic ifand only if

is surjective.

Proof It is readily checked that <p\F\F2-*G\G2 is an isomorphism. So Proposition

3.2 applies saying that

q>:FIFkl^GIGkl (4.12)

is injective for every k^K. One also easily checks that the map 1z®g(px°^2) is

given by lz®Im*->1Z®(1 — xm) (1 ^m^t) and thus is onto (even isomorphic).
The Frattini subgroup of a nilpotent group contains the derived group. In other

words, every set SeH, generating the (arbitrary) group H modulo its derived group
H29 générâtes H modulo any term Hj (2^j<œ) of its lower central séries. Thus

cp:FIF(kj)^GIGikj) is onto for a given j (2<y<co) if and only if (p:FIFikt2)-*
->G/(j(k>2) is onto. Together with (4.12), this remark proves the first part of
Proposition 4.3. It also shows that the map

is surjective if and only if ail the maps

^K^(*1,...,*o)«*^(G:(*i,...,*o«*

are surjective (i= 1, 2,..., s). Since

is surjective when ^z{gigu)®g{Px°^2) is surjective, we can apply induction on the

length of k. Taking into account (4.12), only the following claim (*) remains to be

verified:
Suppose (p:FjFk^GjGk is isomorphic. Then <p:(Fk)ab-+(Gk)ab is surjective

if and only if 1Z(g/g^®g(px°^2) is surjective.
In order to prove (*), we analyse the natural transformation <p(—) from

to

(cf. the proof of Lemma 3.1).
Let IF>~+ZF-»Z be the F-free augmentation resolution of Z, and let

zg4>z

be the beginning of a G-free resolution of Z, as described in the previous section (see
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also (4.10)). Choose xo (p:ZF-+ZG and

IF -> (ZG®F,/Fx)e(ZG®FyIFy)Tl-^: l-7n^ 0 0(1zg®(1-3V».
The diagram of F-modules

0 -+ IF -+ZF-+Z

(4.13)
P2 - (ZG®Fx/^)e(ZG®Fy/Fy) -> ZG -> Z

is then commutative and may be used to compute (p(A):Hl(F, A)-+H1(GiA) for
any G-module ^4.

Suppose now that (p:F/Fk^G/Gk is an isomorphism. Then, modulo Gk, every
generator ^ (l<m<r)is congruent to the image w^ of some élément wm of F. As
1 — wm has a représentation

there results a G-one-cycle, to wit

lz(G/ck>®(l-*m)©£ {~DynK))"®(1-JB)- (4.14)

It follows that every élément (xxe(Z(GIGk)®FXIFx) occurs as the first component
of some G-one-cycle ax©ar

On the other hand, it is clear from (4.13) that the images of the F-one-cycles
under zi are exactly the G-one-cycles of the form 0+<xr The natural transformation

<p(Z(GIGk)):Hx(F9 Z(G/Gk))->Hx(G, Z(G/Gk))

is therefore surjective if and only if

is surjective. But q> : (Fk)ab -? (Gk)ab is naturally isomorphic with the composition

Ht (F,Z(FIFj)*Ht (F, Z(G/Gt))
y(Z(G/G|t))

' ^i (G, Z(G/Gk)),

in which q>x is isomorphic by hypothesis. So (*) is established, proving Proposition 4.3.

Remarks. The composition pxod2:P2-*ZG®FxIFx induces for every keK an
embedding

For rjk is a map between G/Gk-free modules, for which lz®G/Gk^k *s injective, and

G/Gk, being poly-(torsion-free nilpotent) lies in D(Z). The condition

d2) is surjective"
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appearing in the statement of Proposition 4.3, is therefore équivalent to the condition

"lz (G/Gk>®gO'*0^) is isomorphic".

Any knot group G, i.e. the fundamental group nl (S3\4) of the complément of a

(tame) knot/ in a 3-sphere, is an M-group, whose abelianization Gab is free cyclic
(see e.g. [5, p. 83, (2.5)] and [5, p. 112, (1.2)]), and thus has a présentation of the
form

G <x1,---,xf,^:x1C1(xm,j),--,xrCf(^mJ>;)>w-

Let C=(c) dénote a free cyclic group. Consider the map <p:C-+G given by sending
c onto y%. Then

<p\C\C"->G\G"

is an isomorphism if and only G' is perfect, i.e. if G' G". It can be verified that the
déterminant of ^z{gig')®g{Pxo^i) is> UP t0 a unit °f Z(G/G'), the Alexander poly-
nomial A (t). So Proposition 4.3 generalizes the well-known criterion that the derived

group G' of a knot group G is perfect if and only if the Alexander polynomial A (t)
equals 1 (see e.g. [16, p. 46, Theorem 4.9.1]).

5. The Proof of Theorem C

In this section we shall prove Theorem C. Moreover, we shall discuss a similar
resuit due to G. Baumslag [2].

5.1. THEOREM C. Let V and W be non-trivial éléments of the free group F on

yt and y2- Let G dénote the group

ix,yuy2,y,:x{V,x-\(iW,y{\y\ (ô=±l),
and let cp:F-*G be the map from the free group on yl9y2 and y^ into G, given by

sending yn onto ynn (« 1, 2, 3). Then thefollowing statements hold:

(i) çiF/Fj^G/Gj is isomorphic for everyj (2<j<co).
(ii) (p:F/Fi2j)^GIGi2j) is isomorphic for everyj (2^j<co).
(iii) IfVbelongs to Êk then q> : F/F^^ & G/G(kji) is isomorphicfor everyj (2 < j< co)

(iv) IfWis not in F2 then G is an extension ofafree group by a free cyclic group.
G is, moreover, residually nilpotent.

(v) IfVbelongs to Ê2 then G is not free.

Remark. If a and b are two éléments of a group, we dénote by [#, b~] the élément

aba~xb'K
5.2. Proof Plainly (p:FIF2^GIG2 is an isomorphism. The deficiency defG is

equal to the rank of GjG2 and G\G2 is torsion-free. So G is an M-group, and by
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Corollary 4.2 it is an E-group. We then deduce from Theorem B that q> induces, for
every keK, an embedding

In particular, <p:F/Fj-> G/Gjis injective for everyy (2 <y < co So claim (i) is establish-
ed provided we can show that cpiF/Fj-^G/Gj is onto for every y. This follows from
the surjectivity of (p\F\F2-+G\G2 and from the fact that the Frattini subgroup of
a nilpotent group contains the derived group.

(ii) and (iii). The mapping cp:F-> G is of the form considered in Proposition 4.3.

So look at

It is onto if, and only if, the image of (Dx(r))n under the canonical projection
/?k:ZG-»Z(G/Gk) is a unit in Z(G/Gk), i.e. an élément of the multiplicative group
of Z(G/Gk). The partial derivative Dx{r) of the relator with respect to x may be

computed as follows:

Dx(x[V, x]• [FF,y3Y)=l+ xV-x-

(Remember [a.b^aba^b'1.) Clearly xn belongs to G2. So ((Dx(r))*Y2 (V*Y2
is a unit of Z(G/G2). This proves (ii).

On the other hand, if V lies in Fk the élément ((Dx(r)YYk *s equal to 1, which

proves (iii).
(iv) By hypothesis, W is in F\F2- Suppose cryi(W), the exponent sum on yl9

differs from zéro. We claim that the normal subgroup

i.e. the normal closure of xn, y2, y* in G, is free. To see this, présent N(xn, y2, y%) by
the method of Reidemeister-Schreier (cf. [14, pp. 253-258, Case 2 or Case 3]).
Choose the powers {(yl)h}heZ as a transversal of N(xn9y29yl) in G. Choose the

symbols

(AeZ)

as generators for N(x*, y%, yf). Since the powers {yî}heZ form a Schreier System, N
can be presented by

<**, yz,u, y3,H (heZ):xh-
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where Vh and Wh (heZ) dénote words in {y2,h}hez> and where av is short for ayi (F),
<tw is short for (Tyi(W)^0. From this présentation it is patent that N(xn,y^y*) is

free on {xl}heZ, {y2fh}hez and l^iC^OI consécutive generators chosen out of the

séquence

•••5 J3, -2> 73, -1> ^3,0> ^3, +1> J3, +2» ^3, +3»

The quotient G/N(xn, y%, y%) is generated by the image of y\ and is free cyclic.
So G is an extension of a free group by a free cyclic group. There remains the question
why G is residually nilpotent.

The normal subgroup N(xw, y2, yl\ being free, is residually nilpotent and contains

G2. Therefore

H G(2J)=e.
j<(O

By (ii) the groups G/G(2j) are ffee nilpotent by abelian. Such groups are known
to be residually nilpotent ([7, p. 52, Theorem 6.3 or Theorem 7.1], cf. [15, p. 76,

26.33]). Consequently, G is residually (residually nilpotent), i.e. residually nilpotent.
Claim (v) is proved by applying the algorithm due to J. H. C. Whitehead [25]

whereby one can décide whether a one-relator group is free.

5.3. We conclude Section 5 with a word on the model for Theorem C, namely on
Theorem 2.1 in Baumslag's second paper on parafree groups [2, p. 512].

THEOREM D (G. Baumslag [2]). Let m and n be integers, both différent from
zéro. Let H dénote the group

<*> yu y2 : x [>>7> *] Lvî, J^])* >

and let (p:F-+H be the map from the free group on yt and y2 into H given by sending

yh onto yl (h 1, 2). Then thefollowing statements hold:

(i) (piF/Fj^H/Hj is isomorphic for everyj (2<j<û>).
(ii) <p:F/lF, F"]ziHI[H, H"} is isomorphic,

(iv) H is an extension of a free group by a free cyclic group. It is, moreover,
residually nilpotent.

(v) H is notfree.
The statements (i), (iv) and (v) can be proved by arguments, analogous to those used

in the proofs of the statements (i), (iv) and (v) of Theorem C. Claim (ii) does not
follow solely from the methods of this paper but needs, in addition, a resuit of
U. Stammbach [18]. In détail:

Consider the partial derivative Dx(r) of the relator with respect to x. It reads:
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Because x* is in H2, the image ((Z>x(r))*)pl of (Z>x(r))* in Z(HjH2) equals ((y™)")"2
which is a unit of Z (H/H2). By Proposition 4.3, the map

is therefore isomorphic for every/ (2<y<co). Consider y=2. From the properties
(1) <p:FIF2*HIH2
(2) H2(H, Z)=0
(3) <p:FIF(2,2)*H/Hi2,2)

a resuit of Stammbach [18, p. 166, Satz] allows to infer that

q>:Flt... [[F", Fj, F],... F]

is isomorphic for every y (2^y<co). This proves (ii) in Theorem D.

We add a remark. In H/H3 the image jc (xw)p3 of xn is equal to [j;", j?2]"1
n' The image Djjr) of (Ac(r))* in Z(H/H3) can therefore be written as

As if/^ is free nilpotent it is indicable in the sensé of G. Higman ([9, p. 241ff.],
cf. [8, pp. 61-62, §4.5]). It follows that ail units of Z(H/H3) are of the form ±h
{heHjH3). So Dx{r) is not a unit in Z(HjH3). By Proposition 4.3 this implies that

is injective but not onto.
I do, however, not know whether HjH{3f2) is free (abelian by nilpotent-of-class-

two), or not.
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