
Classification Theorems for Quadratic Forms
over Fields

Autor(en): Elman, Richard / Lam, T.Y.

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 49 (1974)

Persistenter Link: https://doi.org/10.5169/seals-37999

PDF erstellt am: 16.08.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-37999


373

Classification Theorems for Quadratic Forms over Fields

Richard Elman1) and T. Y. Lam2)

1. Introduction

In the study of quadratic form theory, the Classification Problem has always oc-

cupied a unique and central rôle. Namely, given a field F3), what are the basic invariants

which classify (the isometry classes of) quadratic forms over FI The question in
this generality has so far defied an answer, as no one has been able to exhibit a complète

set of natural invariants which work for ail fields. However, for spécifie classes

of fields, the Classification Problem has been solved in various spécifie ways. Thus,
one way to treat the Classification Problem is to ask the following slightly différent
question : which are the fields whose quadratic forms are classified by a prescribed set

of invariants? Let us record from the literature some known answers to this alternative
question, in order to lead up to and motivate the main resuit in this note.

CLASSIFICATION THEOREM Y (Triviality). Quadratic forms over F are
classified by "dim" iffF is quadratically closed, iff /F=0.

Hère, IF dénotes the idéal of even dimensional forms in the Witt ring, W(F).

CLASSIFICATION THEOREM 1 (Sylvester-Pfister Law). Quadratic forms
over F are classified by "dim" and the total signature (i.e. the totality of signatures
with respect to ail orderings of F) iff F is pythagorean, iff IF is torsion-free.

The following is also easy to see:

CLASSIFICATION THEOREM 2'. The following are équivalent:

(1) Quadratic forms over F are classified by "dim" and "det".
(2) I2F=0.
(3) AH F-quaternion algebras split.
(4) If an F-quaternion algebra splits over a quadratic extension of F, then it splits

over F.

(5) AU binary forms <1, tf> (aefi) are universal

EXAMPLES (for which the above statements hold): finite fields; algebraic
extensions of C(x); the power séries field C ((*)).

x) Supported in part by NSF Grant GP-375O8X.
2) Supported in part by NSF Grant GP-20532 and the Alfred P. Sloan Foundation.
3) Ail fields hâve characteristic différent from 2 in this paper.



374 RICHARD ELMAN AND T. Y. LAM

CLASSIFICATION THEOREM 2. The following are équivalent:
(1) Quadratic forms over F are classified by "dim", "det" and the total signature,
(2) I2F is torsion-free.
(3) If an F-quaternion algebra splits in every real closure ofF, then it splits over F.

(4) If an F-quaternion algebra splits over some F(*Jw) where w is totally positive,
then it splits over F.

(5) Ail binary forms <1, à} represent ail totally positive éléments of F.

Proofs of thèse équivalences are covered by [2, Cor. 2.9] and [6, Theorem E].
The latter contains also further statements équivalent to each of the above.

EXAMPLES. Algebraic extensions of R(x); any formally real field with square
classes {±1, ±2}.

CLASSIFICATION THEOREM 3' [5, Theorem 3.11]. The following are équivalent:

(1) Quadratic forms over F are classified by "dim", "det" and the Hasse invariant.

(2) /3F=0.
(3) AU F-Cayley algebras split.
(4) Ifan F-Cayley algebra splits over a quadratic extension ofFt then it splits over F.

(5) AU quaternionic norm forms <1, a, b9 ab} (a, be f) are universal.

EXAMPLES. Algebraic extensions of C(x, y); p-adic fîelds; non-formally real

global fields; C^)) (('2)).
Note that Theorems 1', 2' are implicitly addressed to non-formally real fields,

while Theorems 1, 2 are respectively their generalizations to arbitrary fields. This
strikes a résonant note to the papers [3,4,6], where it is demonstrated that many things
said about non-real fields can be appropriately generalized to arbitrary fields. In this
perspective, one is naturally led to conjecture that Theorem 3' can be superceded by the

following much broader statement:

CLASSIFICATION THEOREM 3. The following are équivalent:

(1) Quadratic forms over F are classified by "dim", "det", Hasse invariant and the

total signature.
(2) PF is torsion-free.
(3) If an F-Cayley algebra splits in every real closure of F, then it splits over F.

(4) Ifan F'Cayley algebra splits over some F(y/w) where w is totally positive, then

it splits over F.

(5) AU quaternionic norm forms <1, a, b, ab} (a9beÊ) represent ail totally positive
éléments ofF.
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EXAMPLES. Algebraic extensions of R(x, y); global fields.

The purpose of this note is to render a proof of Theorem 3. Though we restrict
ourselves to fields throughout the paper, it seems reasonable to expect that the same
theorem works essentially over semi-local rings. This observation is supported by the

work of Mandelberg [9], where the non-dyadic semi-local analog of Theorem 3' has

already been obtained (under mild restrictions). On the other hand, Sah [12, Theorem

3] has established the analog of Theorem 3' for fields of characteristic 2.

A word about notations. For a field F, write F=F— {0}, and (j(F) the set of
totally positive éléments (=non-zero sums of squares, by Artin-Schreier). For atef,
<<ïi,..., any dénotes the "/z-fold Pfister form" ®?=i<l, ai). The idéal power FF is

additively generated by ail w-fold Pfister forms in W(F). If a Pfister form q> lies in
Wt (F), we say that <p is a torsion Pfister form. Standard facts about quadratic forms
can be found in [8].

2. Auxiliary Results

For convenience of the reader, we shall recall hère a few results from our earlier
work [2, 3, 5], to be used in the sequel.

PROPOSITION 1 [5, Section 3]. Let K=F(y/a) be a quadratic extension of F.

Let s:K->F be the F-linearfunctionaldefinedby ^(l) 0, s{yJa)-\. Let s*:W(K)-+
-? W(F) be the transfer map inducedby s, andr*: W(F) -> W(K) be thefunctorialmap.
Then,

(1) We hâve a zéro séquence

0-+%-ayin-1F->IHF£lnK2>IHF for ail n^O.

(By définition, r1F=I°F= W(F).)
(2) The above séquence is exact for n=09 1, 2.

(3) The above séquence is exact for n 3, except possibly at the term I3K.

(4) If yeI3K is %-dimensional and s*(y) 0, then there exists qeI3F such that

r*(q) y.

PROPOSITION 2 [3, Cor. 2.3]. Suppose a is a 2n-dimensional form such that

2o=QeW(F). Then a^X"=1 <0f> ^ — w^ for suitable ateF, and wt which are sums

of two squares.

COROLLARY 1. Ifa is a Pfister form, then 2<r=0 iffa^t- w, ...> where w is a

sum of two squares.

Proof "If" is clear. Assuming 2(7=0, we hâve tr^<a> <1, —h>> 1..., where aeF
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and w=b2 + c2#0. Using standard facts about Pfister forais, a^<a>• a ^ < 1, — w, ...>
^«-W..». Q.E.D.4).

PROPOSITION 3 [2, Theorem 2.8]. .Ev^rj efeme/tf in I2Fn Wt(F) is a sum of
forms <^a, — h>X H>Aere aeF and weo-(F).

We shall now prove some lemmas.

LEMMA 1. Let n^\. Suppose there are no anisotropic n-foldPfister form (p satis-

fying 2(p=0eW(F). Then there are no anisotropic torsion m-fold Pfister form for any

Proof. Suppose y is an m-fold Pfister form (m^n) such that 2'+1y 0 but 2'y
Consider the (m-ht)-fold Pfister form 2'y which is killed by 2. According to Corollary

0 since it is killed by 2. Thus 2*y 0, a contradiction.

COROLLARY 2 (Pfister: see [8, p. 300]). Let r^l. If any r-fold Pfister form
represents any non-zero sum ofl squares, then any r-fold Pfister form represents ail of
a{F).

Proof. Apply Lemma 1 with n m r + l, using again Corollary 1.

COROLLARY 3. In Theorem 3, we hâve (3)<s>(4)

(A) There are no anisotropic torsion 3-fold Pfister forms (over F).
Proof A Cayley algebra splits iff its 3-fold Pfister norm form is hyperbolic

[7, p. 371]. Thus, (3)o(A) follows from Pfister's Local-Global Principle [11]. By
Corollary 1 and Lemma 1, we hâve (A)o(5). Considering the form <£a, b, — w>

LEMMA 2. Let K=F(yJa) be a quadratic extension ofF. Then I2K coïncides with
the F-module J in W{K) generated by <e, z> where eeF, zeK.

Proof Let x, yeK and be F. From the équation <x6, yy <&> <x, >>>+< - b, j>»

eW(K)9 it follows that ^x,yyeJ=><^xb,y^eJ. Thus, we need only show that

cp^^c+^a, d-y/ayeJ9 where c.deF. If c=-d9 q> is hyperbolic. If c^-d,
rf, (c+y/a) (d-y/

LEMMA 3. Let K=F(^Jw) be a quadratic extension ofFt where wea(F). Assume

that Property (A) {see Corollary 3) holdsfor F. Then it also holds for K.

4) Hère is a proof which avoids Prop. 2. Write a <1 > J_cr'. Since a^ < — 1 > a, a represents — 1,

and hence g' represents some — w — (b2 + c2) # 0. We then hâve cr^«— w,...».
5) As observed by Mandelberg, this Lemma together with Frobenius reciprocity yields a quick

inductive proof of the inclusion s+(InK) <= InFasserted in Prop. 1 (1).
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Proof. Let y €x,y, — z>, where x, yeK and z is a sum of 2 squares in K. It
suffices to show that y must be hyperbolic. Let r *, s* be as in Proposition 1 (with a=w).

Step 1. We claim that s*(y) 0eW(F). Since s*:W(K)-> W(F) is a F-module
homomorphism (by Frobenius reciprocity), we may assume that xeF, by Lemma 2.

Consequently, s*(y) s*^x,y, -*> <*>>• s* (<>>, -z». The latter lies in <*»•
•(I2Fn Wt(F))9 which is zéro in view of Proposition 3 and the hypothesis on F.

Step 2. Since s* (y) 0, there exists an anisotropic form qeI3F such that r*(q) y

(Proposition 1 (4)). In the following, assume that y is anisotropic. We may then write

q^fl « - h>» -g, where /, g are forms over F, dim/= 8 (see [8, p. 200]). If dimg 1,

then dim#=10, and qeI3F=>q is isotropic [11, Case 5 on p. 123], a contradiction.

If dimg^2, <l — wy-g contains a subform <6>^ —w, c>, which is universal by
hypothesis and hence q is isotropic, again a contradiction. Consequently, g is the zéro

form, and dim# 8.Thismeans that q^(Jbly^b2, b3, b4y whereôfeF [11, Case4on

p. 123].
Step 3. Our hypothesis for F implies that <-w>-J2F=0. By Proposition 1 (3),

it follows that r*:I3F-+I3Kis injective. Since r*(q) y is torsion, q must be torsion
too. But then ^b2, b3, 64> is an anisotropic torsion Pfister form - a final contradiction.

Q.E.D.

3. Proof of Theorem 3

We are now ready to complète the proof of Theorem 3. In view of Corollary 3,

we need only show (1)=>(A)=>(2)=>(1).
(1)=>(A). Consider <<*,&, -w» (we<j(F)) and <1, 1, -1». Thèse both hâve

dimension 8, déterminant 1, trivial Hasse invariant, and zéro total signature. Hence

(1) implies that <C#, b, — w> is hyperbolic.
(A) => (2). Suppose F satisfies (A), but there exists a nonzero anisotropic form

ael3F with 2(T=0. We may suppose Fto hâve been chosen such that âimcr 2n is as

small as possible. By Proposition 2, o-^llj=1<ai> i^ — w^, ateF9 Wie<j(F). Let

K=F(-s/wi). This field also satisfies (A), by Lemma 3. Since the anisotropic part of a

over Â^is <2«, the form a must become hyperbolic over Ky by the choice of n. Accord-
ing to Proposition 1 (3) and the Property (A), we get creC — w1>-/2F=0, a
contradiction.

Now that we know (A)o(2), we may restate Lemma 3 as:

COROLLARY 4. Let K=F(y/w)9 we<r(F). Then, I3F is torsion-free=>I3K is

torsion-free.
Remark. The same implication, of course, holds for /2. The proof is immédiate

from the 72-exact séquence in Proposition 1 (2).
It still remains to ascertain one last implication: (2)=>(1), for the conclusion of
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the proof of Theorem 3. To do this, we first make some observations about invariants.
For a regular quadratic form q over F, the Clifford invariant, F(q), is given by the
class of the Clifford algebra of q in the Brauer-Wall group BW(F) (see [8, p. 115]).
It is well-known that F (q) contains exactly the same information as the aggregate of
"dim.mod.2", "det" and the Hasse invariant [8, p. 120-123]. Thus, we hâve nothing
to lose in working with F. On the other hand, the single invariant F is much nicer to
work with, because it is well-defined on W(F), and is a homomorphism into BW(F).
Working with F in gênerai avoids many unpleasant calculations. We shall now prove

PROPOSITION 4. SupposePFistorsion-free,andqisaformsuchthatqeWt{F).
Then F(q)=l=>q is hyperbolic.

Proof. Assume that F(q)=l, but q is non-hyperbolic. Since ker(F: JF(F)-»
-+BW(F))cI2F, we hâve qeI2FnWt(F), so we can write tf=£?=i«^> -w,>,
ateF, wi€a{F). We may suppose F, q to hâve been chosen such that n is as small as

possible. Let K=F(y/w1). Since q=^j=2€ah — w^ *n W(K), and I3Kis still torsion-
free (Corollary 4!), q must become hyperbolic over K, by the choice of n. According
to Proposition 1 (2), ^=<-H'1>-<fe1,..., 62r>eWK(F), for suitable bief. Thus,

«-^, (-iy+1 b±... b2r}) (modPF).

Since F(q)=l and F(/3F)=1 (see [8, p. 117]), we see that r«-w1, (-l)r+1 h
è2l.»=l. This means that <l~-wu (-l)r+1 bx... è2r>is hyperbolic (see [8, p. 116]).

Thus, qePF. But then qeI3Fn Wt(F)=0, a contradiction. Q.E.D.
Using Pfister's Local-Global Principle, we obtain:

COROLLARY 5. Suppose I3F is torsion-free. Let sa: W(F)-+ W(Fa)^Z be the

"signature maps", where {Fa} are a complète family ofreal closures ofF. Then

(r, n. say. w(F)^BW(F)®Y[a w(f.)
is a monomorphism. In particular, quadratic forms over F are classified by "dim", the

Clifford invariant and the total signature.
Since "dim", **det" and the Hasse invariant together détermine F as observed

before, Corollary 5 provides the implication (2)=>(1) in Theorem 3. The proof of
Theorem 3 is now complète.

We shall now make some remarks about Theorem 3.

Remark 1. The statements (1) to (5) in Theorem 3 are also équivalent to each of
the following: (6) Quadratic forms over F are classified by "dim" and Milnor's total
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Stiefel-Whitney class vv in [10]. (7) Quadratic forms over F are classifiedby "dim" and
Delzant's total Stiefel-Whitney class w in [1]. (Note: w takes its value in the algebraic
&-groups of Milnor, while w takes its value in the Galois cohomology of F). In fact,
(6)o(2) has been shown in [2, Theorem 2.15]. (7)=> (6) is trivial since w is a "special-
ization" of w. To see that (1)=>(7), suppose q> and a hâve the same "dim" and the

same # ($,). For /= 1, 2, this says that <p and <r hâve the same "det" and the same
Hasse invariant. But they also hâve the same total signature, since q>—oeWt{F) by
[13, Cor. 6.2]. Therefore, cp^cr by (1).

Remark 2. Suppose F, F' are fields for which there exists a ring isomorphism
g: W{F)^ W(F'). Then, if the statements in Theorem 3 apply to F, they will likewise

apply to F'. This is because IF is the unique maximal idéal in W(F) containing 2,

which implies that g(/3F)=/3F'.
Remark 3. The "hereditary" property in Corollary 4 is peculiar to quadratic

extensions of the type F(y/w)^F(wea(F)). In fact, let Ft be a pythagorean field which
has a non-pythagorean algebraic extension Et=Ft (a). Let F2 Ft ((*)), F3=F2 ((y)),
and E^F^ol). Then, for i l, 2, 3, Ft satisfies Theorem i, but E{ does not. (If Fx is

formally real pythagorean, then so are F2 and F3 and they even satisfy Theorem 1.)
Remark 4. A number of other properties also share the "hereditary" feature of

Corollary 4, under quadratic extensions of the type K=F(jw) (wecr(F)). For example,

it can be shown that, ifevery totally positive élément of F is a sum ofT squares,
then the same holds for K. If a field satisfies the statements of Theorem 3, then, in

particular, wecr(F)=>Cl, 1, — w> is hyperbolic =>wis a sum of four squares. However,
this latter property (though "hereditary" in the above sensé) does not imply the
statements in Theorem 3. For example, every totally positive élément in L Q((f)) is a

sum of four squares (see [8, p. 315]), but I3L is not torsion-free (e.g. ^l, —3, ty is

an anisotropic torsion Pfister form over L).

Appendix : Similarity Factors and a Theorem of Dieudonné

For a quadratic form q ofdimension n over F, let d± (q) dénote — 1 )"(n~1)/2 • det (q)
(the "signed déterminant"), and let s(q) dénote the Hasse invariant of q. Also, let

D(q) dénote the nonzero values of Frepresented by q, and let G(q) dénote the group
of similarity factors of q (i.e. G(q)={aeÊ:a*q^q}).

LEMMA4. Ifdimq n 2r, and aef, then s(a-q) s(q) iff aeD{\, -d±(q)}.
In particular, G(q)czD<<l, -d± (q)}.

Proof From [8, p. 140, Ex. 8], s(a-q) and s(q) differ by a quaternion algebra
(a,(-lYiH~1)/2-d*~1IF)9 where J=det(#). Since n=2r, this quaternion algebra is

(a, d± (q)/F), which splits iff aeD{ 1, -d± (q)}. Q.E.D.
In gênerai, beD(l, —d± (q)} need not imply beG(q). For b to be in G(q)9 there
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exists at least one other obvious necessary condition, namely, b must be positive in
every ordering of Fat which q is non-hyperbolic. Thus, if we write G' (q) for the group

{beD{\, —d± (q)}:b>0 in every ordering of F at which q is non-hyperbolic},

we hâve an inclusion G(q)czG'(q), for ail even dimensional forms q.

THEOREM. The conditions (1) through (5) in Classification Theorem 3 are also

équivalent to each of the following:
(8) G(q) G'(q)for ail even dimensional forms q over F.

(9) G(q) G'{q)for ail torsion 2-fold Pfister forms q over F.

(10) Torsion 2-fold Pfister forms over F are universal.

Proof (1)=>(8). If beG'(q\ then, q and b-q hâve the same "dim", "det", Hasse

invariant (by Lemma 4), and the same total signature (by inspection). Thus, b-q^q
by(l).

(8)=>(9)is obvious.

(9)=> (10). If q is a torsion 2-fold Pfister form, the group G'{q) clearly coindides
with /. Thus, (9) implies that G(q) F, i.e., q is universal.

To complète the proof, we shall show that (10) implies the Condition (A) in
Corollary 3. By Lemma 1, it is sufficient to show that any 3-fold Pfister form <p

satisfying 2ç 0eW (F) is isotropic. By Corollary 1, <p C — w> x>yy> where w is a

sum of two squares, and x, yet. By (10), < —w, x> is universal, so q> is isotropic.
Q.E.D.

Since global fields satisfy the condition (1) (by the Hasse-Minkowski Theorem),
we obtain:

COROLLARY 6. IfF is a globalfield, then G(q) Gf (q)for any even dimensional

form q.
This resuit is a theorem of Dieudonné [14, Théorème 3]. However, our proof

((1)=>(8) above) is a drastic simplification of Dieudonné's long arguments in [14]
(which, incidentally, also use the Hasse-Minkowski Theorem). Actually, Dieudonné's

proof in [14] seems to contain a gap (in the middle of p. 402), as pointed out by
Dan Shapiro. We would like to thank Dan Shapiro who called our attention to
Dieudonné's paper [14], and collaborated in this appendix.
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