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Amalgamated Free Products of Groups and Homological Duality

R. Bieri and B. Eckmann

1. Introduction

1.1. Among the contexts where amalgamated free products of groups occur are
présentations of groups and fundamental groups of spaces: A group freely presented
by generators and relations can often be considered as an amalgamated free product
G Gl*sG2 of subgroups Gu G2 and S which are better known than G. The
fundamental group nt(X) of a union X=Xi kjyX2 of spaces Xl9 X2 with identified subspace
Y (ail path-connected), where nl(Y)-*n1(X) is injective, is an amalgamated free

product n1(X))*ni(Y)nl(X2).
In both thèse instances simple examples are available where amalgamation of

duality groups (i.e., groups with homological duality generalizing Poincaré duality,
cf. [1]) again yields duality groups; or where a group known to be a duality group -
for example because it admits a closed manifold as an Eilenberg-Mac Lane space - can
be decomposed into an amalgamated free product. A simple illustration of this is

given by the closed orientable surface of genus 2 considered as a union of two tori
with a dise removed; a similar décomposition is available for closed "sufficiently
large" 3-manifolds (cf. [7]). Section 4 contains a list and detailed description of
examples of thèse and other types.

1.2. The purpose of this paper is to show that under suitable conditions amalgamation

of duality groups leads to duality groups. Thèse conditions are essentially on the
dimensions of the groups Gl9 G2 and S. We first prove thatfor G Gt *SG2, with S^Gt
and G2, to be a duality group of dimension n the following condition on the respective

cohomology dimensions cd is necessary:

n-l^cdS^cdGj^n, y l,2. (1.1)

In particular, if G is a duality group of dimension > 1 then cd5f>0. The above resuit
thus contains, and explains in a more précise way, the known fact ([1], Corollary 1.5)

that a duality group of dimension > 1 cannot be a non-trivial free product. The lower
bound for the cohomology dimension of S is also useful in applications, e.g. to
torsion-free arithmetic groups (known, by the work of Borel-Serre [9], to be duality
groups).

Conversely, if Gl9 G2 and S are duality groups of dimensions fulfilling the in-

equalities (1.1), then G is a duality group in the case cdG1 cdG2=n, cdS=n-l,
and then cdG=n; and also in the case cdG!1=cdG!2=cd5=cdG!=n-l. In the other
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remaining dimension cases (cdG1=cd5=«~l, cdG2 «; and cdG1=cdG2
cdS=n — 1, but cdG n) additional conditions on certain restriction homo-

morphisms must be fulfilled. For the précise statements see Theorems 3.2, 3.3 and
3.5. The additional conditions always hold if S has finite index in Gi9 or in Gt and
G2, respectively.

The proofs of thèse statements are based on the Mayer-Vietoris séquence for
amalgamated free products. We recall that séquence briefly in Section 2, with a short
sketch of a proof. Moreover, gênerai properties of duality groups established in other

papers ([1], [2], [3], [4]) are heavily used. Ail proofs become simpler if the groups
involved are assumed to admit finite projective resolutions1); or equivalently, for
finitely presented groups, to admit Eilenberg-Mac Lane complexes dominated by
finite complexes (this remark is useful for applications, but our procédure is entirely
algebraic). This view-point is adopted in Section 3.

1.3. In Section 5 we prove the same statements without finiteness assumptions.
The main tool hère, aside from the Mayer-Vietoris séquence, is a property of groups,
fulfilled by ail duality groups, which is examined in a broader context in [4] : namely,
to hâve finite cohomology dimension and to admit an "elementary duality" property
in the top dimension. We call such groups "of type (FD*)". Groups admitting finite
projective resolutions belong to that class; and so do, more generally, groups of finite
cohomology dimension admitting a projective resolution which is finitely generated
in the top dimension1). The arguments used in Section 5 deal essentially with amalgamated

free products of groups of type (FD*). For thèse a few further dimension
relations can be obtained.

2. The Mayer-Vietoris Séquence

2.1. Given two monomorphisms of groups il:S-*G1, i2:S-+G2 one dénotes by
G1*SG2 the generalized free product of Gx and G2 with amalgamated subgroups

ii(S) and i2(S)9 in short the "amalgamated free product". G G1*SG2 is defined as

factor group (Gx *G2)/N, where N is the normal subgroup of Gx * G2 generated by ail
h(s) his)'1, seS. The natural maps Kj-.Gj-^G, j 1, 2, are monomorphisms; one
often identifies G, with Kj(Gj) and S with k1i1(S) k2i2(S), and one then has

G1nG2 S. The diagram

S >—? Gi

G2 >-> G
Kl

is a push-out diagram in the category of groups.

x) See "Note added in proof" at the end of this paper.



462 R. BIERI AND B. ECKMANN

One writes Z(G/S) for the (right) G-module freely generated, as an Abelian group,
by the cosets Sx of G modulo S with G-action by (right) translations ; and similarly
for Z(GIGj)J 1,2.

PROPOSITION 2.1. (Swan [6]). With G G1*SG2 there is associated a short

exact séquence of (right) G-modules

(2.1)

where ol(Sx)=(G1x, -G2x) and ^(Gtx, 0)=£(0, G2x)=l, xeG.

2.2. For an amalgamated free product G=G1*SG2 there are Mayer-Vietoris
séquences relating the (co) homology groups of G to those of Gl9 G2 and S. Although
thèse séquences are well-known (cf. [6], [7], [8]), we will give a simple proof showing
how to deduce them almost immediately from (2.1); moreover we get a description
of the Connecting homomorphisms which we will use in our applications.

PROPOSITION 2.2. For an amalgamated free product G Gl*sG2, a left G-

module A and a right G-module B one has long exact séquences (keZ)

••¦^H"(G;A) ite*-"s*)>H''(G1;A)®Hk(G2;A) ("s>' "fM>).

The maps res* and cor* are induced by the respective subgroup inclusions.

Proof Since (2.1) is a séquence of free Abelian groups, we hâve exact séquences of
left (right) G-modules by diagonal action

Hom(Z, ^)^->Hom(Z(G/G1), ^)0Hom(Z(G/G2), ^)^Hom(Z(G/S), A)

and

Now, for any subgroup Hc G, the maps

A)
n : B®Z (GjH) -+ B®H ZG



Amalgamated free Products of Groups and Homological Duality 463

given by Ç(f) (x) xf(Hx) and ti{b®Hx) bx~l®x9 xeG,/eHom(Z(G/#), A%

beB, are G-module isomorphisms. We thus get exact séquences of left (right)
G-modules

,4)-»Homs(ZG, A) (2.4)

and

B®sZG»(B®GxZG)®(B®GlZG)-»B. (2.5)

Since, for any subgroup HcG, one has Hk(G; UomH(ZG, A))^Hk(H; A) and

Hk(G; B®HZG)^Hk(H\ B), the long coefficient séquences corresponding to (2.4)
and (2.5) respectively are precisely the desired Mayer-Vietoris séquences. The homo-
morphisms Ô and ô can easily be described as Connecting homomorphisms in the
coefficient séquences.

2.3. As an application we discuss conditions for an amalgamated free product to
be of type (FP), or (FF). A group G is said to be of type (FP), if the trivial G-module
Z admits a finite projective resolution over ZG; of type (FP) if it admits a finitely
generated free resolution. (FP) together with finite cohomology dimension cdG is

équivalent to (FP). The results of this section could be obtained by explicit use of
resolutions, but we prefer hère a procédure based on the homology Mayer-Vietoris
séquence and on the criteria for (FP) and (FP) given in [2], Proposition 3.2.

THEOREM 2.3. Let G G1*SG2 be an amalgamated free product.
(i) IfGt and G2 are of type (FP), then G is oftype (FP) ifand only if S is.

(ii) If G and S are oftype (FP), then so are Gx and G2.

Moreover, the same statements holdfor type (FP).
Proof Let Gt and G2 be of type (FP). We consider the séquence (2.3) with

i?=n ZG, an arbitrary direct product of copies of ZG. By [2], Proposition 3.2,
since ZG is Grfree, we hâve Hk(Gj\ B)=0 for Jfc> 1,7= 1, 2. Thus (2.3) yields

Hk(G; ]1 ^G)^Hk.t (S; ft ZG), k>2.

Moreover, by Proposition 2.1, we hâve a commutative diagram with exact rows

0 -> Y\Z{GjS) -+

The maps X, \i and v are epimorphisms. Gt and G2, being of type (FP), are finitely
generated, and so is G=Gt*sG2 ; hence /i and v are isomorphisms.
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Now let S be of type (FF). Then Hk(S; fj z<?) n #fe(S; ZG) for ail Â:eZ. For
A:=0, this tells that k is an isomorphism, and thus Hî (G; fj ZG) 0. For fc> 1, we
hâve Hk+1(G; f] ZG)^Hk(S; f] ZG) n #*(£; ZG) 0, since ZG is S-free. Thus

i/*(G; f] ZG)=0 for ail fc ^ 1 and ail direct products f]; by Proposition 3.2 of [2]
this implies that G is of type (FP).

Conversely, assume that G is of type ÇFP). It then follows that Hk(S;Y\ ZG) 0

for *:> 1. We may assume that the index |G:S| is oo (since for \G: S\ < oo any finitely
generated résolution over ZG is also finitely generated over ZS). Then one has a

short exact séquence of S-modules ZSWZG-»ZG, and hence a short exact séquence
Y\ ZS>-+Y\ ZG-»fI ZG. The corresponding coefficient séquence in homology yields

E ^ for ail k^ 1. Moreover, the commutative diagram with exact rows

0-^ (II ZS)<g>sZ-> (fl ZG)®SZ ^ 01 ZG)®.,Z->0

shows that q is an isomorphism; hence Z is finitely presented over ZS, or equivalently,
S is finitely generated. By the (FP)-criterion, Prop. 3.2 of [2], it follows that S is of
type ÇFP). We thus hâve proved (i).

To prove (ii), one considers as before the séquence (2.3) with i?=n ZG- Assuming
G and S to be of type ÇFP), the criterion yields Hk{Gj\ f] ZG)=0 for j=l, 2 and

k^ 1. By arguments analogous to those above one then easily checks that the conditions

of the criterion are fulfilled, i.e., Gt and G2 are of type ÇFP).

As to the statements (i) and (ii) for type (FP), ail that remains is to check that the

respective groups hâve finite cohomology dimension. In the case (ii), cdG<oo of
course implies cdGy<oo, 7= 1,2. In the case (i) one assumes cdGj<co, 7= 1,2;
if cd*S< 00, the séquence (2.2) yields cdG< 00, while the converse implication is again
obvious.

3. Amalgamated free Products of Duality Groups: Type (FP)

3.1. We recall (cf. [1]) that G is a duality group of dimension n if there is a dualiz-

ing right G-module C and a fundamental class eeHn(G; C) such that the cap-product

en— induces isomorphisms

Hk(G;A)^Hn_k(G;C®A)

for every left G-module A and ail keZ (C®A is a right G-module by diagonal action).
If C=Z as an Abelian group, G is called Poincaré duality group. In the présent section

we discuss conditions for an amalgamated free product G=G1*SG2 to be a duality
group. We restrict ourselves to groups of type (FP). As we will show in section 5,
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ail results are in fact valid without that restriction. However, the proofs and
the technique used for groups of type (FP) is simpler so that a separate treat-
ment may be justified1). The main tool hère are the Theorems 4.4 and 4.5 of [1]
which give criteria for duality without explicitly involving the cap-product : A group
G of type (FF) is a duality group of dimension n if and only if Hk(G; ZG)=0 for
k^n and torsion-free for k — n (and then C=Hn(G\ZG))\ or if and only if
Hk(G;A)=-0 for k^n and ail induced G-modules A L®ZG.

3.2. We thus assume Gl9 G2 and S, and hence also G, to be of type (FP). If G is a

duality group of dimension n, lower bounds for cdS (and hence for cdGx and cdG2)
can be obtained as follows.

We suppose that cdS<n-1. Then (2.2) with A ZG yields

C=Hn(G; ZG)^Hn(G1;ZG)®Hn(G2; ZG).

Since Gj is of type (FP),j=l, 2, the cohomology functors Hn(Gj; — commute with
direct sums. Since C^ 0G/Gl Hn(Gl;ZGi)®Hn(G2; ZG), where the sum ©G/Gl is

over the cosets of G modulo Gu as right Gi-modules, we hâve

Hn(Gt;C)*è® Hn(Gl;Hn(Gi;ZGi))®Hn(Gl;Hn(G2;ZG))

S 0 HomGl(H"(G1;ZG1),Hw(G1;ZG1))0HII(G1;ffw(G2;ZG))

by [4], Theorem2.4 (see also [3]). Therefore Hn(Gt ; C)=0 implies Hn{G1 ; ZG^O,
and similarly for G2. But at least one of the groups Hn(Gi ; ZGt), Hn(G2 ; ZG2) must
be #0;thus,e.g.,i7n(G1; C)^0.Ontheotherhandiyil(G1; C)^Hn(G; C®GlZG)^
Hn(G;C®Z(GIGt)) is isomorphic, by duality, to H°(G; Z(G/G1)) (Z(G/G1)f.
Under the action of G, Z(G/G1) has no fixed élément unless the index \G\GX\ is

finite. But in G G1*SG2 the index \G:GX\ is finite only if G Gl9 S=G2. We thus
hâve proved

THEOREM 3.1. Let G=G1*SG2 be a non-trivial amalgamated free product fi.e.,
S^Gj,j=l92) and let Gu G2 andSbe oftype (FF). IfG is a duality group ofdimension

n, then

n-l^cdS^cdGj^n, /=1,2. (3.1)

3.3. We now give sufficient conditions for G=Gl*sG2, ail groups oftype (FP),
to be a duality group of dimension n. We will see in particular that ail combinations

of cdS, cdGl5 cdG2 which comply with the necessary conditions (3.1) actually occur.

Explicit examples will be given in a separate section (§4).
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THEOREM 3.2. Let G=GX*SG2, Gl9 G2 and S of type (FP). If Gt and G2 are
duality groups of dimension n and S is a duality group of dimension n—\, then G is a

duality group of dimension n.

Proof The Mayer-Vietoris séquence (2.2) with A ZG immediately yields
Hk(G; ZG)=0 for k^n, and a short exact séquence

0->H"-1 (S; ZG)-+ Hn(G; ZG)->H"^; ZG)®Hn(G2; ZG)->0. (3.2)

By duality we hâve Hn-i(S;ZG)^Hn~1(S;ZS)®sZG and Hn(Gj\ZG)^
Hn(Gj'9 ZGj)®GjZG, 7=1, 2. Thèse groups are torsion-free over Z. It follows that
Hn(G; ZG) is torsion-free. By [1], Theorem 4.5, G is a duality group of dimension n.

THEOREM 3.3. Let G GÎ*SG2, Gu G2 and S of type (FP). If G2 is a duality
group of dimension n, and Gt and S are duality groups ofdimension n—\ such that the

restriction res*:Hn~1(G1;A)-*Hn~1(S;A) is a monomorphism for ail induced

Gi-modules A, then G is a duality group of dimension n.
Remark 3.4. The (necessary) assumption that ves*:Hn~1(G1; A)-^Hn~1(S; A)

be a monomorphism for ail induced Gi-modules A is fulfilled, in particular, if S has

finite index in Gt. We will show this when discussing examples (§4); cases where S has

infinité index and where the condition holds will also be exhibited.

Proof of Theorem 3.3. Let A be an induced G-module (and hence an induced

Gr, G2- and 5-module). By [1], Prop. 1.4, Hk(Gt; A) Hk(S; A) 0 for k^n-l,
and Hk(G2; A)=0 for k±n. The séquence (2.2) then yields Hk(G; A)=0fork^n-l9
n and an exact séquence

0-»H"'1 (G; A)->H""1 (Gt; Aj^H"-1 (S; A)-+ Hn(G; A)-+ Hn(G2; ^)->0.
By assumption res* is a monomorphism, hence Hn~1(G; A)=0. By [1], Theorem 4.4

it follows that G is a duality group, of dimension «.

THEOREM 3.5. Let G Gt*sG29 Gl9 G2 and S oftype (FP), and let Gu G2 and

S be duality groups of dimension n—l.
(i) IfcdG^n— 1, then G is a duality group of dimension n—l.
(ii) Iffor ail induced G-modules A the restrictions res*:^11"1 (G/, A)^Hn~1(S; A)

are monomorphisms,j=l, 2, and res* Hn~i(Gi; A)nres*Hn~î(G2; A)=0, then G is

a duality group of dimension n.

Remark 3.6. The assumption (ii) -which is necessary for G to be a duality group of
dimension n - is again fulfilled if S has finite index in Gt and G2, but also in other
cases (see examples, §4).

Proof of Theorem 3.5. The séquence (2.2) for induced G-modules, together with
[2], Theorem 4.4, yields the resuit. The assumption (ii) simply tells that the map
(res*, -res*):^-1 (G1;A)9H*""1(G2;A)^HH'1(S; A) is a monomorphism.
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4. Examples. Topological Aspects

4.1. In this section we give examples, of algebraic and of topological natuie,
illustrating the various dimension cases which occur in Section 3.

The algebraic examples are explicit applications of Theorems 3.2, 3.3 and 3.5, to
groups known to be (low-dimensional) duality groups. They partly concern cases of
finite index subgroups S; thèse cases require some additional algebraic ad hoc

arguments (Lemma 4.1 and 4.2 below). It should be mentioned that thèse actually
belong to a more gênerai, rather subtle, context dealt with in détail elsewhere (see [4]).
They do not use full duality but only finite cohomology dimension.

The topological examples combine topological and algebraic arguments, and

partly apply the theorems of Section 3, partly illustrate them. They are based on some
remarks on Eilenberg-MacLane complexes of duality groups, and on their unions with
identified subcomplexes, and of course on the van Kampen theorem.

4.2. Algebraic Preliminaries: Subgroups of Finite Index

LEMMA 4.1. Let G be a group of type {FP)f with cdG nf and Sa G a subgroup

offinite index. Then the restriction TQs*:Hn(G; A)-+Hn{S\ A) is a monomorphism for
every induced G-module A=L®ZG.

Proof Since \G:S\ is finite, we can identify C=Hn(G;ZG) with i/n(5;ZS),
cf. [1], §3. By Theorem 4.2 of [1] we hâve isomorphisms Hn(G; A)^C®GA and

Hn(S; A)^C®SA. Under thèse isomorphisms, as shown in [4], the restriction map
res* corresponds to the transfer res: C®GA -* C®SA, given for arbitrary G-modules

A by res (c®a) £f cr[i ®r(a, cEC9aeA, {Srt} being the right cosets of G modulo S.

For A=L®ZG one has an isomorphism k\C®s{L®ZG)^{Cq®L)®Z{GJS)\
it is given by

k(c@u®x) cx®u®Sx, ceC, ueL, xeG.

Co dénotes the Abelian group underlying C. In particular, C®G(L®ZG)^C0®L.
As a map C0®L-> (C0®L)®Z(G/S) the transfer is given by

*(c®u) ktQs(c®u®e)

K\Ycr[i®u®riJ

=£ c®u®Srt
i

This is obviously a monomorphism.

LEMMA 4.2. Let G G1*SG2, where Gl9 G2 are of type {FP), càG^n and

cd G2^n, and where S has finite index in both Gx and G2. Then the restriction images
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in Hn(S; A), for any induced G-module A, hâve intersection 0:

res*Hn{Gx; A)nres*Hn(G2;A) 0.

Proof. As before we identify Hn(Gl;ZGl) Hn(G2; ZG2) Hn(S; ZS) and de-

note this module by C. The restrictions can be replaced by the transfers

res:C®G^-»C®s,4,/=l, 2. For A L®ZG the transfer

res : (Co ®L)®Z(G/Gy) -> (Co ®L)®Z (G/S)

is given by

res (c®w®GJoc)= £ c®u®Srx
reTj

ceCOf ueL9 xeG; Fj dénotes a set of représentatives (including e) of Gj modulo S,

7=1,2.
We first consider the transfer map res:Z((//G!y)-^Z(G/5f) given by re&(Gjx)

We recall that the words of the form w=g2g'1g2gï~- with letters

eTp 7= 1, 2, alMe, and with initial letter from F2, represent the right
of G modulo Gx. Since cancellation is not possible, the length X(w) of

such a word is defined in an obvious way. An élément t1eZ(G/G1) is a finite sum

tl=y£dmG1g2g'igf2g'l... with intégral coefficients. Its .image res(t^eZ(G/S) is of
the form

We hâve divided the sum into two parts according to whether the first letter to the

right of mS is in Fx or in F2. Let l(tx) be the maximum length of words occurring in

tu and let ^w be a term in tt with À(w)=l(tl). Then there is a term Sgxw in the
second part of res^), with À(g1w)=X(tl)+l.

If we now assume res(^) res(/2) for some t2eZ(GIG2), the term Sgtw must

occur in the "first part" of res (t2), i.e., gtw must occur in t2, and thus I(r2)^^(/i)+1.
But the situation is entirely symmetric in tx and t2, so that I(/1)^I(f1)+2. Hence if
res(/1)=res(/2), there are no words of maximum length in tu i.e., tt =0 /2. Thus we
hâve proved that

resZ(G/G!1)nresZ(G/G!2)=O.

Since the restriction maps themselves are monomorphisms, we hâve a short exact

séquence of the form

Z (G/G1)©Z (G/G2) >(fCS>"rcs)) Z (G/S) -»K (4.1
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The cokernel K is torsion-free: Tensoring over Z with Zp Z/(/?), for a prime jp,

gives rise to the exact séquence

0 -> Tor (Zp, K) -> Zp (G/Gl)®Zp(G/G2)
(res> "res)> Zp (G/5) -> ZP®K - 0.

But the above arguments on Z(G/Gj) and Z(G/S) are valid for Z^-group rings as

well (the crucial point was that there is no cancellation of terms in res(^) etc.).
Therefore (res, — res) is again a monomorphism, and Tor(Zp, K) is 0 for ail primes

p, i.e., K is torsion-free. If we tensor (2.2) over Z with C0®L, we conclude that
(res,-res):(C0®L)®Z(G/G1)e(C0®L)(8)Z(G/G2)-^(Co®L)®Z(G/5)isamono-
morphism, whence

res(C0®L)®Z(G/G1)nres(C0®L)®Z(G/G2)=0.

This proves Lemma 4.2.

4.3. Topological Preliminaries. Eilenberg-MacLane Spaces

IfZ is a CW-complex, with subcomplexes XlaX and X2 <= X such that Xl n X2 F
is not empty, we will write X=XluYX2. Equivalently, we consider two CW-
complexes Xu X2 containing non-empty subcomplexes Y1cXl9 Y2aX2 which are

isomorphic. Then, by identifying Yt with Y2 through a given isomorphism and

writing Y= Yl Y2, we obtain a complex X=Xt u YX2.
We will assume Xi and X2 and whence Zto be connectée!; Fneed in gênerai not be

connected. We only consider examples where the fundamental group ni(Y(v)) maps
monomorphically into nl(X1) and n1(X2), for each component F(v) of F. - If Y is

connected, the van Kampen theorem tells that %x (X) is the amalgamated free product

1()
In the situation described above, let/?:J? ->Xbe the universal cover of X, and write

p'1 (Xj) Xjij=l9 2, p'1 (F(v))= ?(v). Then JPy is a certain number of copies of the

universal cover Xp j=l, 2, and F(v) is a certain number of copies of f(v), for ail

components F(v) of F. From X=X1urX2 and the topological Mayer-Vietoris

séquence with intégral coefficients

we deduce immediately:
(i) If-?!, X2 and F hâve trivial homology, then the same holds for X
(//) If X and F hâve trivial homology, then the same holds for Xx and J?2.

By "trivial homology" we mean Hk=0 for k^ 1 (no statement about /y0). Note that
obviously Hx(X)=H1
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For a connectée! complex X, the universal cover X having trivial homology is

équivalent to X being aspherical; i.e., to X being an Eilenberg-Mac Lane complex
K(G, 1) for its fundamental group G=nl(X). Thus for X=X1uYX2 as before, but
with Y connectée!, (i) tells that if Xl9 X2 and Y are Eilenberg-Mac Lane complexes,
so is X; namely X=K(G, 1) where G=G!1*SG2, Gj=n1(XJ) for j=l9 2, S=nt (F).
And conversely, by (ii), if X=K(G, 1), Y=K(S9 1) then Xl9 X2 are Eilenberg-
Mac Lane complexes. The results of Section 3 then hâve topological interprétations:
one replaces (Poincaré) duality groups by (Poincaré) duality Eilenberg-Mac Lane
complexes, cf. [4], Section 6, and amalgamated free products by unions of spaces
with identified subspaces.

We recall hère two topological criteria for duality: (a) If X=K(G, 1) is a closed

manifold (i.e., compact without boundary) then G is a Poincaré duality group. (b) if
X=K(G9 1) is an m-dimensional compact orientable manifold-with-boundary such

that Hk(ôï)=0 for ail k^q (H0 being reduced) and Hq(dX) torsion-free, then G is

a duality group of dimension n=m—q—\ with C=Hq(ô%).

4.4. Topological Preliminaries: 3-Dimensional Manifolds

We recall some facts concerning "sufficiently large" 3-manifolds (cf. Waldhausen

[7] for terminology and results). Let M dénote, throughout this and the following
sections, a triangulable compact connected orientable 3-manifold9 and let % (M).

PROPOSITION 4.3. If M is irreducible and dM incompressible in M, then M is

an Eilenberg-Mac Lane complex K(G, 1) and G is a duality group of dimension 2.

Proof M is aspherical, see e.g. [7], Lemma 1.1.5. The boundary dM consists of
orientable surfaces of genus >0, and for each component the fundamental group
imbeds monomorphically into nl(M). Thus dfii consists of universal covers of the
surfaces occurring in dM9 i.e., of copies of R2. The above conditions for duality are

therefore fulfilled, with q=09 n=m — q—1=2. The dualizing module C=H0(dSi)
is Z-free.

Examples of manifolds M which satisfy the assumptions of Proposition 4.3 are the
closed compléments of non-trivial knots in the 3-sphere. Then dM is a torus, and

incompressible in M.
Let now M be irreducible and closed {dM=0), and assume that M contains an

incompressible separating surface F. Then M=MX kjyM2, where Ml9 M2 are compact
3-manifolds with dMl=ôM2=Y fulfilling the assumptions of Proposition 4.3. We
hâve ni(M)^G*=Gx*sG2 with n^Mj^Gpj^l, 2, ni(Y)=S. The groups Gi9 G2

are duality groups of dimension 2, S is a Poincaré duality group of dimension 2, and

G is a Poincaré duality group of dimension 3. We thus hâve an example illustrating
(not using) Theorem 3.5. Such examples can be obtained by taking for Mt and M2
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3-manifolds-with-boundary as in Proposition 4.3, with dMY and dM2 being surfaces

of the same genus, and by identifying dMx with dM2 through a homeomorphism
(e.g., M1 and M2 are knot-complements, ôMt and dM2 tori).

In thèse examples, the necessary condition (ii) of Theorem 3.5 must be fulfllled;
in particular, res*:H2(G1; A)-*H2(S; A) is a monomorphism for ail induced
Grmodules A. This remark yields the following resuit:

COROLLARY 4.4. // M is irreducible and dM incompressible in M, with

nl(M) Gf n1{dM) S, then the restriction res*:H2(G; A)->H2(S; A) is a
monomorphism for ail induced G-modules A.

Remark 4.5. A similar situation arises if we take two tori Xl9 X2 with an open dise

removed, and identify the two boundary circles dXl dX2 Y. Then X=Xt u YX2 is
the closed surface of genus 2. Since Zand F are Eilenberg-Mac Lane spaces K(G, 1),

K(S, 1), so are Xj K(Gj9 1), j= 1,2; Gt is free on two generators a, b9 G2 on
e, d, and S is cyclic generated by [a, 6] [c, rf]. The group G is presented by

Gl9 G2 are duality groups of dimension 1, Sis a Poincaré duality group of dimension

1, and G is a Poincaré duality group of dimension 2. We thus hâve an example
illustrating (not using) Theorem 3.5, case (ii). As before we get a side-result:

COROLLARY 4.5. Let G befree on two generators a, b, and S cyclic generated by
[a9 b~\. Then the restriction tes*.H1 (G; A)-*H1 (S; A) is a monomorphism for ail
induced G-modules A.

4.5. Examples

We will apply Theorems 3.2, 3.3 and 3.5 to explicitly given amalgamated free

products of groups G=G1*SG2. We write n}=cdGj9 m cdS and n=cdG, and use

the symbol [nl9 nl9 m ; «] to indicate the dimensions occurring in an example. We recall
that Theorem 3.2 refers to the case [n9n,n—l; n\, Theorem 3.3 to [«— 1, n, n— 1 ; «],
Theorem 3.5, case (i) to [/i — 1, n— 1, n— 1 ; n— 1] and case (ii) to [tî— 1, n— 1, n— 1 ; «].

EXAMPLE 1 [2, 2, 1 ; 2]. Let G be presented by (a, b9 c \ [a, è] [a, c] e>.

This group can be obtained as G=Gl*sG2 with Gt <a, 6 | [a, Z>] e>, (j2
<c, J | [c, rf] e>, S infinité cyclic generated by aeGt or rfeG2 respectively. G^ and

G2 are Poincaré duality groups of dimension 2, £ of dimension 1. By Theorem 3.2 G

is a duality group of dimension 2.

Corresponding to the décomposition G=GX*SG2 one may take for K{G91) the

space obtained from two tori Xu X2 by identifying circles which are generators of
ni (Xt) and nt (X2) respectively (e.g., one takes two tori in R3 having the same vertical
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axes of rotation and puts one on top of the other). It follows that this space is a

duality complex of formai dimension 2.

EXAMPLE 2 [1, 2, 1; 2]. Let G be presented by <a, b \ [a2, b~] e}. We may
Write G Gl*sG2, Gt <<*>, G2 <4, c \ [6, c] e>, 5=(a2) (c). Then Gl9 G2, S are
Poincaré duality groups of dimension 1, 2, 1 respectively. Since S has finite index in
Gl9 the restriction condition of Theorem 3.3 is fulfilled (Proposition 4.1). It follows
that G is a duality group of dimension 2.

An alternative proof of this fact is obtained as an application of [1], Theorem 5.2.

EXAMPLE 3 [1, 2, 1 ; 2]. We take Gx <a, Z>>, G2 <c,d\ [c, d~\ e} and

£=([<*, 6])=(c). Then G=Gl*sG2 (a, b, c, d\ [a9 Z>] c, [c,d] e>. Since ail
finitely generated free groups are duality groups of dimension 1 so is G1 ; G2 and S are
Poincaré duality groups of dimensions 2 and 1. The restriction condition for
res*:^^;^)-^1^;^) is fulfilled by Corollary 4.5 (though hère the index
IG^iSI is not finite). By Theorem 3.3, G is a duality group of dimension 2.

A topological description similar to that of Example 1 is easily obtained.

EXAMPLE 4 [2, 3, 2; 3]. Let Gx be the fondamental group nx (ZA) of the
complément of a non-trivial knot in the 3-sphere, S=n1(dX1) the fundamental group of
the boundary torus, and G2 ni(X2) the fundamental group of the 3 torus X2. We

identify S with the fundamental group of a 2-torus YcX2. Then G Gl*sG2 n1 (X),
where X is the union of X± and X2 with dXl identified with Y (of course, algebraic
descriptions of G are available).

Gt is a duality group of dimension 2, G2 a Poincaré duality group of dimension 3,

S of dimension 2; the restriction condition of Theorem 3.3 is fulfilled by Corollary 4.4.

Thus G is a duality group of dimension 3, i.e., X is a duality complex.

EXAMPLE 5 [1, 1, 1 ; 1]. We take for Gx and G2 free groups on two generators,
G1^(ks9 b}, G2 <c, A>, and S=(b) (d). Then ^=^^5^2 is free on 2 generators,
and we hâve a trivial illustration of Theorem 3.5, case (i). - A less trivial example,
where the theorem is applied, is the following.

EXAMPLE 6 [2, 2, 2; 2]. We take Gx to be the group called G in Example 1, Xx

the space called X there, Gt nx (Zx). Let G2=n1 (X2) be a second copy of the same

group, X2 of the same space. Let S=n1 (Y), where Y is one of the tori in Xx or X2

respectively. Then G=Gi*sG2 n1(X) with X=X1uYX2; this space simply con-
sists of three tori, with common vertical axis, one on top of the other. Algebraically,
G=<a, b9c,d\ [a, </] [6, d] [c, d] e}. It is clear geometrically, that cdG 2; it
can also easily be seen from the fact that G is an extension of a cyclic group by a free

group. Thus by Theorem 3.5, case (i), G is a duality group of dimension 2.
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EXAMPLE 7 [1,1, 1; 2]. Let G^^a}, (j2 <6>, S=(a2) (b3% ail Poincaré

duality groups of dimension 1. Since S has finite index in both G1 and G2> condition
(ii) of Theorem 3.5 is fulfilled (Proposition 4.2). Hence G Gl*sG2 (a, b \a2=b3>
is a duality group of dimension 2. (Cf. again [1], Theorem 5.2).

We note hère that in Section 4.3 examples are given for the dimension cases

[2, 2, 2; 3] and [1, 1, 1 ; 2] where duality of G occurs for topological reasons. They
illustrate (but do not use) Theorem 3.5, case (ii), with \G1:S\ \G2:S\ co.

5. Amalgamated free Products of Duality Groups: Type (FD*)

5.1. In this section we show that the results of Section 3 remain valid without the

assumption that the groups involved are of type (FP). This requires some modification
of the proofs; we first explain the différence in approach.

We recall that for a duality group G of dimension n one has

Hk(G;A) 0 for k^n and ail induced G-modules A. (5.1)

For groups of type (FP) condition (5.1) is also sufficient for duality. This was
essential in Section 3: we proved that (5.1) is carried over, in the appropriate dimensions,

from the given duality groups to the amalgamated free product. This part of the

arguments, based upon the Mayer-Vietoris séquence, remains valid in the gênerai

case.

Now one can show (see [4]) that there is another class of groups, called groups of
type (FD#), for which (5.1) is sufficient for duality; the définition is given below.
While we do not know1) whether duality groups must be of type {FP), they are neces-

sarily of type (FD*), as shown in [4], Theorem 2.4. Therefore, to prove the theorems of
Section 3 for arbitrary groups, we can start from the fact that those groups which are

duality groups by assumption are of type (FD*); ail that remains then to be proved is

that this property is carried over to the amalgamated free product. Hereby we rely on
the detailed analysis of type (FA*) made in [4].

5.2. For the définition of type (FD*) we need a natural "duality" homomorphism
<p* closely related to the cap-product (en —). We recall that one has for left G-modules

M, A the natural homomorphism

(p:M*®GA^HomG(M, A)

given by

(p(f®à) (m)=f(m)a,feM* HomG(M, ZG)9 aeA, meM.
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For a G-projective resolution ^-»Zwe thus hâve a homomorphism of complexes

(p:0>*®GA-+HomG(0>, A). (5.2)

Now assume G to be of finite cohomology dimension cdG=w. Then 0* is split-exact
over ZG in dimensions ^n, and thus q> induces

(p*:Hn(G;ZG)®GA-+Hn(G;A).

If we wish to emphasize the coefficient module A, we write cp% for cp*.

DEFINITION 5.1. A group G is said of type (FD*) if it has finite cohomology
dimension n and if q>i is an isomorphism for ail G-modules A.

Remarks 5.2. Let cdG n. It is shown in [4], Theorem 2.4, that if (pi is an
epimorphism for ail free G-modules F, then (p% is an isomorphism for ail G-modules A.
Moreover, (p* is an isomorphism for ail G-modules A if and only if there is an élément

eeHn(G; C), C=Hn(G; ZG), such that (en -): Hn(G; À)-+C®GA is an isomorphism

for ail G-modules A, inverse of <p%. In particular, if G is a dualiîy group then it is

oftype (FD*). - Let G be a group of finite cohomology dimension, and assume that G

admits a G-projective resolution ^-»Z with Pn finitely generated2). Then (pi is an
isomorphism (cf. [1], Theorem 4.2), i.e., G is oftype (FD*). In particular, ail groups
of type (FP) are of type (FD+). Note that the converse is not true: There are groups
G with cdG=« and Pn finitely generated, but not oftype (FP), see [4], Section 2.5.

We first show that the dimension restriction of Theorem 3.1 holds for type

THEOREM 5.3. Let G=Gi*sG2 be a non-trivial amalgamated free product. If
G is a duality group of dimension n, and ifGx, G2 are oftype (FD*), then

n-l^cdS^cdGj<:CdG=n, j=l, 2.

Proof Since Gx is of type (FD*), we hâve Hn(G1,ZGl)®GiZG^Hn(Gl,ZG)',
in other words, Hn(G1;ZG) is isomorphic to Hn(Gl;ZG1)®Z(GIGi)^
®Hn(G1; ZGj), the sum being over the cosets of G modulo Gv Thus the proof of
Theorem 3.1 applies without change.

53. Before giving the analogue of Theorems 3.2, 3.3 and 3.5 we show that (p*

occurring in the définition is compatible with the Mayer-Vietoris séquence.
We first hâve to relate (p* to subgroups Sa G. Let 0>-»Z be a G-projective

resolution. There is a map q>(S) generalizing (p of (5.2), for a G-module A,

(p(S):Homs(0>, ZG)®G>4->Homs(^, A)

2) Type (FD+) is, in fact, équivalent to that property, cf. "Note added in proof" at the end of
the paper.
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given bycp(S) (f®a) (p)=f(p) a,/eHoms(^, ZG), aeA.pe^, If cdS<n, we hâve

again an induced homomorphism

<p(S)*:Hn(S; ZG)®GA-+Hn(S; A).

Of course, if S= G then <^(5')He <ps|e. One has â commutative diagram

Hn(S; ZS)®SA ^ >Hn(S; A)

\ /
Hn(S;ZG)®GA

(note that Hn(S; ZS)®sA [Hn(S; ZS)®sZG']®GAy If for the group S the map
(p%G is an isomorphism (e.g., if 5 is of type (FZ>*)), we may therefore identify the

map cpi for S with <p(S)i:Hn(S; ZG)®GA-+Hn(S; A).
In the Mayer-Vietoris séquence for G G1*SG2 we hâve compatibility of <p*

(for the various groups) with ail restriction homomorphisms, by [4], Section 3.

Compatibility with the Connecting homomorphisms is described in the following
lemma.

LEMMA 5.4. Let G Gl*sG2bean amalgamatedfreeproduct with cd S< cd G < n,
and A a left G-module. Then the following diagram is commutative

where ô is the Connecting homomorphism in the Mayer-Vietoris séquence (2.2).

Proof The short exact séquence (2.1) yields an exact séquence of left (/-modules

y4^HomGl(ZG, ^)0HomG2(ZG, ,4)-»Homs(ZG, A).

Let 0>-*>Z be a G-projective resolution. For any subgroup HcG one has natural
isomorphisms HomG(^>,HomH(ZG9 A))^HomH(^, A). As <p(S) commutes with
restrictions we obtain a commutative diagram

ZG)®GA -i HomGl (^,
<P(Gt)@<p(G2) <P(S)

If A is G-free then Â is an monomorphism. Passing to cohomology one thus gets the

assertion of the lemma foi free A. For arbitrary G-modules A, take a free module F
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with an epimorphism F-»A; one then has a commutative diagram

-*H\G\ZG)®GF

<P(S)*F

H""1(S; A)

Hn(G;ZG)®GA

Hn(G;A)

H"'1 (S; F) Hn(G;F)

The homomorphisms ô and ô®G- commute with coefficient maps, and so do cp* and

<?(£)*. We hâve already proved that the outer square is commutative. Since \i is an
epimorphism, it follows that the inner square is also commutative.

5.4. We now establish the analogue of Theorems 3.2, 3.3 and 3.5 without finiteness
restrictions.

THEOREM 5.5 (cf. Theorem 3.2). Let G G1*SG2 where Gt and G2 are duality
groups of dimension n and S is a duality group of dimension n—\. Then G is a duality
group of dimension n.

Proof According to the preliminary remarks in 5.1 we only hâve to prove that G

is of type (FD*). It is clear that cdG w, and that Gu G2 and S are of type
In the commutative diagram with exact rows, for a free G-module A,

H"'1 (S; n{Gû ZG)®GA@Hn(G2; ZG)®GA

IF"1 (S; A) Hn(G;A) Hn(Gl;A)@Hn(G2;A)

<p(S)*, <p(Gi)* and (p(G2)* are isomorphisms, and so is <p* by the 5-lemma. Hence G

is of type (FD*), and thus a duality group of dimension n.

THEOREM 5.6 (cf. Theorem 3.3). Let G=G1*SG2, where G2 is a duality group
of dimension n and Gt and S are duality groups of dimension n-l.Ifthe restriction
res: if""1 (Gt ; A) -? Hn~1(S; A) is a monomorphism for ail induced Grmodules A then

G is a duality group of dimension n.

Proof Again cdG=«. Let A be a free G-module. Then one has a commutative
diagram with exact rows
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W-^G^A) >-> Hn~l(S;A) - Hn(G;A) -» Hn(G2;A)

Since <?(<?/)*, y=l, 2 and <p(S)* are isomorphisms, so is y*. Hence G is of type
(FD%), and therefore a duality group of dimension n.

THEOREM5.7 (cf. Theorem 3.5). Let G G1*SG2, where Gu G2 and S are
duality groups of dimension n—\.

(i) If cd G^n — 1, then G is a duality group of dimension n—l.
(ii) Iffor ail induced G-modules A the restrictions res* \Hn~x (G; ; ,4)-> Hn~x (S; A)

are monomorphisms, y=l,2, and rQS*Hn~1(Gl; A)nrQS*Hn~l(G2'i A)=Q, then G

is a duality group of dimension n.

Proof Again cd G <oo, namely =n — l in case (i), =n in case (ii). For a free
G-module A one has commutative diagrams, in case (i)

Hn'x(G\A) >^ Hn-i(G1;A)®Hn-l(G2;A) -» H"-1 (S; A);

and in case (ii)

Hn-i(G1;ZG)®GA®Hn~1(G2;ZG)®GA>^Hn~1(S;ZG)®GA-^Hn(G;ZG)®GA

Hn-1(G1;A)®Hn~1(G2;A) >^ HT"1 (S; A) -» Hn(G;A),

with exact rows in both cases. The 5-lemma again shows that ç>* is an isomorphism;
i.e., G is of type (FD#), and hence a duality group of dimension n — 1 or n respectively.

5.5. It is clear that the method of this section applies more generally to amalgamated

free products of groups which are not assumed to be duality groups, but just
groups of type (FD*). One then obtains relations for the various dimensions involved,
as follows.

PROPOSITION 5.8. LetG=G1*sG2, where câG^Kn-l, cdS<n-2, cdG2=n,
and where G2 is oftype (FD#). Then cdG nandG is oftype (FD*).

PROPOSITION 5.9. LetG=G1*sG2, where cd Gt n -1, cd S=n -1, cd G2=n,
and where S and G2 are oftype (FD*). Then cdG n and G is oftype (FD#).
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PROPOSITION 5.10. LetG Gl*sG2,wherecdG1=cdG2 cdS=n9cdG=n+l,
and where S is oftype (FD*). Then G is oftype (FD*).

The proofs are similar to those above and can be left to the reader. Note that thèse

results provide a method for constructing examples of groups which are oftype (FD*)
but not of type (FP): For those groups which are assumed to be of type (FD*) one

may take type (FP) with the respective cohomology dimensions; for the others,

groups which are not oftype (FP), e.g., which are not finitely generated but hâve the

appropriate finite cohomology dimensions.
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Note added in proof: It was recently proved by R. Strebel that duality groups are
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- It thus turns out that the treatment in Section 3 is sufficient for our main results ;

Section 5 is still of interest with regard to the method used, and to groups of type
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