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A Geometrical Isoperimetric Inequality and Applications to

Problems of Mathematical Physics

Catherine Bandle

0. Introduction

The classical isoperimetric inequality states that among ail closed curves of given
circumference the circle encloses the largest area. This inequality has been consid-

erably generalized by A. D. Alexandrow. He derived [1] inequalities for the case

where the curve lies on an abstract surface, and obtained lower bounds for the length
of the curve in terms of the area of the domain and an expression involving the

curvature of the surface. In this paper we consider a curve Fo on an abstract surface

whose endpoints lie on a curve Fx. With the help of Alexandrow's inequality we

construct lower bounds for the length of To. Thèse bounds dépend on the area of the

domain between Fo and i\, the curvature of the surface and the géodésie curvature
of Ft. By use of the geometrical inequalities we dérive a monotony property of the

Green's function. The geometrical inequalities lead also to an estimate for the funda-
mental frequency of an inhomogeneous membrane with partially free boundary. The

resuit extends the Rayleigh-Faber-Krahn inequality [12] and its generalizations
obtained by Nehari [11] and the author [2, 3, 6]. At the end we indicate how to
generalize the concept of Schwarz symmetrization [12] for functions which do not
vanish at the whole boundary. This symmetrization combines in a certain way the

ones defined in [2] and [3]. The principal results of this paper hâve already been

announced in [4].

1. Geometrical Inequality

/./. Let D be a simply connected domain in the complex z-plane (z=x+iy) with a

pieeewise analytic boundary dD. dD is divided into two connected arcs FQ ro and

Ft such that ^0^=0 and dD=FQKjF1. The boundary dD is given by the para-
metric représentation z(s)9 where s is the arc-length. The function z(s) is analytic
except at the corners. Let zt =z(sx), z2=z(s2),..., zn z(sn) be the corners belonging
to Ft. We suppose that the boundary is orientated such that —i(dzlds)=—i z(s)
gives the outer normal of D.

Furthermore we assume that i(j4+O) and z(st-O) are well-defined for ail i=
1, 2,..., n. We dénote by j8fe[-7r, n~\ the angle arg{i(5'i+0)}-arg{i(5i-0)}, and

by k(s) the curvature of dD. k(s) is analytic on Fx except at the corners where it has

to be interpreted as a Dirac measure. We shall write J**S K(s) ds=pt.
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Let u(x, y) be a real fonction of class C2(D). Let {*/}"£«+1 t>e a set of points in
— Fo, none of which should coïncide with a corner z{s^). We introduce the function

1

U(x,y)=—
71

where

a>jlog\z-zj\9
l

for/=« +1,..., n + m. For each Borel set y£/\ we define

J

Let us write

ju+ sup {fi (y)}

max(coy,0)+

and

Let g (x, >?) ^M (x> y) + u (JC> y). Throughout this paper we will assume that q (x, y) satisfies
the dijferential inequality

in D- (1.1)

C being an arbitrary real number. We shall use the following notations A(B)
lBQ{x*y)dxdy where B^D is an arbitrary subdomain; and L(F)=jr Jq ds,

where F is an arc in D. Consider a domain D' in the complex z'-plane (z' x' + iy')
and a positive function q' (xf, y') in Df. F'o is a connected arc lying on dD'.

DEFINITION: The triple (D, Fo, q) is conformally équivalent to (Z>\ F'Q, q% if
there exists a conformai mapping/:Z>' ->D such that D =/(£)'), Fo=f(F'o) and

(1-2)

We shall write 5(a, i?) for the circular sector {O^O^cc, r^R} (r,9 polar coordinates),
to for its boundary arc {r=i?}, and ê(^*)= (14-Cr2/4)~2. In this case we hâve w=0
and therefore U(x,y)=0. It is easily checked that § satisfies (1.1) with the equality
sign.

The purpose of this section is to establish the following resuit.

THEOREM 1.1. Let D andq be definedas before. Suppose that 0</i+ 4- v+ s jt-a
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where a>0. Then the inequality

L2 (ro)> (2&-CA (D)) A (D) (1.3)

holds. Equality is achieved if and only if (D, Fo, g) is conformally équivalent to

(S(*9R),r096).
Before we give the proof we indicate a geometrical interprétation of the resuit.

Following [1,9, 10] we introduce an abstract surface 9JI in the isothermic représentation;

i.e. in the domain D of the z-plane a Riemann metric is given by the line élément
da2 g(x,y)ds2. With respect to this metric A(D) represents the area of D and

L(r0) the length of To. The function [ic(y) + (1/2])d/dn \ogg~]ly/g is the géodésie

curvature of ôD and K= — (A logg/2g) is the Gaussian curvature of 2R. The surface

(S (a, R), ê) can be interpreted as a sector on a surface of constant Gaussian curvature
C. If we identify the segments 9 —oc and 0=0 then (S (a, R)9 £) is isometric to a reg-
ular cône in a space of constant curvature C [1; p. 17, 450, 513]. (1.3) yields an

isoperimetric inequality for abstract surfaces.

Proof of Theorem 1.1. The proof uses an idea developed by Nehari [11]. Let

f(w) (w Ç + irj) be the analytic function which maps the semicircle Se={w;
Im{>v}>0} conformally onto the région D and transforms the segment —

into the boundary arc Ft.
In this proof we shall often write for short h (x, y) h(z) for a real function in the

z-plane, and h(t;, n) — h{w) for a real function in the w-plane. For a given function

g(x9y) Q(z) we define in Se the function p(Ç, n)—p{w) g{f{w)) \f'(w)\2. Let

wt=f -1 (z(Si)), i= 1, 2,..., n, and let ws=f "1 (zi),y=«+1,..., « + m.
Since J\ is pieeewise analytic, |/'(h>)|2 exists and is continuous on/"1^)-

— {wJJŒl. Furthermore, |/'(w)|2 has at wt for /=1, 2,..., « the development

where Ht is a regular function with Ht (0)^0 [7, p. 364]. In Se— {w^}"= x the function
log|/'(>v)|2 is harmonie. There, we hâve Aw logp(w)=Aw \ogg(f(w)) where Aw de-

notes the Laplace operator in the w-plane. In view of (1.1) we get in Se— {wj}J>1 the

inequality

Awlogp(w)+2Cp(w)>0. (1.4)

Let

(w) in Se

)p(w) in {w:\w\

Let S={|w|<l} be the unit circle in the w-plane and let S =S— { — l<w<l} —

î- la order to simplify the notations weset y~ {-l<w<l}-
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— {wJJLY. By the previous observations P(w) satisfies inequality (1.4) in S~. Let
g(w, w*) be the Green's function of the unit circle which vanishes on the boundary.
With the help of this function we can write

logP(w)

+4 £ g(w, w,) pt+2 J {g(w, wt)+g(w, M>f)} a»,
1=1

+ 2 I g(w,w,)-o),. (1.5)

nw stands for the outer normal of S.

We observe that

is harmonie in S. Because of (1.5), logP admits a représentation of the form

A(w). (1.6)

co(e) is the mass distribution associated with P(w), and e is a Borel set. The intégral
(1.6) has to be interpreted in the sensé of Lebesgue-Radon. Consider on S the
Riemann metric dâ2=P(w) \dw\2. By a resuit of Reshetnjak [1, 9] co(e) corresponds
to Alexandrow's curvature for the surface ffî (S, P(w)).

f

dénotes the area of M, and
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is the length of dffî. We hâve

A(m) 2A(D) (1.7)

and

L(dm)=2L(r0). (1.8)

As in [1, p. 513] we define coc(e) co(e) — C$eP(w)dÇ dt\. By means of Riesz's

décomposition theorem it follows that

coc (S) coc (S) - coç (S), where a>c (S) sup { ± coc (e)} •

Alexandrow [1 ; p. 514] proved, under our assumptions regarding the function P(w),
the

LEMMA 1.1. Ifô coc (S)<2n, then L(dW) and A (M) satisfy the inequality

L2 (dW)^ {An-2b-CA (M)) A (M). (1.9)

Equality holds if and only if (S, P(w)) is conformally équivalent to

(S,P(w)) with P (ww)p b\w\
4n

b stands for an arbitrary positive number.

For the proof we refer to [1]. It should be noticed that the surface (S, P(w)) is

isometric to a regular cône in a space of constant curvature C.

The next step is to evaluate 5. Because of (1.4) and (1.5) we hâve œ£ (e)=0 for
each eeS~. If P^y~ we obtain

fi

-J -(log^(/(w)))|dw|-2j -(log|/'|)|dW|. (1.10)

fi fifi fi

Since/(w) is a conformai mapping, it follows that

J j^ (loge(/(H'))) \fa\- - | - (loge(z)) \dz\. (1.11)

ne)ne)
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Furthermore, we hâve

(logl/'l) |dw|

fi

^ (log/O \dw\\

f)=- I Kds. (1.12)

fi fi f(fi)

On the set {wl}l>1 u {wl}l^l we hâve

* i l'2>>" (U3)if / l4"W **• _i_ *• v ^

The only contribution to ô cornes from the set y~ u {wj"= J*u {wj^f.
(1.10), (1.11), (1.12) and (1.13) leadto

o>c (^;= sup <; | ~
«£/(D

e e

n

+2 J]max(JÎ,,0)+2 ^ max((»I,0)+ X max(col5O). (1.14)

Hence, it follows that a>c (S) 2fi+ +2v+. Inserting this expression into (1.9) and

observing (1.7) and (1.8) we obtain

which yields (1.3). For the triple (S(oc, R), t0, £) with 0«x^n we have u(x,y)
log(l4-(Cr2/4))~2, U(x, y) 0, fi+=n — a, v+=0. A straightforward calculation

gives

In this case (1.3) holds with the equality sign. This complètes the proofof Theorem 1.1.

1.2. The following results are conséquences of Theorem 1.1.

COROLLARY 1.1. Let D satisfy the assumptions of Sec. 1.1. Suppose that
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a>0. Then

\\ ds\ ^2<x f dxdy. (1.15)

Equality holds if and only ifD S(oc, R) and ro=fo.
This resuit follows immediately from Theorem 1.1 by setting q 1, w U=0, C—0.

The same theorem was obtained in [3] by more elementary methods, and applied
to estimate the logarithmic capacity and the fondamental frequency of a membrane.

COROLLARY 1.2. Let D satisfy the assumptions of Sec. 1.1. Suppose that

AlogQ^OinD.If

then

\ s/Qds\

r0

Qdxdy. (1.16)

Equality holds if and only if (D, Fo, q) is conformally équivalent to (S (oc, R), t0, 1).

13. Hère we extend the results of Sec. 1.1. to a slightly more gênerai situation. Let
D and dD satisfy the same assumptions as in Sec. 1.1. Consider in D a collection
{Z)JJ=1 of domains, and let the boundary dDi9 i=l,...,k, be divided into two not
necessarily connected sets Fq and F\ where ri1^r1. We assume q(x, y) and a to be

defined as in 1.1. We write £,,=£(!%), 4,=^(/),), L=Yj=ili and A=Ylï=iAi'

M M » I

JJ, />

r.''

c/omn a iri+S
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COROLLARY 1.3. Let DiFl, q satisfy the same assumptions as in Theorem 1.1.

Then thefollowing inequality holdsprovided 2a >CA

(1.17)

Equality holds if and only if Dt D and (D9F0,q) is conformally équivalent to

(S(a,*),fo,$).
Proof. By the same type of reasoning as in the proof of Theorem 1.1. we show

that for /= 1,2,..., k

Lf^(2a-CAi)Ai. (1.18)

From this inequality (1.18) it follows that

+2[(2<x-CA^Arf'2 [(2a-CL42),42]1/2. (1.19)

An elementary argument shows that the right-hand side of (1.19) is, whatever the

sign of C is, larger than 2ol{A1+A2)— C(Ax+A2)2. By induction we conclude that

k Y / k

£ L,] >[2a-C £

which complètes the proof of Corollary 1.3.

2. Applications

2.1. Let D, r0, Ft and ^ satisfy the conditions of Section 1.1. Consider in D the

following Green's function

AzG(z,z*)=-ôz*(z) for zeD

G(z,z*) 0 for

dG(Z>Z*KaG(z,z*)=0 for
dnz

o (2.1)

where a(z)^0 is a continuous function on rx. It should be mentioned that in view

of the hypothesis concerning Fl9 Fo cannot be empty. With the help of the Green's

function, the solution of the boundary value problem A(p=-F in D9(p=0 on

r0, dq>lôn + o(p=0 on Ft can be represented in the form

)=Jg(z,z*
D
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Let us write

D(t)={zeD;G(z,z*)>t}
and

F(t)={zeD;G(z,z*) t}.

IfF (t) is not a closed curve, then its extremities lie on F±. It follows from the maximum
principle for subharmonic functions that G(z, z*)>0 in D.
Let

A(t;g)= J Qdxdy.
D(t)

THEOREM 2.1. Let D, Fl9 Fo and q satisfy the same assumptions as for Theorem
1.1. Then

/s a non-decreasing function of t.

Proof1). By the divergence theorem we hâve

if r (/) is a closed contour line, or

if r (t) is not a closed level line. If dn is the length of the pièce of normal to F (t)
between F(t) and F(t+dt\ then

A(t\Q)-A{t+dt;o)= J gdnds+o(dt).
no

By letting <ft tend to zéro, we get

(2J)

r(t) r(t)

This version of the proof makes use of a simplification suggested by J. Hersch.
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By the Schwarz inequality

{IF)- (2>4)

r(t) r(t)

By Corollary 1.3, L2(r(t))^(2a-CA(t; q)) A(t; q).

Observing (2.4) and inserting the inequality for L2 into (2.3), we get

(2.5)

Multiplying (2.5) by e~2at, we obtain

(2.6)

which proves the assertion.
Consider the sector S(oc, R) and ê(r) (l + (O2/4))~2. Let é(z, 0) be the Green's

function, AÔ= -ô0 in S (a, R), Ô(z, 0) 0 on f0 and dô/ôn 0 on tv
ô(z, 0) can be calculated explicitly; i.e. ô(z, 0) (l/a) log(R/r). In this case the

following relation holds

(2.7)

If (7 0, then G(z, z*) is a conformai invariant in the following sensé. If/ (w): D' -+D
is a conformai mapping with/(jTo) ro, then the corresponding Green's function is

GD.{w, w*) GD(f(w),f(w*)). (2.7) holds if and only if G(z, z*) and (A To, q) are

conformally équivalent to ô(z, 0) and (S (a, jR), f0, $)•

The next corollary is a conséquence of Theorem 2.1 in the spécial case g const.

(and corresponds to Corollary 1.1).

COROLLARY 2.1. Let

n— sup < Kds> a>09
P

A(t)= dxdy and A= dxdy.
D(t)

Then

Equality is achieved only for ô(z, 0).
This resuit was already obtained in [3].
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Suppose now that Fx consists of two concave arcs with a corner at z=0. The
angle j8 defined in Sec. 1.1 is equal to n — oc, where a>0. Near the origin the Green's
fonction corresponding to (7=0 has the development

G(z,0)=-log-+A(z)
a r

where a>0 and h{z) is a regular harmonie function in a sufficiently small neighbor-
hood of the origin with A(0) 0.

COROLLARY 2.2. Ifô/dn log£<0 on rt, and if0«x^n then

2 1 C
<">

Proof. For t sufficiently large, we hâve

_1 a

a r
and

2

Hence

_2a 2A(f,Q) 1

which leads together with Theorem 2.1 to the inequality (2.9).
For applications concerning upper bounds for the solutions of Poisson problems

we fefer to [5,4].

2.2. Estimâtes for Eigenvalues
Let D, Fo, Ft and q satisfy the assumptions of Theorem 1.1. Consider the

membrane eigenvalue problem

(2.10)
y)cp(x9 y)=0 in D

q>=Q on Fo
dg>

--=0 on rt.dn

By the classical theory there exist infinitely many positive eigenvalues 0< kx
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The lowest eigenvalue At=A is defined as the minimum of the Rayleigh quotient

2x + U2y)dxdy

QU2 dx dy

if U(x, y) ranges over the class of functions which vanish on Fo and which are
piecewise continuously differentiable in D. Besides (2.10) consider the problem

on

O in S(oc,R)
0 on f0

=0 on ft.
(2.12)

For the définition of S (a, R), 10, tx and £ see Sec. 1.1. We shall dénote by A the
lowest eigenvalue. The radius R of the domain is chosen such that

R a

J h >•= I q(x, y) dx dy=^M.
0 0 D

Hence, an elementary calculation yields

,-1/2

(2.13)

From (2.14) it follows that R is defined only if 2a >MC.
The next resuit generalizes the inequality of Rayleigh-Faber-Krahn [12].

THEOREM 2.2. If MC<2oc, then

(2.15)

Equality holds if and only if (D, To, g) is conformally équivalent to (S(a, R), t0, $).
Proof Let (p (x9 y) be the eigenfunction corresponding to the first eigenvalue L

It does not change sign and can therefore be taken to be positive. Let D (t) {(x9 y) e D ;

q>(x9y)>t} and r(f)={(x,y)eD; q>(x,y)=*t}. F(t) consists of closed Unes or of
arcs whose endpoints lie on Fx. A classical transformation of the Dirichlet intégral
yields

j grad2 q> dxdy— I grad2 cp dx dy=
dt

dn
dnds+o(dt). (2.16)
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s dénotes the arc-length of the level line F (t), and dn dn (s) is the length of the normal
between F(t) and F(t + dt). By the Schwarz inequality we hâve

riz
J ÏS/S

If we write

-4(0= J

then

-dA(t)=A(t)-A(t + dt)= f Qdnds + o(di)

and

J

Because of our assumptions, Corollary 1.3 can be applied to estimate Jr(0 yfq ds.

We hâve therefore

This inequality together with (2.17) and the expression for — A'(t) yields

The Rayleigh quotient R [cp\ is estimated from below by

max<p

r
- f t2A'(t)dt

(2.19)
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We now introduce the new variable

,-1/2
fr>r?-^Y

The right-hand side of (2.19) is then transformed into

R

fài\2
rdr

\drj
o

(2.20)

r dr

0
(l + Cr2/4)2

In view of the minimum property of A, the expression (2.20) is greater than or equal
to A. Since the eigenfunction <P corresponding to A is radially symmetric, the minimum
of (2.20) is achieved for t(r) <P(r). Observing that R[q>] À, we hâve therefore
proved the assertion (2.15). The second statement follows immediately if we remember

that inequality (1.17) has been used to evaluate Jr(0 *J q ds for ail t. This theorem
extends results obtained in [2, 3].

THEOREM 2.3. Let the hypothesis of Theorem 2.1 be satisfied and suppose that

00 and C$Dçdx dy^ot. Then we hâve

À>2C. (2.21)

Proof. From Theorem 2.2 it follows that X^A where A is the first eigenvalue of
(2.12) with iî=%/M(a/2-MC/4)"1/2^2/x/c. Because of the minimum property of
A, A is a decreasing function of R. Hence À^A where A is the first eigenvalue of
(2.12) with R 2ly/C. The corresponding eigenfunction is $ (r)= (4- Cr2)/(4 + Cr2).
Inserting this expression into (2.12), we get Â=-2C which establishes the theorem. -
When Fx is empty, we hâve a 7r. Inequality (2.21) then holds if C\Dodxdy^n.
In [6] we proved that for this particular case the inequality (2.21) remains valid even

if C\DQdxdy^2n.
By Theorem 2.2 we hâve [cf. 3].

COROLLARY 2.3. Let q^I and

n— sup < k ds> <x>0.
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where j0 2.4048... is thefirst zéro of the Bessel function Jo(r).
If k(s)<0 on ri9 Corollary 2.3 corresponds to Theorem III of Nehari [11].

2.5. A Generalization of the Schwarz Symmetrization
In this section we extend the concept of Schwarz symmetrization of a domain and

a function [12].
Let D9F0 and q be defined as in Sec. 1.1. Consider in D a positive function

/ (x, y) of class C00 (5) vanishing at To.
We define

(2.22)

with
/—/oc MCy1/2 f^=X/M( j and M=

Let

{(x,y)eD;f(x9y)>t} and

Dit)

^4 (r) is a decreasing function of t. Its inverse f (yl) exists. On Z>* we define the function

ccr
(2.23)

/* (r) has been constructed in such a way that

0 {r;f*(r)>t}

where ê(0 is defined in Sec. 1.1.

As in [12, see also 2, 3] we prove for ail continuous functions g(x)

(2.24)

D*
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Under the hypothesis of Theorem 2.2 we hâve

f grad2 fdxdy^ï grad2 /* dx dy. (2.25)

D D*

The proof of this inequality uses the same type of arguments as in Theorem 2.2.

With the help of this symmetrization estimâtes for the modulus of a domain can be

derived. The methods and results resemble those of [2, 3]. Since the generalization is
immédiate by means of (2.24) and (2.25), it will be omitted.
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