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Comment. Math. Helvetici 50 (1975) 477-491 Birkhàuser Verlag, Basel

Bicartesian Squares of Nilpotent Groups1)

by Peter Hilton and Guido Mislin

0. Introduction

Our purpose in this paper is to draw attention to certain commutative squares of
homomorphisms which arise naturally in the study of nilpotent groups and, in partic-
ular, of their localization theory. It turns out that thèse squares are bicartesian (that is,
pullbacks and pushouts) in M, the category of nilpotent groups. This is a somewhat
remarkable fact, especially since, in gênerai, N does not admit pushouts.

In the first of thèse squares (Section 2) we consider two families of primes, P, Q
such that P u Q n, the family ofail primes, and a commutative square ofhomomorphisms

in N,

G ^H

iv —? Lu
a

in which (j>9 a are P-bijective and ij/9 g are Q-bijective (see [H, HMR]). Such squares
turn out (Theorem 2.1) always to be bicartesian in N. They arise whenever we hâve a

nilpotent group G and its localizing maps,

G -> GP

i-L
Moreover every pair of homomorphisms <j>:G-*H, ij/'.G-^KinN, with (j) P-bijective
and xj/ g-bijective, can be imbedded in a square (*), as can every pair ofhomomorphisms

g:H-+L, G:K-^Lin N, with g g-bijective and g P-bijective. The results of this section

will be applied in a following paper [HM], in which we study an abelian group structure

which may be imposed on the genus set of a finitely generated nilpotent group

x) Part of the content of this paper formed the subject matter of a talk given by the first author at
a topology conférence held at Ohio State University in August, 1974.
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with finite commutator subgroup. We also draw attention to [K], in which (P, Q)-

squares are studied in connection with the localization of manifolds.
In Section 3 we study a square that may be constructed out of any nilpotent group

G. The/7-localization maps ep:G-+ Gp9 asp ranges over 77, détermine an embedding2)

we call ô the local expansion of G. Rationalizing ê, we obtain a commutative square

(**)

and it turas out that (**) is always bicartesian in fol ; our method of proof is, in this

case, homological. The square (**) is relevant to the study ofhomotopical localization

[HMR], and this connection is explained and elaborated in Section 3. In Section 4

we indicate further interesting properties of (**), including the fact that the bicartesian

property is preserved when we take the «th homology group Hn9 n^Q.
The first section of the paper establishes some preliminary facts related to localization

theory which are used in the présent paper and in its sequel [HM].

1. Preliminaries on Nilpotent Groups and Localization

In this section we establish some results which will be used in the sequel. Our first
resuit, crucial to the proof of Theorem 3.1, is certainly classical, so we give no proof.

PROPOSITION 1.1. Let G be a nilpotent group, let T be its torsion subgroup and

let Tp be the p-component of T. Then

the restricted direct product of the groups Tp.

Our next resuit is used in Section 4 and will also be applied in [HM].

PROPOSITION 1.2. Let G be a nilpotent group, H a subgroup of G and let xeG
be such that epxeHp, for ail p where ep:G-+Gp is the pAocalizing map. Then xeH.

Proof Assume first that H is normal in G, if<i G, with K= GjH. Then we hâve, for

2) We may employ the notations G, ê in. this paper, since we never discuss complétions.
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each p, a map of exact séquences

UP \ep \ep
* * bp *
j_r s~i * Tf

Then ex is an élément of K such that epex= 1 for ail primes /?. This shows that ex= 1

so xeH.
In the gênerai case we exploit the fact that H is subnormal in G, that is, we can

find a normal séries

The argument above then shows successively that xeNk, xeNk-l9...9 xeNl9 xeH.

COROLLARY 1.3. Let <j>:G^>K be a homomorphism of nilpotent groups and let
H<=G, L^K. Then (j)H^L if and only if cj)pHp<=Lpfor ail p.

COROLLARY 1.4. Let G be a nilpotent group, H a subgroup of G. Then H<\G
if and only if Hp«& Gp for ail p.

PROPOSITION 1.5. Let <j>:G-+K be a homomorphism of nilpotent groups.
Localizing at P yields

K

4>p

GP-+ KP.

and hence an induced homomorphism2') ëicoketcf)->coker^p. Then ê P-localizes.

Proof. First, consider the map <})G -> <t>PGP induced by e. It is plain that <t>PGP9 as

a quotient of GP, has qth roots for every qeP'9 and such roots are unique since (f>PGP

is a subgroup of KP. Thus <t>PGP is P-locai. It is then easy to show that <f)G-^^PGP is

P-bijective so that (see [H]) it P-localizes.

Thus essentially we hâve the following situation. Let H^Kand let ff be the normal

closure of H in K. Similarly, let (HP) be the normal closure of HP \nKP. Then weclaim

3) Note that the cokernel in G, the category of groups, coïncides with the cokernel in N.



480 PETER HILTON

that (HP) is the /Mocalization of H. Indeed, it is plain that

and we claim that the inclusion is an identity. For this it suffices to show that (HP)

is P-local, since plainly e sends H to (HP). We must show that (HP) has unique qth

roots for qeP'. The uniqueness is évident since (HP) is a subgroup of KP; and the

existence follows from Blackburn's Theorem [B], since every élément of (HP) is a

product of conjugates of éléments ofHP9 and every élément of HP is a ^-power for an

arbitrary positive integer/.
The proof of the proposition is now completed by observing that localization is

exact [H].
Now let G, H, KeNc, the category of nilpotent groups N with ni\ N^c, and let

(j):G-*H,\l/:G-+K. We may form the pushout in Nci

4>

G-+H
[e (1.3)

K-+L
<T

and we claim that, for any family of primes P,

PROPOSITION 1.6. In the pushout diagram (1.3),

(i) 0 is P-surjective if and only if a is P-surjective;
(ii) if $ is P-bijective, a is P-bijective.
Proof. Let Loc: Nc -? NcP be the P-localization functor, where NcP is the subcate-

gory of Mc consisting of the P-local groups of Nc. Then Loc is left adjoint to the em-

bedding and so commutes with pushouts. Thus

GAHP

r (i-4)
Kp-^-> Lp

is a pushout diagram in NcP. Now it follows from Proposition 1.5 that NcP has coker-
nels and indeed that the cokernel in NcP coincides with the cokernel in Nc9 and hence

with the cokernel in N (or G). However, in the category N, a homomorphism a is

surjective if and only if cokera is trivial. From (1.4) we infer that coker$P£coker0>,
and hence $P is surjective if and only if aP is surjective. By [H], this is équivalent to
the first assertion of Proposition 1.6.
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Now certainly we may infer from (1.4) that (f)P is invertible (in NcP) ifaP is invert-
ible. However an invertible morphism of NcP is just an isomorphism so o> is an iso-

morphism if 0P is an isomorphism and this is équivalent to the second assertion of
Proposition 1.6.

Finally let G, H, Ke M and let <\) : H -> G, \j/ : K-> G. We may form the pullback in
N (or G),

| (1.5)

K-+G

and we claim that, for any family of primes P,

PROPOSITION 1.7. In the pullback diagram (1.5),

(i) (f) is P-injective if and only if g is P-injective;

(ii) if (j) is P-bijective, g is P-bijective.

Proof. It is shown in [HMR] that localization commutes with pullbacks, in M.

Now in the pullback diagram

QP

Mp^HP
»[ [** (1.6)

Kp —? Gp

it is clear that </>P is injective if and only if o> is injective (since (f)P, gp hâve isomorphic

kernels) and that gp is invertible if 4>P is invertible. Again by [H] thèse statements are

équivalent to the assertion of the proposition.

2. Commutative (P, 0-squares

Let P, Q be families of primes such that P u Q 17, the family of ail primes and let

G->H

K->L
a

be a commutative square in N. Then we prove
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THEOREM 2.1. Suppose, in (2.1), that <j>9 a are P-bijective and that \//9 q are
Q-bijective, withPuQ=II. Then

(i) (2.1) is apullback in N

(ii) (2.1) is a pushout in N

(iii) if H, KeNc, then G9 LeNc
(iv) every élément x in L is expressible as

x=Qa'ab <rb''Qa\ a,a'eH, b,bfeK.

Proof. (i) Form the pullback of q, a in N. We obtain a diagram

G.

G

By Proposition 1.7 (ii) we infer that <f>' is P-bijective and ij/' is g-bijective. Since cj), $'
are P-bijective, so is co; since i//91//' are g-bijective, so is co. Thus co is P-bijective and

ô-bijective, and so, since Pug=i7, co is an isomorphism. Thus (2.1) is a pullback
in N.

(ii) We first observe that Ge Nc if H, Ke Nc because G is embedded in HxK.
To prove (ii) we must show that (2.1) is a pushout in Nc*9 for every c'^c. First, let
Le Nd, d^c. Form the pushout of (j>9 xj/ in Nd9 and so obtain a diagram

By Proposition 1.6 (ii) we infer that a' is P-bijective and q' is g-bijective. As above, we
deduce that co is both P-bijective and Q-bijective, hence an isomorphism, so that (2.1)
is a pushout in Nd.

Now form the pushout of 0, ifr in Nc. Such a pushout is a commutative diagram in
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ûd9 so we obtain

where (q, a) is the pushout of (0, \j/) in Nc. Again we infer that œ is an isomorphism,
so that (2.1) is, in fact, a pushout in Nc and we hâve proved that Le Nc9 completing
the proof of (iii). It is moreover now clear that (2.1) is a pushout in Nc> for every
c' ^ c, so that (ii) is also proved.

It remains to prove (iv). Now, given xeL, there exist meP\ neQ'9 heH, keK9 with

But Pu Q=77, so that m, n are mutually prime and there exist integers r, s with
rm + sn=l. Then

COROLLARY 2.2. Let q:H-+L9 o\K-*L in H with q Q-bijective, a P-bijective,

PuQ=II. Form the pullback of q9 a in M
9

Xi*—? lu
a

Then (2.2) is also a pushout in H.

COROLLARY 2.3. Let <t>\G -+ H9\\j \G ^> KinNc with 4> P-bijective, ifr Q-bijective,
17. Form the pushout of $, \j/ in Nc9

K-> L
a

Then (2.3) is a pullback and pushout in
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COROLLARY 2.4. Under the hypothèses of Corollary 2.3, form the pushout of
4>9 «A in G,

G-+H

•i i
K-+ R

Then rc+1R rc+2R, where r is the ith term of the lower central séries.

EXAMPLE. We note that, for any nilpotent group G, the square

ep
G -> GP

eQ I 1" (2.4)

made up of localization maps eP, eQ9 and rationalization maps rP, rQ, with Pu Q 77,

satisfies the conditions of Theorem 2.1, provided that Pn Q Q, that is, provided that
{P, Q} is a partition of II. Of course, even if {P, g} is not a partition, we obtain an
example by replacing Go in (2.4) by GPnQ.

Remark. If we apply the homology functor Hn (with integer coefficients) to the

square (2.1) we again get a (P, (g)-square

HnG->HnH

(2.5)

Thus (2.5) is bicartesian. It follows that (2.1) gives rise to a Mayer-Vietoris séquence
in intégral homology (which, in fact, breaks up into short exact séquences). The
existence of such a séquence is of interest since the homomorphisms $, ij/ of (2.1) are

not assumed to be injective - and, in any case, (2.1) is a pushout in N, not in G.

3. À Commutative Square in N.

In this section we study a commutative square associated with a given nilpotent
group G. Let

e-nc'; (3..)
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we refer to ô as the local expansion of G. Then the localizing maps ep: G -> Gp induce
an embedding

ê:G~Ô (3.2)

of G in its local expansion. The square in question is obtained by rationalizing (3.2),
thus,

(33)

êo

Then (3.3) was studied in [HMR] in the spécial case that G is a finitely-generated
abelian group. This study was relevant to homotopical localization. We will point
out, at the end of the section, that the gênerai properties of (3.3) also hâve applications
in homotopy theory. Note that 60 (6)0 ; we rationalize the local expansion of G.

Since nilG=nil6, it is plain that (3.3) is a diagram in Nc if G is in Î^JC. We will
prove

THEOREM 3.1. The diagram (3.3) is a pullback in G and a pushout in Nc. Hence

it is bicartesian in N.

Proof. We first prove that (3.3) is a pushout in Nc. It follows from Proposition
1.1 that ê maps the torsion subgroup Tof G isomorphically onto the torsion subgroup
of ô. To see this it suffices to recall that localization commutes with the torsion

subgroup functor and then to remark that the torsion subgroup of ô is obviously the

restricted direct product Y[p Tr We will therefore also write T for the torsion

subgroup of ô, so that ê | T= 1. We may factor (3.3) as

(3.4)

I' I'
r ê0 £
Go >-> Go

Moreover, ë is injective since ê is injective, and f:G/T>~+G0 f:ô/7V>ô0 are again

rationalization maps, so we will write r for r. Further it is easy to see that (3.3) is a

pushout in f^Jc ifand only if the lower square of (3.4) is a pushout in Nc. Note, however,
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that ë is not the canonical embedding in the local expansion unless G has /7-torsion
for only finitely many primes p.

Our next observation is that ê induces

ê*:Hn(G; Z/p)^Hn(G; Z/p) for ail n,p. (3.5)

To see this, fix p and write G GpxG9 where S==fJ^#p Gq. Notice that each Gq is

/?'-local; so therefore is G, and so therefore too is HnG, n^l.ltfollowsthatHn(G; Zjp)
0, n^ 1. Thus the projection np:GpxG-*Gp induces an isomorphism

««,:Hn(GpxG; Z/p)&H.(<?,; Z/p) ;

for, by the Kiinneth formula,

Hn(GpxG;Zlp)= ® Hr(Gp;Zlp)®Hs(G;Zlp),
r + s n

the tensor product being taken over the field Z/p. But, since Zjp is /?-local,

ep.:Hn(G;Zlp)*Hn(Gp;Zlp),

and (3.5) now follows from the fact that ep=npê.
We now complète the proof that (3.3) is a pushout in Nc.

We first prove a resuit corresponding to (3.5), namely,

ëm:Hu(G/T;Zlp)^Hu(ClT;Zlp) for ail n,p. (3.6)

The proof of (3.6) is along precisely the same lines as that of (3.5); namely, we fix

p, so that

where G, as in (3.5), is Ylq*p &r Since G and Tp> are both //-local, so is G/Tp>9 and

the rest of the argument proceeds as for (3.5), in view of the fact that {GjT)p=GpjTr
Now form a pushout diagram

(3.7)

G/T»
'I
Go »•

G/T

h
P
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in G ; we then hâve

(3.8)

The pushout (3.7) gives rise to a Mayer-Vietoris séquence in homology; from this
and (3.6) we immediately infer that

But since HnG0 is rational, n> 1, this implies that

Hn(P;Zlp)=0, n>\, all/>. (3.9)

Now plainly r*:Hn(GIT;Q)&Hn(G0;Q),ri>:Hm(GIT;Q)2LHm(G0;Q). From the
former isomorphism and the Mayer-Vietoris séquence we infer that

This with the latter isomorphism implies that

(3.10)

(3.11)

Since Hnô0 is rational, n> 1, so that Hn(ô0; Z//?) 0, «> 1, ail p, we may now
infer from (3.9) and (3.11) that

co*:HnP*HnÔ0. (3.12)

By the Stallings-Stammbach Theorem, (3.12) implies that a> induces an isomorphism

œr.Pir^p^ôoir^ôo (3.13)

for ail i>0. In particular, we may take i=c, so that co induces

P^Ô0. (3.14)
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But if t projects P onto P/rc+1P, then œ œcx and

GjT^ÔjT
XQ

+ 1 ;

is a pushout diagram in Nc. This proves that the lower square of (3.4), and hence (3.3),
is a pushout diagram in Nc. Since GeNc, it follows that GeNd, for ail d^c, so that
(3.3) is a pushout diagram in Nd for ail </^c, and hence a pushout diagram in N.

We now prove that (3.3) is a pullback diagram in G. Ofcourse, we may abandon the

categorical définition and simply prove that if xeô, yeG0 with rx=êoy, then there
exists geG with êg x, rg=y (the uniqueness of g follows because ê is injective). We
will invoke the following principle.

PROPOSITION 3.2. Let S be an assertion about nilpotent groups such that

(i) S is true of ail abelian groups ;

(ii) if N>-+ G-» Q is a central extension of nilpotent groups and if S is true of N and

Q, then S is true of G.

Then S is true of ail nilpotent groups.
Proposition 3.2 follows from an easy induction on nilpotency class. Now consider

the assertion S that (3.3) is a pullback (we need not specify the category). Then S is

true of ail abelian groups G since (3.3) is a pushout (in Ab) and ê is injective. It thus
remains to establish property (ii) of Proposition 3.2. But this is easy, noting the fact
that local expansion and rationalization are exact functors (preserving centrality,
though this is not important hère). Thus Theorem 3.1 is completely proved.

We close this section by giving an application of Theorem 3.1 to homotopy theory.
Given a nilpotent space X [HMR] we may form the square analogous to (3.3)

X il
I, |r (3.15)

v êo iXo -> Xo

THEOREM 3.3. The square (3.15) is a weak pullback in the homotopy category.
The meaning of this theorem is the following. Replacing r: 1 -> l0 by a fibre-map,

we may form the pullback

l
,0

l
Xq —> Xq
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and hence we obtain a map w:X-* X such that vw r9 uw=ê. Then we claim that w
is a homotopy équivalence. We remark that no fîniteness assumptions are being im-
posed hère.

Proofof Theorem 3.3. Applying the «th homotopy group functor to (3.15) we
obtain a square

7lnA -> 7tnA

I- I-
v ê0* V

nnX0-+nnX0
(3-17)

of type (3.3) which is therefore a pullback and a pushout in fol. Applying the Mayer-
Vietoris homotopy séquence to (3.16) we get an exact séquence

^%®X0^—"? nn$o -?•••-? n^X—^ nx£ x nxX0Hj tt^q (3.18)

where the final two arrows are obtained by composing r+, e0+ with the projections

qm^x ntX0 -> nt1t9 q' : 7r^ x n1Xo ->n1XQ, respectively ; and exactness at n1£ x 71^0
assertsthatr*^ eo^if andonly ifthereexists (e7r1Xwithw)kC ^ ^*C ^« (Actually,
to complète the argument we only need the easy "if" part of this last assertion).

It now follows easily from the fact that (3.17) is bicartesian, and from (3.18) that

w induces isomorphisms

so that w is a homotopy équivalence, provided we know that X is connected. This in

turn follows from Proposition II.7.11 of [HMR] and Proposition 3.4 below.

PROPOSITION 3.4. In the square (3.3), each élément of ô0 is expressible as

z rx-êoy

zeÔ0,x,xfeÔ,y,y'eG0.
Proof. We apply Proposition 3.2 to the assertion S of Proposition 3.4. Then (i)

holds since (3.3) is a pushout square. An elementary computation establishes (ii)
(hère the centrality of AHs essential), so that Proposition 3.4, and hence Theorem 3.3,

follows.
Remark. A proof of Theorem 3.3, for spaces X of finite type, is given in [HMR],

but the argument that X is connected is there omitted.
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4. Further Properties of the Square (3.3)

In this section we make further déductions about the square (3.3)

G A 6

ê0 £

and a déduction from Theorem 3.1.

THEOREM 4.1. The induced homology square

HnG ~ HnÔ

l nnê0
|r (4.1)

HnG0 ~ HnÔ0

is bicartesian for ail /i> 1, with Hnê, Hnê0 injective.
Proof. Let M be the mapping cône of the map K(G, 1 -» #((?, 1 associated with

ê. It follows from (3.5) that Hn(M; Z/p) 0 for ail «^ 1 and ail primes/?. Thus HnM
is a rational vector space, n^l.

Now the maps np:ô^Gp induce Hnnp:Hnô-+HnGp and hence tt :Hnô-+HnG,
such that

Since ê is injective, so is Hnê - and hence also Hnê0. We thus obtain the diagram, with
exact rows, and with M the mapping cône of K(G09 l)-+K(ô0, 1),

HnG Z HnÔ-»HnM

I' I' I'
ffBGo ~ HnÔ0-»HnM

But since if^M is rational, it follows that r:HnM^HnM. Thus (4.1) is a pushout and,

Hnê being injective, therefore bicartesian.

THEOREM 4.2. In (3.3) cokerê is a rational group. Further, if xeô
for sorne n^ 1, then xeêG.
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Proof. Since (3.3) is a pushout in fol, the induced map coker«?->cokeré0 is an
isomorphism, the cokernels being taken in N. However, the cokernel in N coïncides
with the cokernel in G. Moreover, it follows from Proposition 1.5 that the induced

map is rationalization. Thus cokeré is rational.
To prove the second assertion of the theorem we invoke Proposition 3.2. For if G

is abelian then the assertion is an immédiate conséquence of the fact that coker ê is

rational. Now suppose given a central extension N>-+G~*>Q (where we think of N
as a central subgroup of G) and assume our assertion true for N and Q. We write
ê:ô-»(?, etc., for the surjections induced by e. Let xeû with xn=êyiyeG. Then
(êx)n êey, so that êx=êz, zeQ. Let z eg, geG, so èx êêg. Thus x (êg) h, hef).
Then êy xn (êgn) hn, so that hneêG, say

hn êu, ueG.

Now the élément ueG is such that epueNp for ail primes p. Thus by Proposition 1.2

it follows that ueN, and our assertion for N implies that h êv, veN. Thus finally
x ê(gv) and our assertion is proved for G.

THEOREM 4.3. Let mXG^c and let

be a pushout in G. Then a isinjectiveandrc+iP=rc+2P. Moreover, P/rc+l is a rational

group.
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