On Meromorphic Solutions of First-Order Differential Equations

Autor(en): Bank, Steven B. / Kaufman, Robert P.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 51 (1976)

$$
\text { PDF erstellt am: } \quad 01.07 .2024
$$

Persistenter Link: https://doi.org/10.5169/seals-39444

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

On Meromorphic Solutions of First-Order Differential Equations

Steven B. Bank and Robert P. Kaufman

1. Introduction

In the first part of this paper, we consider first-order differential equations of the form,

$$
\begin{equation*}
\sum_{n=0}^{N} R_{n}(z, w)\left(w^{\prime}\right)^{n}=0 \tag{1}
\end{equation*}
$$

where for each $n, R_{n}(z, w)=\sum_{k=0}^{B(n)} a_{k n}(z) P_{k n}(w)$, the $a_{k n}(z)$ are analytic functions in a neighborhood of ∞, having no essential singularity at ∞, and the functions $P_{k n}(w)$ are all defined and analytic on some common open set in the plane. Such equations were treated by A. A. Gol'dberg in [1], and he showed [1; Th 4] that any solution, meromorphic in a neighborhood of ∞, is of finite order of growth, and he obtained estimates (which depend on the equation) for the growth. The main technique used by Gol'dberg in proving this result is 0 . Frostman's generalization of the Ahlfors-Shimizu formula (see [3; p. 180] or [10; p. 42]). In the first part of our paper ($\S \S 3,4$ below), we present an alternate proof of Gol'dberg's result which seems to be more elementary and more transparent than Gol'dberg's proof. In our proof, we determine disks around the sufficiently large a-points of the solution (for most values of a) on which the solution is univalent. From this we obtain estimates for the growth of the counting functions for the a-points, and hence an estimate on the growth of the solution by Nevanlinna's Second Fundamental Theorem.

The second part of the paper deals with algebraic differential equations (i.e. equations of the form $F\left(z, y, y^{\prime}, \ldots, y^{(n)}\right)=0$, where F is a polynomial in all its variables.) In [5], Pólya proved that an entire transcendental function of order zero cannot be a solution of a first-order algebraic differential equation. This result was generalized by Valiron [8], who showed that in the first-order case, the order of an entire transcendental solution must be a positive rational number (and it is now known (see Strelitz [7; p. 70]) that the order must be at least $\frac{1}{2}$.). In addition, Valiron (see [9; pp. 223-225]) found a third-order algebraic differential
equation with a transcendental solution of order zero. The remaining case of second-order algebraic differential equations was settled by Zimogljad [11], who showed that these equations cannot possess transcendental entire solutions of order zero. At the present time, the situation concerning transcendental meromorphic solutions of order zero is less clear. In the third-order equation, $F\left(z, y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)=0$, constructed by Valiron in [9], it is easily seen that F is homogeneous as a polynomial in $y, y^{\prime}, y^{\prime \prime}$ and $y^{\prime \prime \prime}$, and hence the logarithmic derivative of Valiron's solution does provide an example of a transcendental meromorphic solution of order zero of a second-order algebraic differential equation. However, to the authors' knowledge, it was not known whether transcendental meromorphic functions of order zero can satisfy first-order algebraic differential equations. (The result of Gol'dberg [1, Th. 4] hints at the possibility that such solutions may exist, but none had been constructed.) In the second part of our paper (see $\S 5$ below), we construct an example of a transcendental meromorphic function $f(z)$ of order zero which satisfies a first-order algebraic differential equation. The characteristic of our function $f(z)$ satisfies $T(r, f)=O\left((\log r)^{2}\right)$ as $r \rightarrow+\infty$ (which is the estimate suggested by Gol'dberg's result), and from the construction of $f(z)$, it is easy to see that $T(r, f) \neq o\left((\log r)^{2}\right)$ as $r \rightarrow+\infty$. We conjecture that first-order algebraic differential equations cannot possess transcendental meromorphic solutions whose characteristic is $o\left((\log r)^{2}\right)$ as $r \rightarrow+\infty$.

2. Notation

If f is a meromorphic function and λ is a complex number or ∞, we will use the standard notation for the Nevanlinna functions, $T(r, f), N(r, \lambda, f)$ and $m(r, \lambda, f)$, (see [2; p. 6] or [4; pp. 6, 12]). We will also use the notation $n(r, \lambda, f)$ to denote the number of roots of $f(z)=\lambda$ (counting multiplicity) in $|z| \leq r$.
3. THEOREM. Given the equation,

$$
\begin{equation*}
\sum_{n=0}^{N} R_{n}(z, w)\left(w^{\prime}\right)^{n}=0 \tag{2}
\end{equation*}
$$

where each $R_{n}(z, w)$ is a polynomial in z whose coefficients are meromorphic functions of w, say

$$
\begin{equation*}
R_{n}(z, w)=\sum_{j=0}^{A(n)} z^{j} P_{j n}(w), \tag{3}
\end{equation*}
$$

where $P_{j n}(w)$ is a meromorphic function of w. Let J be the set of integers n, $0 \leq n \leq N$, for which $R_{n}(z, w)$ is not identically zero, and we may assume that 0 and N belong to J, and if n belongs to J, then $P_{A(n), n}(w)$ is not identically zero. Assume also that $N \geq 1$ (see §4(b)), and set

$$
\begin{equation*}
L=\max \{((A(j)-A(N)) /(N-j)): j \in J-\{N\}\} . \tag{4}
\end{equation*}
$$

Let $w=f(z)$ be a meromorphic function on the plane which satisfies equation (2) at every point of analyticity. Then, as $r \rightarrow+\infty$,
(a) $T(r, f)=O(\log r) \quad$ if $\quad L<-1$,
(b) $T(r, f)=0\left((\log r)^{2}\right) \quad$ if $\quad L=-1$,
(c) $T(r, f)=O\left(r^{2 L+2}\right) \quad$ if $\quad L>-1$.

Proof. Let E be the set of all complex numbers w_{0} with the property that if $P_{j n}(w)$ is not identically zero, then $P_{j n}(w)$ is analytic and nonzero at w_{0}. We now prove a sequence of four lemmas from which the theorem will immediately follow.

LEMMA A. Let w_{0} belong to E. Then there exist real numbers, $b>0, r_{1}>1$, $K_{2}>K_{1}>0$ and $a_{1}<a_{2}<\cdots<a_{q} \leq L$, such that if $1 \leq j<s \leq q$, then

$$
\begin{equation*}
2 K_{2}|z|^{a_{1}}<K_{1}|z|^{a_{s}} \quad \text { if } \quad|z|>r_{1}, \tag{5}
\end{equation*}
$$

and in addition, if z is a complex number satisfying $|z|>r_{1}$ and $\left|f(z)-w_{0}\right| \leq b$, then there is a unique element j in the set $\{1,2, \ldots, q\}$ such that,

$$
\begin{equation*}
K_{1}|z|^{a_{i}} \leq\left|f^{\prime}(z)\right| \leq K_{2}|z|^{a_{1}} . \tag{6}
\end{equation*}
$$

Proof. If w_{0} belongs to E, then there exist real numbers $b>0$ and $d_{2}>d_{1}>0$ such that on $\left|w-w_{0}\right| \leq b$, we have,

$$
\begin{equation*}
d_{1} \leq\left|P_{j n}(w)\right| \leq d_{2}, \tag{7}
\end{equation*}
$$

for all $P_{j n}$ which are not identically zero. It now easily follows from (3) that there exists $r_{0}>1$, such that if n belongs to J, then for any z satisfying $|z|>r_{0}$ and $\left|f(z)-w_{0}\right| \leq b$, we have,

$$
\begin{equation*}
c_{1}|z|^{\mathbf{A}(n)} \leq\left|R_{n}(z, f(z))\right| \leq c_{2}|z|^{\mathbf{A (n)}}, \tag{8}
\end{equation*}
$$

where $c_{1}=d_{1} / 2$ and $c_{2}=2 d_{2}$. For convenience, denote $R_{n}(z, f(z))$ by $B_{n}(z)$. Now if z satisfies $|z|>r_{0}$ and $\left|f(z)-w_{0}\right| \leq b$, let k be the largest element of J for which,

$$
\begin{equation*}
\left|B_{k}(z)\left(f^{\prime}(z)\right)^{k}\right|=\max \left\{\left|B_{n}(z)\left(f^{\prime}(z)\right)^{n}\right|: n \in J\right\} \tag{9}
\end{equation*}
$$

Then there must exist an element m in $J-\{k\}$ such that,

$$
\begin{equation*}
\left|B_{m}(z)\left(f^{\prime}(z)\right)^{m}\right| \geq N^{-1}\left|B_{k}(z)\left(f^{\prime}(z)\right)^{k}\right| \tag{10}
\end{equation*}
$$

or else equation (2) would clearly be violated at z. If m is the smallest element of $J-\{k\}$ with property (10), we will say that the pair (k, m) is the index for z. Denote by $\alpha_{k m}$ the number $(A(k)-A(m)) /(m-k)$. In addition, let K_{2} denote the maximum of all numbers $\left(N c_{2} / c_{1}\right)^{1 /(j-n)}$, and K_{1} the minimum of all numbers $\left(c_{1} / N c_{2}\right)^{1 /(j-n)}$, where j and n belong to J and $j>n$. (Clearly K_{1} and K_{2} are independent of z.) From (8), (9) and (10), it easily follows that if z satisfies $|z|>r_{0}$ and $\left|f(z)-w_{0}\right| \leq b$, and if (k, m) is the index for z, then

$$
\begin{equation*}
K_{1}|z|^{\alpha_{k m}} \leq\left|f^{\prime}(z)\right| \leq K_{2}|z|^{\alpha_{k m}} \tag{11}
\end{equation*}
$$

Let F be the set of distinct numbers of the form $\alpha_{k m}$ for which there exists a complex number z satisfying $|z|>r_{0}$ and $\left|f(z)-w_{0}\right| \leq b$ having (k, m) for its index. Let F_{1} be the subset of F consisting of those elements of F which are larger than L. Let r_{2} be so large that $r_{2}>r_{0}$ and

$$
\begin{equation*}
r_{2}^{\alpha-L}>K_{2} / K_{1} \quad \text { for all } \quad \alpha \text { in } F_{1} \tag{12}
\end{equation*}
$$

We now claim that if z satisfies $|z|>r_{2}$ and $\left|f(z)-w_{0}\right| \leq b$, and if (k, m) is the index for z, then

$$
\begin{equation*}
\alpha_{k m} \leq L \tag{13}
\end{equation*}
$$

If $k=N$, then (13) is clear, so we may assume that $k<N$. If (k, m) is the index for z, then by (9), we have

$$
\begin{equation*}
\left|B_{k}(z)\left(f^{\prime}(z)\right)^{k}\right| \geq\left|B_{N}(z)\left(f^{\prime}(z)\right)^{N}\right| \tag{14}
\end{equation*}
$$

In view of (8) and (4), it follows that $\left|f^{\prime}(z)\right| \leq K_{2}|z|^{L}$. But since (k, m) is the index for z, (11) holds, so that $|z|^{\alpha_{k m}-L} \leq K_{2} / K_{1}$. Hence by (12), we see that $\alpha_{k m}$ cannot belong to F_{1} which proves (13). Now if $a_{1}<a_{2}<\cdots<a_{q}$ are the elements of $F-F_{1}$, and if r_{1} is chosen so large that $r_{1}>r_{2}$ and (5) holds for $|z|>r_{1}$, then the proof of the lemma is complete.

DEFINITION. Let w_{0} belong to E, and let b, r_{1}, K_{1}, K_{2} and a_{1}, \ldots, a_{q} be as in Lemma A. If z is a complex number satisfying $|z|>r_{1}$ and $\left|f(z)-w_{0}\right| \leq b$, then the unique a_{j} for which (6) holds will be said to be associated with z.

LEMMA B. Let w_{0} belong to E with b, r_{1}, K_{1}, K_{2} and a_{1}, \ldots, a_{q} as in Lemma A. Assume that some a_{k} is less than -1 . Then there exists $R_{0}>r_{1}$ such that if there is at least one point z_{0} satisfying $\left|z_{0}\right|>R_{0}$ and $f\left(z_{0}\right)=w_{0}$, whose associated a_{j} is less than -1 , then $f(z)$ is a rational function.

Proof. Let a_{m} be the largest a_{k} less than -1 say $a_{m}=-1-\eta$, where $\eta>0$. Choose R_{0} so large that $R_{0}>r_{1}$ and,

$$
\begin{equation*}
R_{0}^{-\eta} \leq \min \left\{b \eta / 4 K_{2}, b / 8 \pi K_{2}\right\} \tag{15}
\end{equation*}
$$

Now let z_{0} satisfy $\left|z_{0}\right|>R_{0}, f\left(z_{0}\right)=w_{0}$, and have associated $a_{j}<-1$. Then $a_{j}=-1-\sigma$, where

$$
\begin{equation*}
\eta \leq \sigma . \tag{16}
\end{equation*}
$$

If $z_{0}=\left|z_{0}\right| e^{i \varphi}$, we now assert that,

$$
\begin{equation*}
\left|f^{\prime}\left(r e^{i \varphi}\right)\right| \leq K_{2} r^{a_{1}} \quad \text { for all } \quad r \geq\left|z_{0}\right| . \tag{17}
\end{equation*}
$$

If (17) fails to hold, then clearly we can find ϵ satisfying $0<\epsilon<K_{2}$, and a point $z_{2}=\left|z_{2}\right| e^{i \varphi}$, with $\left|z_{2}\right|>\left|z_{0}\right|$, such that,

$$
\begin{equation*}
\left|f^{\prime}\left(z_{2}\right)\right|=\left(K_{2}+\epsilon\right)\left|z_{2}\right|^{a_{i}}, \tag{18}
\end{equation*}
$$

while,

$$
\begin{equation*}
\left|f^{\prime}\left(r e^{i \varphi}\right)\right| \leq\left(K_{2}+\epsilon\right) r^{a_{1}} \text { for }\left|z_{0}\right| \leq r \leq\left|z_{2}\right| . \tag{19}
\end{equation*}
$$

Hence from (19),

$$
\begin{equation*}
\left|f\left(z_{2}\right)-f\left(z_{0}\right)\right| \leq\left(K_{2}+\epsilon\right)\left|z_{0}\right|^{-\sigma} / \sigma \tag{20}
\end{equation*}
$$

so in view of (15) and (16),

$$
\begin{equation*}
\left|f\left(z_{2}\right)-w_{0}\right| \leq b / 2 . \tag{21}
\end{equation*}
$$

By Lemma A, let a_{s} be associated with z_{2}. Then by (6) and (18), we have,

$$
\begin{equation*}
K_{1}\left|z_{2}\right|^{a_{3}} \leq\left(K_{2}+\epsilon\right)\left|z_{2}\right|^{a_{1}} \leq K_{2}\left|z_{2}\right|^{a_{3}} . \tag{22}
\end{equation*}
$$

From the second inequality, it follows easily that $a_{s} \leq a_{j}$ is impossible, so $a_{j}<a_{s}$. But then the first inequality contradicts (5), thus proving (17). From (17) (together with (15) and (16)), it follows that

$$
\begin{equation*}
\left|f\left(r e^{i \varphi}\right)-w_{0}\right| \leq b / 2 \quad \text { for all } \quad r \geq\left|z_{0}\right| . \tag{23}
\end{equation*}
$$

We now assert that if $r>R_{0}$, then

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq K_{2}|z|^{a_{i}} \quad \text { on } \quad|z|=r . \tag{24}
\end{equation*}
$$

By (17), we know that (24) holds at $z_{1}=r e^{i \varphi}$. Hence if (24) failed to hold at some point on $|z|=r$, then we can find ϵ, with $0<\epsilon<K_{2}$, and a point $z_{2}=r e^{i \psi}$, with $\varphi<\psi<\varphi+2 \pi$, such that,

$$
\begin{equation*}
\left|f^{\prime}\left(z_{2}\right)\right|=\left(K_{2}+\epsilon\right)\left|z_{2}\right|^{a_{1}}, \tag{25}
\end{equation*}
$$

while for $\varphi \leq \theta \leq \psi$,

$$
\begin{equation*}
\left|f^{\prime}\left(r e^{i \theta}\right)\right| \leq\left(K_{2}+\epsilon\right) r^{a_{i}} \tag{26}
\end{equation*}
$$

Hence, $\left|f\left(z_{2}\right)-f\left(z_{1}\right)\right| \leq 4 \pi K_{2} r^{a_{1}+1}$, which with (15), (16) and (23), yields $\mid f\left(z_{2}\right)-$ $w_{0} \mid \leq b$. Thus if a_{s} is associated with z_{2} (by Lemma A), then using (25), we again obtain (22), which as before is impossible. This proves (24), and it easily follows that f is rational.

LEMMA C. Let w_{0} belong to E, and let b, r_{1}, K_{1}, K_{2} and a_{1}, \ldots, a_{q} be as in Lemma A. Assume f is transcendental. Then there is a constant δ_{1}, with $0<\delta_{1}<\frac{1}{2}$, with the property that if z_{0} satisfies $\left|z_{0}\right|>2 r_{1}$ and $f\left(z_{0}\right)=w_{0}$, and if the a_{j} associated with z_{0} is at least -1 , then f is univalent on the disk $\left|z-z_{0}\right| \leq \delta_{1}\left|z_{0}\right|^{-L}$.

Proof. Let $\lambda=\max \left\{\left|a_{k}\right|: k=1, \ldots, q\right\}$. Let δ be a positive real number such that,

$$
\begin{equation*}
\delta<\min \left\{\frac{1}{4},\left(b / K_{2}\right) 2^{-\lambda}\right\} \tag{27}
\end{equation*}
$$

and set,

$$
\begin{equation*}
\delta_{1}=\delta\left(K_{1} / K_{2}\right) 2^{-(2 \lambda+2)} . \tag{28}
\end{equation*}
$$

Let z_{0} satisfy $\left|z_{0}\right|>2 r_{1}, f\left(z_{0}\right)=w_{0}$, and let a_{j} be associated with z_{0} and satisfy $a_{j} \geq-1$. Since f is transcendental, the set

$$
\begin{equation*}
H=\left\{z:|z| \geq 3 r_{1} / 2, \quad\left|f(z)-w_{0}\right|=b\right\} \tag{29}
\end{equation*}
$$

is not empty. Let z_{1} be a point in H such that $\left|z_{0}-z_{1}\right|=\min \left\{\left|z_{0}-z\right|: z \in H\right\}$.
We now assert that,

$$
\begin{equation*}
\left|z_{1}-z_{0}\right| \geq \delta\left|z_{0}\right|^{-a} \tag{30}
\end{equation*}
$$

To prove (30), we assume the contrary, so that

$$
\begin{equation*}
\left|z_{1}-z_{0}\right| \leq \delta\left|z_{0}\right|^{-a_{j}} \leq \delta\left|z_{0}\right| \tag{31}
\end{equation*}
$$

Let D be the disk $\left|z-z_{0}\right| \leq\left|z_{1}-z_{0}\right|$. In view of our assumption (31), it follows that for all z in D, we have $|z| \geq\left(\frac{3}{2}\right) r_{1}$ (by (27)) and $\left|f(z)-w_{0}\right| \leq b$ (or else the definition of z_{1} would be violated). Hence by Lemma A, each z in D has some a_{k} associated with it. Using (5) and (6), it follows by an argument very similar to that used to prove (17), that for every z in D, the a_{k} associated with z is the original a_{j} associated with z_{0}, so that (6) holds on D. Now from (27) and (31), we have, $\left|z_{0}\right| / 2 \leq|z| \leq 2\left|z_{0}\right|$ on D, so it follows from (6) that $\left|f^{\prime}(z)\right| \leq K_{2} 2^{\left|a_{j}\right|}\left|z_{0}\right|^{a_{i}}$. Since z_{1} belongs to H, we thus have $b \leq K_{2} 2^{\lambda}\left|z_{0}\right|^{a_{i}}\left|z_{1}-z_{0}\right|$, which in view of (31) and (27) is impossible. This proves (30).

Let D_{1} be the disk $\left|z-z_{0}\right| \leq \delta\left|z_{0}\right|^{-a_{i}}$. Then using (30) and (27), it follows that for all z in D_{1}, we have $|z| \geq 3 r_{1} / 2$ and $\left|f(z)-w_{0}\right| \leq b$ (or else the definition of z_{1} would be violated). As before, the a_{k} associated with each z in D_{1} must be the original a_{j} associated with z_{0}, so that,

$$
\begin{equation*}
K_{1}|z|^{a_{j}} \leq\left|f^{\prime}(z)\right| \leq K_{2}|z|^{a_{j}} \quad \text { on } \quad D_{1} . \tag{32}
\end{equation*}
$$

Since $\left|z_{0}\right| / 2 \leq|z| \leq 2\left|z_{0}\right|$ on D_{1}, we thus have,

$$
\begin{equation*}
K_{1} 2^{-\left|a_{j}\right|}\left|z_{0}\right|^{a_{j}} \leq\left|f^{\prime}(z)\right| \leq K_{2} 2^{\left|a_{j}\right|}\left|z_{0}\right|^{a_{j}}, \quad \text { on } \quad D_{1} . \tag{33}
\end{equation*}
$$

Now let D_{2} be the disk, $\left|z-z_{0}\right| \leq(\delta / 2)\left|z_{0}\right|^{-a_{j}}$. If z belongs to D_{2}, then by Cauchy's formula for derivatives (using (33) and the circle of radius ($\delta / 2$) $\left|z_{0}\right|^{-a}$, around z), we obtain,

$$
\begin{equation*}
\left|f^{\prime \prime}(z)\right| \leq K_{2} 2^{\left|a_{j}\right|+1}\left|z_{0}\right|^{2 a_{i} / \delta} \quad \text { on } \quad D_{2} \tag{34}
\end{equation*}
$$

Now let D_{3} be the disk $\left|z-z_{0}\right| \leq \delta_{1}\left|z_{0}\right|^{-a_{1}}$, where δ_{1} is as in (28). Then D_{3} is contained in D_{2}, and by (34) and (33), it easily follows that on D_{3},

$$
\begin{equation*}
\left|f^{\prime}(z)-f^{\prime}\left(z_{0}\right)\right| \leq\left|f^{\prime}\left(z_{0}\right)\right| / 2 . \tag{35}
\end{equation*}
$$

Writing $f^{\prime}(z)=f^{\prime}\left(z_{0}\right)+\left(f^{\prime}(z)-f^{\prime}\left(z_{0}\right)\right)$, it now easily follows from (35) (and (33)) that if ζ and σ are distinct points in D_{3}, then $\int_{\sigma}^{\zeta} f^{\prime}(z) d z$ (where the contour is the line segment joining σ to ζ) cannot be zero, and hence f is univalent on D_{3}. Since $a_{j} \leq L, D_{3}$ contains the disk $\left|z-z_{0}\right| \leq \delta_{1}\left|z_{0}\right|^{-L}$ and hence the result is proved.

LEMMA D. Let L and δ_{1} be real numbers with $L \geq-1$ and $0<\delta_{1}<1$. Let $\left\{z_{k}\right\}$ be a sequence of complex numbers such that each disk $\left|z-z_{k}\right| \leq \delta_{1}\left|z_{k}\right|^{-L}$ contains no other z_{m}. Then as $R \rightarrow+\infty$, the number of points z_{k} in the annulus $1 \leq|z| \leq R$ is $O\left(R^{2 L+2}\right)$ if $L>-1$, and is $O(\log R)$ if $L=-1$.

Proof. Let n be a nonnegative integer and let $A_{n}=\left\{k: 2^{n} \leq\left|z_{k}\right| \leq 2^{n+1}\right\}$. Let $\delta_{2}=2^{-|L|} \delta_{1}$. Then it is easy to see that,

$$
\begin{equation*}
\delta_{1}\left|z_{k}\right|^{-L} \geq \delta_{2} 2^{-n L} \quad \text { for } \quad k \text { in } A_{n} \tag{36}
\end{equation*}
$$

For k in A_{n}, let $w_{k}=z_{k} 2^{-n}$, so $1 \leq\left|w_{k}\right| \leq 2$. In view of the hypothesis and (36), it follows that for k in A_{n}, the disk $\left|w-w_{k}\right| \leq r_{n}$, where $r_{n}=\delta_{2} 2^{-n L} 2^{n}$, contains no other w_{m} for m in A_{n}. Thus the disks $\left|w-w_{k}\right| \leq r_{n} / 3$, for k in A_{n}. are all disjoint and all lie in $|w| \leq 3$. By an area argument, it follows that if $\sigma(n)$ is the cardinal number of A_{n}, then,

$$
\begin{equation*}
\sigma(n) \leq\left(81 / \delta_{2}^{2}\right) 4^{n(L+1)} \tag{37}
\end{equation*}
$$

Now if $R>2$ is given, let m be such that $2^{m} \leq R \leq 2^{m+1}$. Then if $\nu(R)$ is the number of z_{k} in $1 \leq|z| \leq R$, clearly,

$$
\begin{equation*}
\nu(R) \leq \sum_{n=0}^{m} \sigma(n) . \tag{38}
\end{equation*}
$$

From (37) and (38), Lemma D immediately follows.
By Nevanlinna's Second Fundamental Theorem [4; p. 69], it follows that if w_{1}, w_{2} and w_{3} are distinct complex numbers, then as $r \rightarrow+\infty$,

$$
\begin{equation*}
T(r, f)=O\left(\sum_{j=1}^{3} N\left(2 r, w_{j}, f\right)+\log r\right) \tag{39}
\end{equation*}
$$

and hence it is now clear that the theorem of $\S 3$ follows immediately from Lemmas A-D.

4. Remarks

(a) It is easy to see that the proof of the theorem of $\S 3$ is valid when the hypotheses are relaxed as follows. In equation (2), for each n,

$$
\begin{equation*}
R_{n}(z, w)=\sum_{k=0}^{B(n)} a_{k n}(z) P_{k n}(w), \tag{40}
\end{equation*}
$$

where the $a_{k n}(z)$ are analytic functions in a neighborhood of ∞, having no essential singularity at ∞, the functions $P_{k n}(w)$ are all defined and analytic on some common open set in the plane, and $f(z)$ is a solution meromorphic in a neighborhood of ∞, say $|z| \geq R_{0}$. (In the definition of the characteristic $T(r, f)$ of such a function (see [10; p. 49]), only the a-points lying in $R_{0} \leq|z| \leq r$ are considered in defining $N(r, a, f)$, and the Second Fundamental Theorem still holds for such functions (see [10; p. 50]).) Let J be as in the statement of the theorem, and for n in J, rearrange terms in $R_{n}(z, w)$ so that $R_{n}(z, w)$ has the form,

$$
\begin{equation*}
R_{n}(z, w)=z^{\mathbf{A}(n)} g_{n}(w)+\sum_{k=0}^{B(n)} b_{k n}(z) P_{k n}(w), \tag{41}
\end{equation*}
$$

where $g_{n}(w)$ is not identically zero, and the highest power of z in the Laurent expansion for each $b_{k n}(z)$ at ∞ is less than $A(n)$. Then with L as defined in (4), the conclusions (a), (b), (c) of the theorem hold. (In this formulation, the theorem is now fully equivalent to Gol'dberg's result [1; Theorem 4].) The proof in this formulation is easily seen to be identical to the proof we gave in § 3 , with three minor changes. First, the set E would consist of all complex numbers w_{0} with the property that each $g_{n}(w)$ (for n in J) is analytic and nonzero at w_{0}, and if $P_{j n}(w)$ is not identically zero, then $P_{j n}(w)$ is analytic and nonzero at w_{0}. Secondly, the conclusion of Lemma B would be $T(r, f)=O(\log r)$ as $r \rightarrow+\infty$, which follows easily from (24) since then $f(z)$ has a finite limit at ∞. Finally, in the hypothesis of Lemma C, we would assume that $T(r, f) \neq O(\log r)$ as $r \rightarrow+\infty$, instead of assuming f is transcendental.
(b) If $N=0$ in the theorem of $\S 3$, then f must be a rational function. This is easily seen as follows. If $A(0)=0$, clearly f must be a constant, so we may assume $A(0)>0$. In this case, letting E be as in the proof, we see that if w_{0} belongs to E, then there are positive constants b, d_{1} and d_{2} such that on $\left|w-w_{0}\right| \leq b$, we have
(7). It easily follows that if $|z|$ is sufficiently large, then $\left|f(z)-w_{0}\right|>b$ and hence f must be rational.
5. EXAMPLE. In this section, we construct an example of a transcendental meromorphic function on the plane of order zero, which satisfies a firstorder algebraic differential equation.

Let $P(z)$ denote the Weierstrass $P e$-function having primitive periods 1 and $2 \pi i$ (see [6; p. 368]). If z is a nonzero complex number, and α_{1} and α_{2} are two values of $\log z$, then clearly $P\left(\alpha_{1}\right)=P\left(\alpha_{2}\right)$. Thus, $w(z)=P(\log z)$ is single-valued on the punctured plane. Now if ζ is a complex number, then clearly there is at least one complex number z such that $z+z^{-1}=\zeta$, and if $z_{j}+z_{j}^{-1}=\zeta$ for $j=1,2$, then either $z_{1}=z_{2}$ or $z_{1}=z_{2}^{-1}$. In either case, $w\left(z_{1}\right)=w\left(z_{2}\right)$ since $P(z)$ is an even function. Thus, the function $u(\zeta)$, defined by,

$$
\begin{equation*}
u(\zeta)=w(z) \quad \text { where } \quad z+z^{-1}=\zeta \tag{42}
\end{equation*}
$$

is single-valued on the plane.
We assert that $u(\zeta)$ is meromorphic on the plane. First, if $\zeta_{0} \neq \pm 2$, then there is an analytic function $h(\zeta)$ around ζ_{0} such that $h(\zeta)+(h(\zeta))^{-1} \equiv \zeta$. Since $h\left(\zeta_{0}\right) \neq 0$, there is an analytic branch $L(z)$ of $\log z$ on a neighborhood of $h\left(\zeta_{0}\right)$, so that $L(h(\zeta))$ is analytic on a neighborhood of ζ_{0}. Thus $u(\zeta)=P(L(h(\zeta)))$ is meromorphic on a neighborhood of ζ_{0}. Now suppose $\zeta_{0}=2$. By the above argument, $u(\zeta)$ is meromorphic on $0<\left|\zeta-\zeta_{0}\right|<4$. Let $\left\{\zeta_{n}\right\}$ be a sequence converging to ζ_{0} such that $\zeta_{n} \neq \zeta_{0}$ for $n=1,2, \ldots$, and let z_{n} be such that $z_{n}+z_{n}^{-1}=\zeta_{n}$. Then clearly $\left\{z_{n}\right\} \rightarrow 1$ and $z_{n} \neq 1$ for each n. Let $L(z)$ be an analytic branch of $\log z$ on $|z-1|<1$ such that $L(1)=0$. Then for all sufficiently large $n, 0<\left|L\left(z_{n}\right)\right|<1$, and hence $u\left(\zeta_{n}\right)$ is finite. This shows that $\zeta_{0}=2$ is an isolated singularity of $u(\zeta)$, and since $P(0)=\infty$, we see that $\zeta_{0}=2$ is a pole of $u(\zeta)$. A similar argument shows that $\zeta_{0}=-2$ is a removable singularity of $u(\zeta)$, and hence $u(\zeta)$ is meromorphic on the plane.

From the differential equation for $P(z)$ (see [6;372]), it easily follows that $u(\zeta)$ satisfies the first-order algebraic differential equation,

$$
\begin{equation*}
\left(\zeta^{2}-4\right)\left(u^{\prime}\right)^{2}=4 u^{3}-g_{2} u-g_{3} \tag{43}
\end{equation*}
$$

where g_{2} and g_{3} are certain constants. Let $z_{1}=\frac{1}{2}, z_{2}=\pi i, z_{3}=(1+2 \pi i) / 2$, and $e_{j}=P\left(z_{j}\right)$ for $j=1,2,3$. It follows (see [6; pp. 366, 371]) that e_{1}, e_{2} and e_{3} are distinct and that for each j, the set of points where $P(z)=e_{j}$ is

$$
\begin{equation*}
\left\{z_{j}+m+2 \pi \text { in }: m, n=0, \pm 1, \pm 2, \ldots\right\} \tag{44}
\end{equation*}
$$

From this it easily follows that the set of points where $u(\zeta)=e_{j}$ is

$$
\begin{equation*}
\left\{\exp \left(z_{j}+m\right)+\exp \left(-\left(z_{j}+m\right)\right): m=0, \pm 1, \ldots\right\} . \tag{45}
\end{equation*}
$$

If $j=1,2,3$, then under the change of variable $v=\left(u-e_{j}\right)^{-1}$, it follows (using [6; p. 373. equation (5.9)]) that equation (43) is transformed into an equation of the form,

$$
\begin{equation*}
\left(\zeta^{2}-4\right)\left(v^{\prime}\right)^{2}=a v^{3}+b v^{2}+c v+d \tag{46}
\end{equation*}
$$

where a, b, c, d are constants and $a \neq 0$. It easily follows that no pole of v can have multiplicity more than 2 . Thus the multiplicity of each root of $u(\zeta)=e_{j}$ is at most 2. It then follows from (45) that for $j=1,2,3$, we have $n\left(r, e_{j}, u\right)=O(\log r)$ as $r \rightarrow+\infty$, and hence by Nevanlinna's Second Fundamental Theorem, we have $T(r, u)=O\left((\log r)^{2}\right)$ as $r \rightarrow+\infty$. Thus $u(\zeta)$ is a transcendental meromorphic solution of equation (43), whose order of growth is zero. (From (45), it easily follows that $T(r, u) \neq o\left((\log r)^{2}\right)$ as $r \rightarrow+\infty$.)

BIBLIOGRAPHY

[1] Gol'dberg, A. A., On single-valued solutions of first-order differential equations, Ukrain. Mat. Z., 8 (1956), 254-261, (Russian).
[2] Hayman, W. K., Meromorphic Functions, Oxford Math. Monographs, Clarendon Press, Oxford, 1964.
[3] Nevanlinna, R., Eindeutige analytische Funktionen, 2nd ed., Springer-Verlag, Berlin, 1953.
[4] Nevanlinna, R., Le théorème de Picard-Borel et la théorie des fonctions méromorphes, GauthierVillars, Paris, 1929.
[5] Polya, G., Zur Untersuchung der Grössenordnung ganzer Functionen, die einer Differentialgleichung genügen, Acta Math. 42 (1920), 309-316.
[6] Saks, S. and Zygmund, A., Analytic Functions, Monografie Mat., Tom 28 (Engl. transl.), Warsaw, 1952).
[7] Strelitz, Sh., Asymptotic Properties of Analytic Solutions of Differential Equations, Vilnius, 1972, (Russian).
[8] Valiron, G., Sur les fonctions entières vérifiànt une class d'équations différentielles, Bull. Soc. Math. France, 51 (1923), 33-45.
[9] -, Fonctions Analytiques, Presses Universitaires de France, Paris, 1954.
[10] Wirtich, H., Neuere Untersuchungen über eindeutige analytische Functionen, Ergebnisse der Mathematik, Heft 8, Springer-Verlag, Berlin, 1955.
[11] Zimogljad, V. V., On the order of growth of transcendental entire solutions of algebraic differential equations of second order, Mat. Sb. 85 (127), 1971, 286-302 (Russian). (Engl. transl., Math. USSR Sb. 14 (1971), 281-296).

Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801
USA

Received November 24, 1975
,

