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On the Sum of a Zonotope and an Ellipsoid

G. R. Burton

1. Introduction

It is well known that, for d^=3, a d-dimensional convex body, ail of whose

(d- l)-dimensional sections are centrally symmetric, is an ellipsoid. P. W. Aitchi-
son [1] has recently shown that a 3-dimensional strictly convex body, having ail
2-dimensional sections &quot;sufficiently close to the boundary&quot; centrally symmetric, is

an ellipsoid. However, this resuit does not extend to convex bodies. In this paper,
we show that for d^3, a d-dimensional convex body K has ail its (d-1)-
dimensional sections &quot;sufficiently close to the boundary&quot; centrally symmetric if
and only if K is the sum of a zonotope and an ellipsoid.

2. Définitions and Statement of the Theorem

A convex body in Ed is a compact convex set having interior points. If C&lt;= Ed
is a closed convex set, the support function hc of C is defined by

hc(u)= SUP {» • x:xg C}

for non-zero ueEd. If fic(u)&lt;00 and a is real, we define

and then Hc(0, u} is a support hyperplane of C; Hc(0, u) H C is called the face of
C in direction u, is denoted /c(o) and may be empty. Thèse définitions extend in
an obvious way to convex surfaces. We dénote by Sd~1 the unit sphère {xe
Ed:||x||= 1}, and we shall use it as an index set for directions.

The author is grateful to D. G. Larman for his advice and encouragement, to the référée for his

suggestions, particularly regarding Lemma 17, and to the Science Research Council of the U.K. for its
financial support. This research forms part of the author&apos;s Ph.D. thesis.
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370 G R BURÏON

A convex body Kc:Ed (d^3) is said to hâve property (A) if (A) for each

«eS^1 there exists e(u)&gt;0 such that HK(ayu)nK is centrally symmetric for
0&lt;a&lt;e(u).

A zonotope is a convex polytope of which ail faces, of ail dimensions, are

centrally symmetric.

THEOREM. LetKczEd (d^3) be a convex body. Then K has property (A) if
and only if K is the sum of a (not necessarily d-dimensional) zonotope and a
(d-dimensional) ellipsoid.

COROLLARY. Let K^Ed (d^3) be a convex body. If K is strictly convex
and K has property (A), then K is an ellipsoid.

3. The 3-dimensional Case

Throughout this section, K will be a fixed 3-dimensional convex body which
has property (A). Using methods which extend those of Aitchison, we will show

that K is the sum of a polytope and an ellipsoid.
A quadric surface in JE3 is (the surface of) a paraboloid, an ellipsoid or one

branch of a hyperboloid of two sheets. A quadric curve is a parabola, an ellipse or
one branch of a hyperbola. A cylindrical surface in E3 is the Minkowski sum of a

quadric curve and a line which is not parallel to the affine hull of that curve. A
conical surface in E3 is the surface of an elliptical cône. A quadric (respectively
cylindrical conical) pièce is a non-empty open connected subset of a quadric
(respectively cylindrical, conical) surface which is contained in bd K and which is

maximal in the sensé of set inclusion; additionally, we require that a conical pièce
should contain its apex. Whenever P is a non-empty open subset of a quadric,
cylindrical or conical surface, we dénote by P the unique quadric, cylindrical or
conical surface which contains P.

A dise in S2 with centre a € S2 is the intersection of S2 with an open bail with
center a and radius less than 1. When A is a subset of a convex surface C, we
shall dénote by àA the boundary of A in the topology of C.

When C is a closed convex set and u is a unit vector with hc(u)&lt;00&gt; for
positive real numbers a we write

Nc(a, u) {xe bdC:% • u&gt; M»)-«}

which is an open cap eut off from bd C by Hc(a, n). This définition extends to
convex surfaces.
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Consider ne S2, and write

£(u) sup{j3&gt;0:HK(a,tt)nK is centrally symmetric and non-empty for 0&lt;

Observe that fK(u) is centrally symmetric, and that for 0^a&lt;e(u) the centre
c(a,u) of HK(a,u)DK is a continuous function of a. If xeNK(e(u),u) then
xe HK(hK(u)-w x,u)D K, which has centre c(fiK(u)-ii*x, u), and we write

which is the reflection of x in that centre. Then ùu is a homeomorphism, called
the u-opposite map, of NK(e(n),u) onto itself, and ft2 is the identity map.

We shall make use of a resuit of S. P. Olovjanischnikoff [5]:

LEMMA 1. Let C&lt;^E3 be a convex body, A an open connected subset of bd C
and D a non-empty open set in S2 such that /c(u)&lt;= A for each u in D. Suppose
that for each ueD, every plane H which is parallel to Hc(0,u) and with
HDAîé0 has the property that HOC is centrally symmetric. Then A is a subset

either of a quadric surface or of a conical surface whose apex lies in A.

LEMMA 2. There are no conical pièces in bdK.

Proof. Suppose false, and let P be a conical pièce, whose apex we assume to
be ogP. Consider an edge of P, which must intersect P in a half-closed line

segment [o, a). There is a unique outer unit normal u to K at |a, and /k(u) is an

edge. Given 0&lt;ô&lt;l, let H+ and H~ be the half-spaces of points x for which
x • a - (1 - 8) ||a||2 is non-negative and non-positive respectively. For ail sufficiently
small positive a, H~ Ci HK(a, u)(~)bdK is contained in P and is therefore an arc of
a parabola; since the outer unit normals of a parabola lie in a semi-circle of S1,

the centre k(a) of HK(a,u)nK does not lie in (int H~) D HK(a, u) D K, so

k(a)eH+. For ail small a&gt;0, HK(a,u)HK contains a point x(a) with
x(a) • a&lt; S ||a||2, and then (2k(a) -x(a)) • a^(2-3Ô) ||a||2. By letting a-^Owe see

that (2-36)aebdX, and hence 2a€bdK. Thus IP^bdK, contradieting the

maximality of P. This proves the Lemma.

Aftei; observing that the set of centrally symmetric compact convex sets is

closed in the Hausdorff metric, the reader may prove:

LEMMA 3. Let t&gt;0. Then {ne S2:s(u)^t} is closed.
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LEMMA 4. The set of ne S2 such that /k(u) is not contained in any quadric
pièce is nowhere dense in S2.

Proof. Let D be a dise in S2. Then for each natural number n, by Lemma 3,

Fn {o6D:e(u)^2/n} is closed in D, and D=Un=iJv Since D is a locally
compact metric space, by the Baire Category Theorem we can choose n so that Fn

contains a dise Dx c= D. Choose an élément Ui e Dl9 and let A NK(l/n, Ui) which
is open and connected in bdK. Using the continuity of hK we can find a dise

D2aDi with centre Oi such that AcNK(2/n,n) for ail ueD2. Then we can
choose a dise D3aD2 with centre Ui such that /K(a)&lt;= A for ail ueD3. It now
foliows from Lemmas 1 and 2 that A is a subset of a quadric surface, which
establishes the Lemma.

LEMMA 5. Let ne S2, e(u)&gt;r&gt;0 and suppose F is a compact subset of
Nk(t,u)\/K(u). Then for each 8&gt;0 there is a neighbourhood D of n in S2 so that
for ail veD satisfying e(v)&gt;r we hâve FcNk(t,v)\/k(v) and the Hausdorff
distance of ilv(F) from Clu(F) is less than 8.

The proof, which is omitted, is a simple compaetness and continuity argument,
and uses the fact that the map (a, v)^-&gt; HK(a9 v)HK is continuous in the Hausdorff

metric at (j3, w) if HK(/3, w) intersects int K.

LEMMA 6. Let Xx and X2 be quadric surfaces in E3 and let A be a fixed plane
such that for every plane A&apos; parallel to A, the sections A&apos; n Xx and A! H X2 are
translates of the same ellipse, or are both empty, and for some planes 111, II2 not
parallel to A or to one another, each of nl9 ïl2 intersects Xi and X2 in non-empty
sections which are translates of one another. Then X2 is a translate of Xx.

Proof. We may suppose that A is the x2x3 plane and that Xx has équation

3

where &lt;p is a quadratic form. Let / be the line of centres of the sections of X2
which are parallel to A, and let mx, m2 be the lines through o parallel to AflIIi,
Afin2 respectively. For i 1, 2 we may choose m, to be the x3 axis, so that Ut
has équation x2- èxi + Tj,. For some constants w2, w3, a2, a3, the équation of X2
is

(x2 -w2x1 + a2)2 + (x3 - w3xi + a3)2

and / has équations

x2 w2xx - a2, x3 w3xt - a3.
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By comparing the équations of n,nXi and ïlinX2 we find w3 0 and

w2(w2-2é) 0. If m1 m2, then w2(w2-2£) 0 for î 1, 2 with £i#£2&gt; so

w3=w2 0. If mi7ém2, the condition w3 0 holds in two différent coordinate
Systems, showing that / is perpendicular to A. In each of thèse cases, we find that
Xi is a translate of X2.

LEMMA 7. Let Xi be a paraboloid, X2 a quadric surface in E3, and let Ai, A2,
À3 be pairwise non-parallel planes parallel to the axis of Xx, such that for i 1, 2, 3

the section A, H X2 is a central reflection of A, Ci Xx. Then X2 is a central reflection

ofXt.

Proof. The sections of X2 by Ai, A2 and A3 are parabolas, so X2 is a

paraboloid whose axis is parallel to that of Xi. We can assume that Xx has

équation x3 x2 + x?, that the sections of X2 perpendicular to its axis hâve their
principal axes parallel to the xi and x2 axes and that the x2x3 plane is not parallel
to any of Ai, A2 and A3 unless the XiX3 plane is also parallel to one of thèse

planes. The remainder of the proof is left to the reader.

LEMMA 8. Let X be a paraboloid and Y a cylindrical surface. Then there do

not exist three pairwise non-parallel planes Hu II2, II3 ail parallel to the axis of X,
such that for i 1, 2, 3, II, fl X is a central reflection of Ut H Y.

The proof is left to the reader.

LEMMA 9. Let T be a set in S2, yteT a limit point of T and let r&gt;0 be such

that e(n)&gt;T for ail ne T. Suppose that P is a quadric pièce which intersects

NK(r, Vl), and let Q îîVi(Nk(t, Vl) H P).

If (i) every member of T is an outer normal to P at some point, then Q is a subset

of a quadric surface and Q y + P for some ytE3 having y u 0 for ail ne T
sufficiently close to vx.

If (ii) P is a paraboloid and every member u of T has lin{u} perpendicular to the

axis of P then Q is a subset of a central reflection of P.

Proof. We remark that the significance of the positive lower bound for e(u) on
T is that it ensures that every point of Q lies in infinitely many centrally
symmetric sections of K. Let us suppose that either (i) or (ii) holds. We first
consider a component Q* of Q, so that P* nvi(Q*) is a component of

NK(T,Vi)nF. For any ueT, ail sections of P perpendicular to lin{u} are directly
homothetic quadric curves. We may suppose T to hâve sufficiently small diameter
that there exists a positive p such that HK(p, u) intersects P in a proper section
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for each ueT. Then for each ii€ T there is an open interval &lt;€M, which we take to
be maximal, with

HK(a, u) H P &lt;M«, o)(HK(|3, a) H P)+•(«, o)

for ail a e &lt;€„, where a(a, u) is a vector and iff(a, u) is a positive scalar function
having one of the forms à(c* + k)1/2, À(ju-(a + K)2)1/2, \(n + (a +k)2)1/2 in case
(i), where À, k, ijl dépend on o, or \\f is identically 1 in case (ii).

If HK(a,u) intersects Pn(NK(T,u)\fK(n)), where ueT, then &lt;*€&lt;€„ and the
u-opposite set of HK(a,u)nP lies on a unique quadric curve G(a, u). Then
G(a,u) is a central reflection of HK(a,u)DP and satisfies

G(a, u) -il*(a, u)(HK(fr il) H P) + b(a, u)

for some vector b(a, o).
We show that O* contains an exposed point of K. Suppose this is false. Since

for 0&lt; a &lt; t, every point of O* in HK(a, Vi) is an exposed point of HK(a, Vi) 0 K,
it follows that every point of O* belongs to an exposed edge of K which is not
perpendicular to lin {vi}. We can choose an open interval 5£ &lt;= (0, r) and two
distinct exposed edges h and J2 of K, such that for c*€i£, HK(a, Vi)flQ*
intersects Jj and I2 at relatively interior points di(a) and d2(a) respectively, and
hence

d1(a)-d2(a) ag+k (1)

where g and k are constant vectors. Let Hl9 H2 be support planes of K with
H, fl K I, for i 1, 2. If i 1 or 2, then the lines HK(a, Vi) H H, are ail parallel
and support G(a, Vi) in the same sensé at the unique points d,(a), for a e ££. Then
di(a)-d2(a) i/r(a, Vi)g&apos; for ail a e!£, where g&apos; is a constant vector, not zéro. This
contradicts (1) in case (i). In case (ii), for ail a Gif, JFfK(a, ?i)HO* lies in the

cylindrical surface Y which has GO, Vi) as a section and aff It as a generator. By
using Lemma 5, we may pick planes intersecting Y and P in a fashion which
contradicts Lemma 8. Hence in both cases (i) and (ii) the assumption that Q*
contains no exposed points is false.

Let w&apos; be an outer unit normal to K at an exposed point in O*. Then
/k(w)&lt;= O* for ail w € S2 sufficiently close to w&apos;. From Lemma 4 we deduce that
O* intersects a quadric pièce JR say. We prove O*c R. Suppose this is false, and
choose a boundary point e of R n O* (in the topology of O*). We must hâve

«é/k(vi)&gt; for otherwise ^^ef^y^HP* and so /jk(vi) would be a point of P*;
this would imply e e P* and J? P* which is impossible as e € dR. Therefore we
can choose an open connected set B^bdK with e e B and cl B c
Njc(t, Vi)\/k(vi). Using Lemma 5 we can choose v2 in T\{vi, -vj such that

P* and B e Nk(t, v2)\/k(v2). Let Ri be a component of R H B. For i 1,
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2, the set of a for which HK(a9 vt) intersects JRi is an open interval Ml9 and for
a eMl9 HK(a, v.jflQc G(a, v.)cRby analytic continuation. Thus for i 1, 2 the

boundary A of Ri in the topology of B lies in the union of 2 planes. Hence A lies
in the union of 4 Unes, and so by the strict convexity of R, A is finite. If Rt ^ B,
we can choose xeB\clJRi (by the maximality of R), zeRt and infinitely many
disjoint paths from z to x in B, so that A is infinité. We conclude that R1 B, but
this contradicts the choice of eedR, so Q*c:R.

Now suppose that Q is not connected, and let Qu Q2 be two of its

components. Then P contains a point outside Nk(t, v^, and so for some positive
cr&lt;r, HK(a, Vi) intersects d and Q2 for ct&lt;ol&lt;t. For cr&lt;a&lt;T,

HK(a, Vi)f) Oc G(a, vt) so Ôi and Q2 hâve an open subset in common and are
therefore equal. Hence Q is contained in a quadric pièce.

From the fact that e(u)^ r&gt;0 for ne T we deduce that for ail ne T close to

vi, there is an interval Mu such that for aeNu, HK(a,n) intersects P and Ô in

non-empty sections which are central reflections of one another. In case (ii),
applying analytic continuation and Lemma 7, we conclude that Ô is a central
reflection of P. Let us suppose that case (i) holds. Then for ue T close to vi, for
aeNuy HK(a,o)nP and HK(«, o)HÔ are ellipses and are translates of one
another. Applying analytic continuation and Lemma 6, we find Ô y + P for
some vector y. For ueT close to vi, HK(0, u) supports P and therefore supports
Ô (by comparing sizes of sections), so y • u 0. This complètes the proof of
Lemma 9.

Now that we hâve given some preliminary results, we pause to summarize our
methods. Lemma 10 will show that much of the boundary of a quadric pièce
adjoins cylindrical pièces. From Lemma 11 it follows that shadow boundaries of K
which contain cylindrical pièces cannot cross quadric pièces; Lemma 15 shows

that there are only finitely many such shadow boundaries, using Lemmas 12 and
13 (the necessity for Lemma 14 arises from the exceptional behaviour of

parabolic cylinders in Lemma 13). It then follows that there are only finitely many
quadric pièces, and thèse are ail parts of translates of the same ellipsoid by
Lemma 10. Lemma 16 then follows easily.

LEMMA 10. Let P be a quadric pièce in bd Ky and let R be the set of unit outer
normals to K at points of P. Suppose that an open set G intersects dR. Then there

exists veGHdJR, t&gt;0, yeE3, a cylindrical surface % and distinct closed half-
spaces H+, H~ bounded by a plane H, satisfying:

(i) y t* o and y • v 0,

(ii) HHP is the shadow boundary of P in direction y,
(iii) &lt;€ (H DP) + lin {y},
(iv) Nk(t, v) e (H~ flP)U(y + (H+ H P)) U (H+ H (y 4- H~) H &lt;€).
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Proof. The set R is open and connectée in S2, and for each ueR, HK(0, o)

supports P. Also R is maximal (under set inclusion) with thèse properties. This
maximality ensures that 1* is not dense in any neighbourhood of a point of dR.
Hence every point of dR is a limit point of dR.

Applying the Baire Category Theorem to GCidR, we can choose a dise

DiCiG with centre vedR and a&gt;0 such that e(u)&gt;a for ail ueDifldR. For
ueDxddR let Qu ûu(NK(a9u)nP), and by Lemma 5 choose a dise Dj^Dx
with centre v such that QM H Qvï0for ail ne D2DdR. Then by Lemma 9 (i), for
each neD2f)dR, Qu must be a subset of a quadric surface with Qu Qv y + P
for some y e E3, and there is a dise D3 &lt;= D2 with centre v such that y • u 0 for ail
ueD3DdR.

We prove y 5*0. Suppose this is false, so that Qu^P for ail ueD3HdR. Let
O&lt;û&gt;&lt;0- and choose a dise D4czD3 with centre v such that /k(u)cNk(û),v)c
NK(a,u) for ail ueD4; then choose x1 eD4HR. Let x2, x3 be unit vectors such

that x1, x2, x3 are mutually orthogonal, and for 0=^ 0 ^ 2tt, 0*s &lt;f&gt; ^ tt let z(0, &lt;j&gt;)

cos c^ + sin &lt;/&gt;(cos 0x2 + sin 0x3)€ S2, and I(0) sin 0x2-cos 0x3e S2. Then
/k(z(0, 4&gt;)) is contained in the shadow boundary £f 0 of K in direction 1(0). Since

D4£ cIR, there is a proper interval [ô, tj] such that for each 0e[8,17], there is a
&lt;t&gt; e [0, tt] with i(0, &lt;^) g D4 H dR ; for 0 € [ô, tj] let i/(fl) inf {&lt;/&gt; ^ 0 :z(0, &lt;/&gt;) e dR} &gt;

0. For each real a the set {0e[8, r)]:v(d)^a} is closed since dR is closed. If
0=^ &lt;f&gt; &lt; v(0) then /K(z(0, $)) is an exposed point of K contained in Sf 0 H P; since

we hâve /K(z(0, ^))&lt;=NK(cr,z(e, i/(0))), the z(0, */(0))-opposite point of /K(i(», &lt;^))

lies in if0nQz(0M0))czy&gt;enP. Hence HK(O,z(0, &lt;£)) supports P for O^&lt;/)^g(0),
where g(0) is a number greater than v{Q). We suppose g(0) is maximal with thèse

properties; then, since xédR, there exists a&gt;0 such that g(0)&gt;^(0) + a for ail
0g[S, î)]. Choose 7, ô&apos;, tj&apos; to satisfy 8&lt;8&apos;&lt;y&lt;r)&apos;&lt;r) and v(0)&gt; ^(y)~a/2 for
5&apos; &lt; 0 &lt; t?&apos;. For ô&apos; &lt; 0 &lt; r}&apos; and |&lt;/&gt; - v(y)\ &lt; a/2 we hâve &lt;/&gt; ^ a/2 +1^(7) ^ a +1&gt;(0),

which shows that some neighbourhood of z(y, 1^(7)) is contained in R, contradict-
ing the définition of z(y, v(y))edR. We conclude that y #0.

Since y • a 0 for ueD3DdR, it follows that D3HdR is contained in a great
circle C of S2 which divides D3 into two régions D3 and DJ. Suppose R
intersects D3. Then D3CJ? since D3DdR c Q and so D3DdR 0 as D3^ R.

Thus D3naR D3nC Let H be the plane such that HHP is the shadow

boundary of P in direction y, and let H+, H&quot; be the closed half-spaces bounded

by H. Then the outer unit normals to P at points of H H P form an arc (or
possibly the whole) of C, and the points of P with outer unit normals in D3 lie
in H~. Since v e D3 H C we may choose t &gt; 0 such that t &lt; a and H~ D Nk(t, v)

H~nNP(T,\). Then

(y + H+) fl Nk(t, v) [ÎV(H~ H NK(r, v)) y + (H+ H N*(t, v)).
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For an£ outer unit normal n to K at a point x of (dP)HNk(t, v) we hâve ogC and
/k(u) contains the Une segment [x, x + y]. Hence

H+f) (y + jr)nNK(T,v)c&lt;g lin {y} + (HHP).

This complètes the proof of the Lemma.

For a unit vector u we write ïfu for the shadow boundary of K in direction u.
A band is a shadow boundary which contains a cylindrical pièce.

LEMMA 11. Let ïfu be a band. Then for some ]3 &gt;0, for every point xeSf u the
/me x + lin{o} intersects K in a segment of length at least p.

Proof. Choose orthogonal unit vectors x1, x2 which are orthogonal to a, and
write x(0) cos 0X1 + sin 0x2 for real 0. For 0 &gt; 0, we say a convex set C is /3-wide
if for each y € C, C n (y + lin {u}) has length at least ]8. By hypothesis there is a

|3&gt;0, a cylindrical pièce Q&lt;=Sfu and a closed interval, which we suppose to be
[0, a], such that for 0^0=^a, /K(x(0)) is /3-wide and is contained in Q. Let

a&apos; sup{ye(0, 2tt):/k(x(0)) is p-wide for 0^6^ y}&gt;0, 7 a&apos;.

Then /K(x(a&apos;)) is either a Une segment of length at least j3, or a centrally
symmetric facet having an edge parallel to lin {u} of length at least j3 ; in either
case, fK(x(a&apos;)) is /3-wide. When 0&gt;y is sufficiently small, /K(x(0)) is contained in
NK(e(x(y)),x(y)) and then Q&gt;x(y)fK(\(6)) is the union of line segments parallel to
lin {u} of length at least j8, so /K(x(0)) is j3-wide. We conclude that a&apos; 2ir and the
Lemma follows.

LEMMA 12. Let T&lt;=: S2 be a set with a limit point ve T, and suppose t&gt;0 is
such that e(u)&gt; t for ail ne T. If C is a cylindrical pièce whose generators are not
parallel to HK(0, v), then Q ÙV(C H Nk(t, v)) is a subset of a cylindrical surface.

Proof. We first show that Q contains no extrême points of K. Suppose this is
false. Then Q must contain an exposed point of K, so /k(u)c Q for ail u in some
dise on S2, and then by Lemma 4 Q intersects a quadric pièce P. By using Lemma
5 and analytic continuation, there exists a dise D in S2 with centre v such that for
each ne D D T, there is an interval Nu such that HK(a, u) H P is non-empty and is

a central reflection of HK(a, u)OC for ail aeMu. Since parallel sections of a

cylindrical surface are translates of one another, we conclude that P is a

paraboloid whose axis is parallel to HK(0,u) for ail neDD T. Applying analytic
continuation again, we hâve a contradiction to Lemma 8. Hence Q contains no
extrême points.
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Consider any point xeQ. Then x is relatively interior to a Une segment
IcibdK, and xeHK(hK(v)-vx, v)H Q&lt;=&lt;g, where % is some quadric curve.
Then a neighbourhood of x in Q lies in the cylindrical surface with generators
parallel to / which has ^ as a section. We conclude that Q is contained in a

cylindrical surface if Q is connected; when Q is not connected we compare
components as in Lemma 9.

LEMMA 13. Let Yu Y2 be two cylindrical surfaces in JE3 and let Tlu II2, U3 be

three planes parallel to a Une l, such that no two of Uu ïl2, U3 are parallel, and l
is not parallel to the generators of Y\. Suppose that for i 1, 2, 3, II, is not a tangent
to Yx, and II, H Yx is a non-empty central reftection of II, fl Y2. Then the

generators of Yt and Y2 are parallel, except possibly when Yx is parabolic and l is

parallel to its plane of axes, in which case l and the generators of Yt and Y2 are ail
parallel to a single plane.

Proof We may suppose that Ilinil2nil3 /, and we may assume l to pass
through an arbitrary point. Thus we take l to be the x3 axis and IIi to be the x2x3

plane. We suppose ïl2, ÏI3 to meet Y! in proper quadric curves and to hâve

équations x2 Ç2xu x2 f3xx respectively with ^2 ^ 6- Fof i 2, 3 the orthogonal
projections on the xtx3 plane of II, H Yt and Et, H y2 are reflections of one another
in a point (b[, 0, b3).

First suppose / is neither parallel to an asymptote plane if Yt is hyperbolic nor
parallel to the plane of axes if Yx is parabolic. We take Y\ to hâve équation

where either a y 0oray#0 and /3 0. Then Y2 has équation

(c3 + w3*i - x3)2 a 4- /3(c2 + w2xt - x2) + y(c2 + w2xt - x2f

say. Hence w3 0. If y* 0 then y(w2-£)2s=7f? for i 2, 3, while if y 0 and

j3#0 then -j3£, /3(w2~£) for i 2, 3; in either case w2 w3 0.

Next suppose Yi is hyperbolic and / is parallel to an asymptote plane. Then

Yi has équation x2x3 1 say, and Y2 has équation

(c2 + w2xx - x2)(c3 -h w3xx - x3) 1

say, and for some À # 0 we find

w3(w2-l) 0, (w3-l) -A,

c3(w2-1) -2\bl c3c2-l
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which shows that w2 w3 0.

Lastly we take Yx to be parabolic cylinder x3 x\, so Y2 has équation

c3 + vv3xx - x3 (c2 + w2X! - x2)2.

We find (w2-fi)2 f2 for i 2, 3, so w3 0. This complètes the proof.

LEMMA 14. No quadric pièce in bdK is a subset of a paraboloid.

Proof. Suppose P is a quadric pièce such that P is a paraboloid, and let 9 be

the set of quadric pièces Q such that Q is a translate of P. Write T
intcl{u€ S2:/K(o)ci Q for some Qe 9). Then T is contained in a hémisphère of
S2, so dTV 0; it easily follows that every point of dT is a limit point of dT.

Applying the Baire Category Theorem to dT, we can find a dise De: S2 whose

centre v lies in dT, and t &gt; 0, such that e(u)&gt; t for ail ne D HdT. Let a be a unit
vector parallel to the axis of P.

We first consider the case when o»a 0 for ail ueDDdT. Then DHdT
D H C where C is some great circle of S2, and D H T=D+, where D+ and D~ are
the components of D\ C. Choose a with 0 &lt; a &lt; t and a dise Di c: D with centre v
such that /K(o)c Nk(ct, v)&lt;= Nk(t, v) for ail ueDtHC. Since Dx intersects D+ we

may choose Qe 9 which intersects NK(or, u). We hâve dQ/ 0.
We construct a closed convex cylinder % with generators parallel to lin {a} such

that Q Q H int &lt;€ and dQ QHbd%. Consider a plane A such that A H Ô is the
shadow boundary of Ô in the direction of a unit vector w, and suppose AD Q
contains an arc F which is common to dQ and to the boundary of some cylindrical
pièce whose generators are parallel to lin{w}. (Hère we envisage the situation
which arises in Lemma 10). Then £fw is a band, and so from Lemma 11 £PW does

not intersect Q. Consequently AH O 0, and O lies in a closed half-space A+

bounded by A. By Lemma 10, such arcs T (for various A) are dense in dQ. We
take °6 to be the intersection of ail such half-spaces A+, and % has the required
properties. Notice that % has a bounded cross-section, and its facets are dense in
bd%.

We may choose a dise D2 c Dx with centre v so that H^(0, u)DdQ^ NK(cr, v)
for ail ueD2CiC. We can then choose ue D2H C, non-parallel planes Ai and A2

which intersect % in facets, and numbers j3, y with 0&lt;/3&lt;y&lt;r such that
HK(a,u) intersects Axfl^ and A2flc€ for ]3&lt;a&lt;y. For i 1, 2 there is a unit
vector w, such that A.HQ is the shadow boundary of Ô in direction w,. By
Lemma 10 we can find numbers pu jt with j3 &lt; j3i &lt; yi &lt; y and cylindrical pièces

Zi, Z2 having generators parallel to lin{wi} and lin{w2} respectively, such that
HK(a,u) intersects F, (dZl)nAlfldQ for i l, 2 when px&lt;a&lt;y. By slight
altérations of a, pu 7i we may suppose that u • Wi and o • w2 are both non-zero.
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For sets A &lt;= bd K write A&apos; ftu(A H Nk(t, u)). By Lemma 9, Q&apos; is a subset of
a central reflection of Q. By Lemmas 12 and 13, for i 1, 2 Z&apos;, is a subset of a

cylindrical surface whose generators are parallel to a unit vector g, e lin {a, w,}.
Thus the shadow boundary of Ô&apos; in direction gt lies in a plane A&apos;, parallel to A,.

Applying Lemma 10, we find that F&apos;.cAi. For /3i&lt;a&lt;Yi, i l, 2 let s,(a)
T, H HK(a, u), s&apos;l(a) rtinHK(a,u) so that s,(a)+§;(«) 2c(a), where c(a) is the
centre of HK(a, u)fïK Let tt be the orthogonal projection on (linfa})^. Since

st(o:), s[(a) move in planes parallel to lin {a}, there are constant vectors k,, tt, t&apos;,

with 7rsI(a) ak,+tl, 7rs;(a) ak,+t/l. Thus 27rc(a) 2akI+tI+t&apos;I for î l, 2,

/3i &lt; a &lt; Yi. Hence ki k2, which implies that Ai is parallel to A2, contrary to the

way they were chosen.
We may therefore suppose that F has an outer normal in some direction

yeDHdT. Then there is a dise D3czD with centre v such that every point of D3
is an outer normal to P. Let 0 &lt; a &lt; t and choose a dise D4 e D3 with centre v
such that fK(u)^NK(a,y)c:NK(T,u) for ail ueD4. Then we can choose Qxe3F
such that the open connected set U\ of outer unit normals to K at points of Oi
satisfies UiC\D4C\ TV 0. By Lemma 10 we may choose weD4fia[/i, v&gt;0 and

a member Q2e^ with Ô2 y + Ôi (y^o) such that NK(v,w) is contained in the
union of d, Q2 a cylindrical pièce Z with generators parallel to lin {y}, and two
arcs Fi, F2 of the shadow boundaries of Ôi, Ô2 respectively in direction y. Notice
that l/2 H D4 H T^ 0 where U2 is the set of outer unit normals to K at points of
Q2. Since /x(w)c:iVK(o-, v) we may also suppose that NK(v, w)&lt;=NK(cr, v). For
sets A&lt;=^bdK, write A&apos; nr(NK(i&gt;, w)fl A). From Lemma 9, 01 and Q2 are
contained in translates of Ôi and Q2 respectively, so Ô2 y&apos; + Ôi for some vector

We wish to choose ie{\, 2} such that Q[^ Ô,. Suppose this is impossible, so

y y&apos;. First consider the possibility that v • y 0. Then we may choose a e (0, r)
such that H HK(a, v) intersects Q[ and Q2. Let c be the centre of HO K. Then
HnÔ&apos;. 2c-(HnÔ.) for î l, 2, HflÔ2 y + (Hn Ôi) and HHQ2
y + (HflÔi), which is impossible as y^a.

It remains to consider the possibility that v • y # 0, in which case u • y # 0 for
ail ne S2 close to v. Lemma 12 then shows that Z&apos; is contained in a cylindrical
surface, and by Lemma 10 the generators of Z&apos; are parallel to lin {y&apos;} lin {y}.
Since HK(0, v) is not parallel to aflTi, there is an interval i£&lt;=(0, t) such that
HK(a,v) intersects 01 and Zf for ail aei£. Let c(a) be the centre of
HK(a, v)C\K; then since HK(ct, v) intersects Oi and 01 in v-opposite arcs of
HK(a,v)nÔi, c(a) is the centre of HK(a,v)nÔi for &lt;*ei£. Hence {c(a):aei£}
lies in a Une parallel to lin {a}. Choose a generator / of Z. Then (lC\Z)r is

contained in a generator V of Z&apos;, so {c(a):a€i£} lies on a line parallel to /. This
shows that y is a scalar multiple of a, which is impossible since a paraboloid has
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no support lines parallel to its axis. Hence we may make the requisite choice of i.

We therefore suppose that Ôi z+ Ôi with z 5*0. Then by Lemma 9 there is a

dise D5c D4 with centre v such that u • z 0 for ail ne D5 HdT. Then there is a

great circle C^S2 which divides D5 into two open components D5, DJ with
D5naT=D5nC and D5DT=Dt.

We may choose o&gt; e (0, t) such that the set V of outer unit normals to P at
points of Np(ù), v) is contained in D5. Then V is open and contains v, so we may
choose a non-empty open connected subset RczbdK oîa translate of P, such that
the outer unit normals to K at points of R lie in DsHV. It follows that
Rcz Nr (o&gt;, v) and that (lv(R) is a translate of a subset of R by a vector orthogonal
to v (from Lemma 9), so £lv(R) is a translate of a subset of Nr((o, v). Therefore
the outer unit normals to K at the points of ÙV(R) are contained in D5 H V which
is impossible as D5D T= D5. This contradiction proves the Lemma.

LEMMA 15. There are on/y finitely many yeS2 for which S^y is a band.

Proof. Let a € S2 and let C be the great circle {ueS2:u -a 0}. Then ifa
U/k(C). By applying the Baire Category Theorem to C, there is a closed arc
Cic: C and t&gt;0 such that e(u)&gt;r for ail ne Ci. We claim there is a ô&gt;0 and

re Ci such that no two points of NK(8,v) belong to distinct parallel support
planes of K.

Suppose this is false, so that, since K has a positive minimum width w, for
each v€ Ci, K has distinct parallel support planes Hl, H2V which intersect /K(v).
The orthogonal projection of K on lin C has at most countably many edges. Thus
there is a countable set F&lt;= Ci such that /k(») is contained in a line parallel to
lin {a}, for each ue Ci\F. By rechoosing Ci to be a small closed neighbourhood of
an interior point of Ci not in F, we can ensure that for no v g Ci are the outer unit
normals to H\ or Hl members of C. Then for each v€ Cu ail lines parallel to
lin {a} intersect the région bounded by Hl and Hl in segments of equal finite
length /3(v)^ w; when for some v there is more than one possible choice for Hl
and Hl, we choose thèse planes to minimize j3(v). Define p inf O(v):vg d}, so
that j3^w and there exists v*eCi with /3(v*) j3. For ved\F, /K(v) is a line

segment with end points in HÏ and H2,, so /K(v) has length j3(v). But /K(v) lies
between Hl* and H2*, so j3(v) j3 and fK(v) has end points in Hi* and H2*. It
then follows that /K(v) intersects Hl* and H2* for ail ve Cx. Let u* be the unit
outer normal to Hl*. Then ii*éCi, and for ve Cu 0&lt; A&lt;1 we hâve

so that the set of outer normals to K at points of /k(u*) contains a dise on S2. This
contradicts Lemma 4.
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Hence there exist 8 and v as claimed, and we suppose 8&lt;t. Let 2
NK(8, v)nSfa. Then NK(S9 v)\S is the union of two dijoint open connected sets

Al9 A2 in fcd K with ft^Ai) A2. We hâve fK(u) c NK(S, v) for ail ue S2 close to
v, so by Lemma 4 NK(8, v) intersects a quadric pièce P. We may assume
P H Ai * 0. We claim that (dP) n 2VK(Ô, ?)cj,

Suppose this is false, so that by Lemma 10 NK(8, v) intersects a cylindrical
pièce Z whose generators are not parallel to lin {a}, and such that some section of
Z is a shadow boundary of P. By Lemma 14 P is not a paraboloid, so Z is not
parabolic. The generators of Z are orthogonal to at most two éléments of Ci, so

by Lemma 5 we may choose an arc C2 &lt;= Ci and a non-empty open set Zi c
ZnNK(8,v) such that flM(Zi)cNK(8,?) and HK(0,v) is not parallel to the

generators of Z, when ueC2- Fix ufeC2- Then by Lemmas 12 and 13, Z&apos;

ftM(Zi) is a subset of a cylindrical surface with generators parallel to those of Z.
Choose a so that HK(a, uf) D Zx contains a point x, and let À be the support plane
of Z at x. Then A contains a generator / of Z and a support line m of
HK(a,o&apos;)nZ; then m is not parallel to /. The support plane A&apos; to K at ftM(x)
contains lines parallel to / and m, so A&apos; is parallel to A, contrary to our choice of 8

and v. We conclude that (dZ)nNK(8,?)cj,
Hence Ai c p. If (dP) D S 0 then A2 intersects P, and by the same argument

as above A2 &lt;= P, so that NK(8, v) c P. If (aP) H S # 0 then there exist x € (dP) H 2,
an outer unit normal n to P at x and v&gt;0, such that NK(v, u) has the form
described in Lemma 10; in this case x is a smooth point of K, so ne C and the

cylindrical pièce which intersects NK(v, u) has generators parallel to lin {a}. In
either of thèse cases, there exist 8&apos;&gt;0 and v&apos;eC such that NK(8&apos;, v&apos;) contains no
line segments which are not parallel to lin {a}.

But if y 6 S2 is close to a, then îfy intersects NK(8&apos;, V) so ^y cannot be a band
unless y ±a, by Lemma 11. This shows that {yeS2:Sf&gt;y is a band} has no limit
points, and is therefore finite.

LEMMA 16. K is the sum of a polytope and an ellipsoid.

Proof. Let a(l),..., a(n) be distinct points of S2, no pair being antipodal, such

that Sfadh • • • &gt; ^a(n) are ail the bands in bd K. Write C, for the great circle
{ue S2:ii.a(0 0} so that £fa(I)= U /k(C) (ï 1,..., n). Let JRi,..., Rk be the

components of S2\Ur=iC, and let P,= U/kCRi) (i l,...,fc). Consider /€
{1,..., k}. From Lemma 4, P; intersects a quadric pièce Pf ; let JR* be the set of
outer unit normals to K at points of Pf. Lemma 10 shows that dRfc (J ^ C,, so

JRjCK*, while Lemma 11 shows that P* intersects no band, which ensures that

Kfn UT=i C, 0. Hence R} JRf and P, P*. This shows that Pi,..., Pk are
the quadric pièces in bd K.
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Let C be a great circle on S2 which is not one of Cu..., Cn, and which
contains no points which belong to more than one of Ci,..., Cn. After relabelling
we may suppose that C is contained in the union of Ru Rs with a finite set,
and that for i l,..., s-1, RtnC and JRI+1nC are arcs with an end in
common, so that (dRI)n(dJRH-i) contains an arc of C} for some /. Then by Lemma
10 P, is a translate of Pl+i for i 1,..., s -1. Since such a great circle C may be
chosen to intersect any given pair of Ru..., Rk, ail quadric pièces must be
translates of subsets of the same quadric surface, which must be an ellipsoid, since
this is the only quadric surface with outer normals in ail directions. Hence there
exist a solid ellipsoid E with centre o and points Xi,..., xk with P, x, + M E for

Write X conv{x!,...,xk}. We shall prove K X + R If UabdK is a

neighbourhood of an exposed point of K, the set of outer unit normals to K at
points of U contains a dise in S2, so U intersects a quadric pièce. Thus (see for
example [4])

k

K conv cl exp (K) conv cl U Pic *+ E.

To prove K X + E it will be sufficient to prove x, + E &lt;= K for i 1,..., k. For
il € S2 we write H+(n) for the closed half-space bounded by HK(0, u) which
contains K. Let R, R&apos; be two of JRi,..., Rk, and let ueR. Choose a great circle
D&lt;^S2 with n€D and DDR&apos;/ 0, such that D contains no point belonging to
more than one of Ci,..., Cn. Let w € Rr H D and choose v e D such that v • u 0

andvw^O. Write z(0) cos 0u + sin 0veD for 0^0^ tt, and let JRi,..., Rt be
those members of Rl9..., Rk (relabelled if necessary) which intersect z[0, tt],
ordered so that z(0)e Rt for 0t_i&lt; 0 &lt; 0, (i 1,..., r) where 0 0O&lt; 0i&lt; • • • &lt;

dt 7T. We fix ie{2,..., t} and prove xt • u^x,-! • u. Writing c /E(i(0I_i)) we
find that HK(O,i(0,-i)) intersects clP,_i and clP, in the points x.-i+c and x,+c
respectively. For 0f_2 &lt; a &lt; 0,_i &lt; J8 &lt; 0t let

Pl, so that

lim p(a) x,_i+c, lim

We hâve q(j8)»i(a)^p(a)&apos;i(a) and p(a) &apos;z(j8)^qO) *zO); writing i(a) and
zO) out in full and combining the inequalities we find (q(j8)-p(«)) •usin(i3-
&lt;*)^0. Hence (xI-xI_i) -o^O as required. This shows that i,s«^z1«« for
i 2,..., t Hence for i 1,..., k we hâve x, + E c H+(u) for a set of a dense in
S2, so xt + Ec:K. This complètes the Lemma, since K X + E where X is a

polytope and E is an ellipsoid.
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4. Préliminaires for the Higher Dimensional Cases

LEMMA 17. Let Ce Ed (d^A) be a convex body with oeint C, and let A be

a non-empty open connected set in bd C. If for every 3-dimensional orthogonal
projection ir, (ttA) D (relbd ttC) is contained in the surface of a 3-dimensional
ellipsoid having o in its relative interior, then A is contained in the boundary of an
ellipsoid.

Proof. Writing C* for the polar dual of C and letting

A* {y€bdC*:x-y 1 for sortie xeA},

we see that A* is open and connected in bd C* (since the points of A are smooth
and exposed on C), and for every 3-flat A containing o, À H A* is contained in the
relative boundary of a 3-dimensional ellipsoid whose relative interior contains o.

It will be sufficient to show that A* is contained in the boundary of an ellipsoid
whose interior contains o.

Every point of A* is a smooth exposed point of C*. Let H1 be a support
hyperplane of C* at a point peA*, and let H2 be a translate of Hx with
H2 fl int C* # 0 and so that, writing B (bd C*) H conv (Hi U H2) we hâve B c
A*. Let H3 and H4 be distinct translates of Hx which lie strictly between Hx and

H2. Then ail 2-dimensional sections of H3 H C* and H4 H C* are ellipses, being
sections of 3-dimensional ellipsoids containing o. Hence H3fl C* and H4fl C* are

ellipsoids (see for example [2]). Further, by choosing parallel 2-dimensional
sections of H3fl C* and H4fl C* which lie in the same 3-flat through o, and using
the fact that parallel sections of an ellipsoid are homothetic, we can show that
parallel central 2-dimensional sections of H3 (1 C* and H4 D C* are directly
homothetic. Hence H3 fl C* is directly homothetic to H4 fl C* by a resuit of
Rogers [6].

Let / be the line through p and the centre of H3DC*. When © is a 2-flat
containing /, @fl A* lies on an ellipse E(@), and the chords of E(@) parallel to Hx
are bisected by Z. Hence the centre of E{&amp;) lies on /. It now follows that the centre
of H4H C* lies on J. Consequently ail the ellipses JB(@), for 2-flats © containing Z,

hâve the same centre b g /. It is now clear that B^bdE, where E is the unique
ellipsoid with centre b supported by Ht at p and having H3 H C* as a section. By
analytic continuation, A*&lt;=:bdE, which complètes the proof.

LEMMA 18. Let C&lt;^Ed (d**4) be a convex body and suppose that every
3-dimensional orthogonal projection of C is the sum of a polytope and a 3-
dimensional ellipsoid. Then C is the sum of a polytope and a d-dimensional
ellipsoid.
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Proof. Clearly C is smooth. Consider a unit vector u and let F /C(n),
H HC(O, il). Let S be the intersection of Sd-1 with the hyperplane through o
parallel to H, and for vg S let tt(v) lin {a, v}, &lt;&amp;v be the orthogonal projection on
tt(v). For y s S, &lt;Î&gt;V(C) has an expression as E(v) + P(v) where E(v) is an ellipse in
7r(v) with centre o and P(v) is a polytope in tt(v). Further, the expression of
4&gt;V(C) as the sum of an ellipse with centre o and a non-smooth compact convex
set is unique. For vg S, let f(v) sup{0G[O, ir]:/p(C)(»)n/p(t,)(cos 0a + sin 0v)?é 0
}. By the non-smoothness of polytopes, f(v) &gt; 0 for each v. We show that for t &gt; 0,
the set G {veS: t(v)^ t} is closed. Let {v(0K°=i be a séquence in G with limit v.
The bodies E(v(i)), P(v(i)), i 1, 2,... are contained in a bounded région, and so
there is an infinité set N of natural numbers so that E(\(i)) and P(v(0) converge
to limits E and P respectively as i —»°° through N, from Blaschke&apos;s Sélection
Theorem. Then E is an ellipsoid with centre o having dimension at most 2, and

fP(u) fl /P(cos 0u + sin 0v) ^ 0 for 0 ^ 0 ^ t, so that P is non-smooth. Also E -h P
&lt;£&gt;V(C) which is smooth, so E must hâve dimension 2. Then by the uniqueness of
expression, JB £(v) and P P(y), so veG as required.

By taking t= 1,5,5,... and applying the Baire Category Theorem to S, we
can choose t&gt;0 and a non-empty open cap De S such that f(v)&gt; t for ail veD.
We may assume that D lies in a hémisphère of S. Write L/

{cos 0u + sin 0v:ve D, 0&lt; 0 &lt; t}, which is an open connected set in S**&quot;1, and has

the property that 7r(v)fl U is an arc with u as an end point for ail \eS. Let
^~ U fc(U), which by smoothness is an open connected set in bd C, and which
has a limit point in F. If I is a Une segment contained in V then &lt;£&gt;V(I) is an

exposed point of &lt;$&gt;V(C) for some v€ D, so that I is perpendicular to ir(v). Hence I
is parallel to H. Notice that we can rechoose V to lie within an arbitrarily small
distance of F by intersecting U with a sufficiently small bail with centre u.

By successive application of constructions similar to the one given above, we
can choose support hyperplanes Hi,...,Hd with H HU having outer unit
normals u Ui, ...,nd and open sets U= Uu • • •, Ud in Sd~\ open sets V
Vi,..., Vd in bd C satisfying 17, c Ut-U u, e [/^Alinfoi,..., 0,-1} for i

2, ...,d, Vj \J fc(U,) and every Une segment in V, is parallel to H, for
/ 1,..., d. Then VdcV and every point of Vd is an exposed point of C. Let
U&apos;ciUd be a cap on Sd~\ and let V= U /c(t/&apos;)&lt;= Vd. Then for every 3-
dimensional orthogonal projection V, (^V)nrelbd^C is a connected subset of
exp^C, and is therefore contained in the relative boundary of a 3-dimensional

ellipsoid; by a change of origin and by further reducing V we may suppose that o
lies in the relative interiors of ail ellipsoids arising in this manner. It now follows
from Lemma 17 that V lies in the boundary of a d-dimensional ellipsoid % say.
Let [/&quot;= UD U {lin{u, v}:ve U1} which is an open connected set in Sd~~\ and let
V&quot;= (j fc(U&quot;). For each w6 U&quot; the support plane of C with outer normal w also
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supports %. Since U&quot; is open this ensures that Vc bd %. Notice that F contains a

limit point of V&quot;. We hâve now shown that every face of C intersects the closure
of an open subset of bd C which is contained in the surface of an ellipsoid.

Let %€ be the family of maximal open connected non-empty subsets of bd C
which are contained in the surfaces of ellipsoids; for Peffl let P be the ellipsoid
surface which contains P. If P, Q e ffl then there is an open non-empty set i£ of
3-dimensional orthogonal projections such that relbd &lt;pP and relbd &lt;pQ contain

open non-empty subsets of relbd &lt;pC for ail &lt;p e £. Hence &lt;pP is a translate of çQ
for ail &lt;p € i£, so P is a translate of Ô. Let X be the set of centres of ellipsoids P
with P g 3€ and let % be the solid ellipsoid with centre o such that bd % is a

translate of P for each Peffl. Write K conv cl X.
Every exposed point of C is a face of C, and so must be contained in the

closure of a member of ffl. Thus C conv cl exp CcK+l. Consider any qeX, let
O e 3€ be a subset of q + bd %, and let H be a hyperplane which supports C at a

point of Q. Let H&apos; be any other support hyperplane of C and let H+ be the closed

half-space bounded by Hf which contains C. Consider a 3-dimensional orthogonal
projection ¥ in a (d-3)-dimensional direction parallel to H H H&apos;, and let % be

the cylinder ^~lf9C which is supported by H and H&apos;. Then relbd ^C contains a

non-empty open subset of relbd ^O, so ^C= Y + ty% where Y is some polytope
with *q as a vertex. Hence ^(q + «)c:^C, so q+^c^c H&apos;+. This holds for ail
such H&apos;, soq+^c C Hence K+%= C.

It remains to show that K is a polytope. Let &lt;p be any 3-dimensional

orthogonal projection. Choose a non-empty open set Me relbd &lt;pC which is

contained in the surface of a 3-dimensional ellipsoid W. For each xeM,
CHç^ix) is a face of C which meets the closure of some P(x)e Sif. Since %t is

countable, we can apply the Baire Category Theorem to choose a non-empty
open subset M1 a M and P€2£ with (p~1(x)nclP# 0 for ail xeM&apos;. Thus &lt;pP

W. But P M(y + &lt;g) for some yeX and &lt;pC is expressible as &lt;pC Z+W for
some polytope Z, so py + &lt;p% + Z &lt;pC. Now &lt;pC &lt;pK + (p%, so by comparing the

support functions, we see that &lt;pK is a polytope. Hence every 3-dimensional

orthogonal projection of K is a polytope. By a resuit of Klee [3], K is a polytope
as required.

5. Proof of the Theorem

Let KczEd (d^3) hâve property (A). We first show that K is the sum of a

polytope and an ellipsoid. This was established for d 3 by Lemma 16. If d^4,
then every 3-dimensional orthogonal projection of K has property (A), and is

therefore the sum of a polytope and an ellipsoid; hence by Lemma 18 K is the
sum of a polytope and an ellipsoid. Thus we can write K X+E where X is a
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polytope and E îs an elhpsoid. Every face of X (mcludmg X îtself if dim X&lt; d) îs

a translate of a face of K, and is therefore centrally symmetnc, since every face of
K is a limit of centrally symmetnc sections of K. Hence X is a zonotope.

Suppose Kc:Ed (d^3) is a convex body with K X + E, where X is a

zonotope and E is an ellipsoid. Then /x(«) is centrally symmetnc for each

ueSd~\ even when /x(u) X, for every zonotope is centrally symhetnc (see

Shephard [7]). By an elementary calculus argument we can show that for each
ueSd~l there exists e(u)&gt;0 such that

for 0&lt;a&lt;e(u), from which ît follows that K has property (A).

6. Proof of the Corollary

If Kc £d (d^3) is a stnctly convex body which has property (A), then from
the Theorem K X + E where X is some zonotope and E is some ellipsoid.
Every face of X is a translate of a face of K and so is a single point by strict
convexity. Hence X is reduced to a point and K is an ellipsoid.
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