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G Maps and the Projective Class Group

TeEp PETRIE!

0. Introduction and Motivation

Let G be a compact Lie group and f: X — Y be a G normal map (see §1)
between smooth closed G manifolds X and Y. We are interested in the relation
between the homological dimension over Hx(G,R) of Kx(f,R)=
ker (Hx(X, R) > H4(Y, R)) and Smith theory. The latter states that if f is a G
map between two G spaces (not necessarily manifolds) which induces an
isomorphism in mod p homology, then for each p subgroup K of G, the fixed
point mapping f* also induces an isomorphism in mod p homology.

To study this relationship we introduce an invariant x(f) € Ko(Z(G/Gy)) (the
reduced projective class group of the group ring of G/Gy) fora G map f: X —> Y
which satisfies the conclusions of Smith theory for each p subgroup K of G. Here
X and Y need not be manifolds.

We expect that x(f) will be a useful tool in other areas of G homotopy theory.
Since our application is in G normal cobordism theory, we emphasize the
relationship mentioned in the first paragraph.

In order to motivate the ideas, let X and Y be smooth closed oriented G
manifolds. The singular set of X written °X is the set of points of X whose
isotropy groups are not principle. If G acts freely on X, then *X = ¢ and X/G is a
manifold of dimension m—g if dim X=m and dim G =g.

The following results serve as a starting point for our study.

THEOREM 0.1. (Folklore) If G is connected and acts freely on Y and
Ki(f)y=0 for i< =[(m—g)/2] and m—g is even, then K«(f) = Hx(G) ® K, (f) as
an Hy(G) module and K, (f) is free over Z.

THEOREM 0.2 [5] and [12]. If G is finite, so Hx(G) = Z(G), and acts freely
on Y with Ki(f)=0 for i<A and m is even, then Ki(f)=0 for i# A and K,(f) is
Z(G) projective and zero in Ko(Z(G)). If m is odd and Ki(f)=0 for i<A and
K,\(f) is a Z torsion module, then K, (f) has homological dimension <1 over Z(G)
and gives zero in Ko(Z(G)).

! Author is a Guggenheim fellow. Research partially supported by an N.S.F. grant.
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612 TED PETRIE

Observe that the condition that G act freely on Y implies *Y=¢ a very
restrictive condition; however, examples show that some restrictions on °X and °Y
are necessary for conclusions like those of (0.1) and (0.2). The conclusions of
Smith theory are restrictions on *X and °Y and together with the assumption that
Ki(f, Z) =0 for i <A are just the conditions necessary to establish the analog (6.1)
of 0.1 and 0.2. Of course some condition on *X e.g. dim*X/G <3dim X/G is
necessary to achieve K(f, Z)=0 for i <A. Not only do the singular sets appear
implicitly in the definition of x(f) (5.2), but also in its calculation (5.4) where
x(H) = xCf).

The relation between x(f), Kx(f) and Smith theory is (6.1) which under the
conditions there gives x(f) = +[K,(f, Z)*]. One of the interesting consequences of
this is that x(f) (and so K,(f, Z)) depends not only on the p subgroups of G but
on all subgroups (§9). This is certainly a new feature in G homotopy theory.

This paper is organized as follows: The first four sections are technical. In §5
we define x(f). A key ingredient here is a paper of Rim [9]. In §6 we give the
main result, the structure of K«(f, Z) as an Hx(G) module. In §7 we give a very
brief outline of the application of x(f) to the G normal cobordism problem. In §8
we discuss the Swan homomorphism oc:Z¥ > Ko(Z(G)), relate it to x(f) and
prove geometrically a theorem of [11]. In §9 we give examples where x(f) # 0 and
in §10 we give an application to equivariant homotopy groups of spheres.

This paper represents the lectures of the author during the summer of 1975 at
the Centro de Investigacion del I.P.N. Mexico and the University of Chicago
whose hospitality is gratefully acknowledged.

The author thanks C. T. C. Wall, Guido Mislin, Bob Oliver and Ib Madsen for
comments pertaining to this work, which definitely benefited from their remarks.

1. Notation

Throughout we consider only compact Lie Groups. Let G be such a group and
g its dimension. Its connected component is denoted by Gy, its maximal torus by
T and N is the normalizer of T. If p is a prime, G, is the inverse image in G of
the Sylow p subgroup (G/Gy), of G/Go.

H(N,)={H<N,H#1, H/H,is a p group}. (1.1)
The sets #(N,) play a central role and have two important properties

(i) If G is finite or abelian and H and K are in #(N,), sois H - K.



G Maps and the Projective Class Group 613

(ii) If L = N, it has a finite normal subgroup F< L N N, with F,=1,
L/F=L, and if N(L) denotes the normalizer of L, N(L)<
N(L,) - L (by Sylow’s theorem on the conjugacy of Sylow sub-

groups). Note N(L),< N(L,),. These normalizers are taken in
N,.

If X and Y are G spaces and f: X — Y is a G map, M; is the mapping cone of
f. It is a G space with a canonical fixed point q € (M;)° = Mf corresponding to
the point obtained by identifying X to a point. Here f°:X° — Y© is the induced
map of the fixed point sets. The equality

(My)® = M{ (1.3)

is important and includes the convention that M, =point if h is a map of the

empty set. The isotropy group of a point x € X is denoted by G, and the singular
set of X denoted by °X is defined as

*X ={x e X | G, # principal isotropy group}.- (1.4)
Let °f:*X — °Y denote the restriction of f to *X. Then
(Mj) = M,, (1.5)

Suppose that E is a contractible G space on which G acts freely so the orbit
space E/G is the classifying space Bg of G. Let C$(X) denote the chain complex
of XXgE. If M is a module over the group ring A =Z(G/G,), we write
HE(X, M) and HE(X, M) for the homology of the chain complexes C$(X)®, M
and Hom, (Cg°(X), M). In particular

HEX, A)=H&(X,Z), H&X, Z)=H*XXgE, Z). (1.6)

If A is an algebra over A and M is an A module, then H§(X, M) is an H&(X, A)
module. Set Hg(X, A)=ker (H&(X, A) = H*(X, A).

When G is a finite group, Ko(A) is the reduced projective class group of A.
That is the Grothendieck group of A modules of finite homological dimension
modulo the subgroup generated by free modules. The involution of Ko(A) defined
by M — Hom_ (M, Z) = M* is denoted by *.

In what follows, all manifolds are smooth and oriented and all G spaces have
only a finite number of conjugacy classes of isotropy subgroups. Let X and Y be
smooth closed G manifolds of dimension m.
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DEFINITION

A G normal map f: X — Y consists of a G map f whose degree is 1
together with a specific G bundle map F: vx — £ covering f from the
stable G normal bundle vx of a G imbedding of X in a real G
module to some G vector bundle £ over Y. Briefly this is denoted by
(X, f). Note F defines an isomorphism vy = f*¢.

The definition of a G normal cobordism between two G normal maps (X, f;)

i=0, 1 (Y is fixed) is straightforward. This generalizes the definition of [4] where
G=1.

The G normal cobordism problem: Given a G normal map (X, f) to
Y. When is (X,f) G normally cobordant to (X',f) with f' a
homotopy equivalence?

Define Kx(f, R)=ker (Hx(X, R) > Hy(Y, R)), K*(f, R) = coker
(H*(Y, R) = H*(X, R)). These groups satisfy duality K'(f, R)=K,,_;(f, R) and a
universal coefficient theorem K(f, R)=Ki(f, Z)®zR®Tor (K;-((f, Z), R) and
similarly for K*(f, R). When R is Z, we abbreviate K«(f, Z) and K*(f, Z) by
K4(f) and K*(f). For a G normal map (X, f) to Y we have

K'(f,R)=H"*'(M;, q,R) and Ki(f, R)=H..,(M}, ¢, R). (1.9)

2. Behavior of Hs(X, M) for Subgroups

LEMMA 2.1. Suppose X is an N space and M is a Z,(N/No) module. Then
H¥(X, M) —> H%.(X, M) is a monomorphism.

Proof. The composition of restriction H¥(X, M) — HﬁP(X, M) and transfer
Hﬁp(X, M)— H¥X, M) is multiplication by the index of N, in N.

LEMMA 2.2. Let A be a A algebra on which G/Gy acts as the identity. Then
H¥(X, A) is a subalgebra of H¥X, A).

Proof. This follows from [2] applied to the fibration G/N — X XNyE — X XgE.
There is a homomorphism t: H¥(X, A) — H%(X, A) with #*t(x) = x(G/N) - x for
X eH"é,(X, A). Since the Euler number of G/N is 1, the result follows.

We need two results about finite generation over H§(q, Z,).
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LEMMA 2.3. Suppose G is connected and X is a G space whose total Z,

cohomology is finite dimensional over Z,. Then H&(X, Z ») is a finitely generated
(q, Z,) module.

Proof. H”G‘(q, Z,) is Noetherian and there is a spectral sequence of H¥ (q, Z,)
algebras E, = He&(qg, Z )@z H¥(X, Z,)> H&(X, Z,).
Since E, is finitely generated, the result follows.

LEMMA 2.4. Suppose G is a finite p group and M is a finitely generated Z,(G)
module. Then Hf;(q, M) is a finitely generated H’é(q, Z,) module.

Proof. Let I be the kernel of the augmentation Z,(G)— Z, Then I is
nilpotent, say I" =0 [1]. Filter M as M>IM>--->I"M =0. We have an exact
triangle

H&(q, I "' M) — H¥(q, I"M)

\

H&(q, I"'M/T*'M)

and each I*"M/I**'M is a Z, vector space with trivial action of G. The result
follows by induction.

LEMMA 2.5. Suppose M is a (graded) finitely generated H&(q, Z,) module
and for each multiplicative subset s € Hs(q, Z,), s"*M =0. Then M is zero for large
i.

Proof. Suppose I'= H&(q, Z,) has one algebra generator y of positive dimen-
sion and M has one generator m as a I' module. Let s be the set of powers of y.
Since s'M=0, y*m=0 for some k. Then M'=0 for i>k dimension
(y) - dimension (m). The general case is similar.

3. K*(f) as an H*(G) module-G connected

LEMMA 3.1. Let W be a G space with qe WC# ¢ and H¥(W", q, Z,) =0 for
all He ¥(N,). Then H*(,W, q, Z,) =0 where ,W = U gcsen, W".

Proof. If N, is finite or abelian, this follows from Meyer-Vietoris and induc-
tion by (1. 2)(1) In general we show H&(,W, q) =0 implying H*(,W, q) =0. (Z,
coefficients understood.) We can suppose G=N, and choose P< #(G) with
WP# WS and contained in no other P’ in ¥(G) with this property. Order the
conjugacy classes of isotropy groups Q; containing P so that G = Qo and if some



616 TED PETRIE

conjugate of Q; contains Q; then i<j. Note Q, =P for i#0. As a matter of
notation, let r be the largest index and Q, =P (eventhough P may not be an
isotropy subgroup). Define Wo= W€ and W, ,; = GW%+U W,. The W, give a G
filtration of GW” and the W{ give an N(P) filtration of W”. These filtrations
produce spectral sequences E,=> He(GW?®, W€) and E!=> H¥(W*, W°) and
the inclusion of spaces a map of spectral sequences E,— E, which is an
isomorphism of E; to E; because Hg(W,;, Wi_;) = Hne)(Wi, W) is an
isomorphism for all i. In fact this map is the composition of these isomorphisms:

HEW,, Wi_;) = H&(Gxny(WE, W)
= Hio),(W% W) = HYpnno)(WE W)

=H tr(P)(N (P) X npynncan( W Wi%l))
= Hﬁ(?)(N(P) W2 N(P) W'ig‘l) =BH?\‘I(P)(W§: Wiy).

Only steps a and B require comment. Since Q;, = P, N(Q;), = (N(Q;) N N(P)),
by (1.2)(ii). Since H¥A, B)= Hﬁ(A, B) for L in N, by (1.2)(ii), this shows a is
true. For B the key facts are (GW?)* = N(P)Q% and N(P)(GW?)% = N(P)W<
if some conjugate of Q; contains Q. For gQ;g”' > Q, > P implies ge N(P)Q; by
Sylow’s theorem.

This argument shows the natural map HE(GW?F, W) - HE ) (WF, WE) is
an isomorphism, but the latter group is zero because P e #(N,). The proof now
follows by induction considering ,W/GW?".

LEMMA 3.2. Let W satisfy the hypothesis of (3.1). Then for each multiplica-
tive set s€ ﬁﬁp(q, Z,) (the kernel of Hf;,(q, Z,)— H*(q, Z,)), s"lﬁi‘lp( W,q,Z,)=
0. If se HY,..(q), then s 'Hy, (W, q)=0.

Proof. s'lHﬁp(W, q, Z,)— s“H’}.}P(pW, g, Z,) is an isomorphism. To see this
note that each x € W—, W has isotropy group (N,). which is finite or order prime
to p by 1.2(ii)). This means that s maps to zero in H&,),‘(q, Z,); so
s 'H{n,).(q, Z,) =0. This implies s 'Hx (W, ,W, Z,)=0. Since H*(,W, g, Z,)=0
by (3.1), H%.(,W, q, Z,) = 0. For the second statement, note that each xe W—p"
has isotropy group (N,)x€ Ny, I:I’,{‘,p,NO(q) - I"If,o(q) is zero and H,"\‘,p(pW, q) —
H?f,o(,,W, q) is an isomorphism by (3.1).

COROLLARY 3.3. Let G be connected and W satisfy the hypothesis of (3.1)
and have its total mod p cohomology finite dimensional over Z, Then
Hs(W, q, Z,) =0 for large i.

Proof. By (2.1) and (2.2), H&(W, g, Z,) is a subalgebra of HN.(W, q, Z,). Let
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S€E fIG(q, Z,)c< ﬁNP(q, Z,) be any multiplicative set. Then s"lH";,p( W,q,Z,)=0
(3.2); so sT'H&(W, q, Z,) =0. But H&(W, q, Z,) is a finitely generated H¥(q, Z,)
module by (2.3). The result follows from (2.5).

THEOREM 3.4. Let G be a compact connected Lie group with Hy(G) Z
torsion free and W a G space with qe W # ¢. Suppose that (i) for some integer m,
H'(W, q,R)=H,._i.2(W', q, R) for all i and every R, (ii) if A =[(m—g)/2]+1,
H;(W, Q) =0 for i<A, (iii) H\(W, q) is a Z torsion module if m — g is odd and (iv)
for each prime p and for each Ke #(N,) H¥(WX,q, Z,)=0. Then there is a
filtration of Hx(W, q) such that Eo(Hx(W, q))= Hx(G)® H$(W, q); moreover,
HY(W, q)=0 for i# A and if m—g is even HJ(W, q) is Z free and is Z torsion if
m — g is odd. In particular for m — g even, Hx(W, q) is a free Hx(G) module and
the hypothesis Hg(G) is torsion free is superfluous.

Proof. First note that Hg(W, q, Z,) =0 for large i (3.3). Let d be the largest i
such that H5(W, q, Z,) #0. The spectral sequence H&(W, g, Z,)® H*(G, Z,)=>
H*(W,q,Z,) has a non zero term in E, of bidegree (d,g) as E$%=
H&W, q, Z,)® H%(G, Z,). This term survives to E. and shows
H®*%(W,q,Z,)#0. But then Hpg-4+20W,q,Z,)#0 so m—-g—d+2=
[(m—g)/2]+1 and d=m—-g-[(m—g)/2]+1. Also Hg(W, g Z,)=0 for i<
[(m—g)/2]+1 since the same is true of H'(W, q, Z,). Thus Hs(W, q, Z,) =0 for
i#A if m—g is even and for i#A, A+1 if m—g is odd. This shows that
Hg(W, q)=0 for i# A and H&(W, q) is Z free if m—g is even. If m—g is odd
HE (W, q) is a Z torsion module and Hg(W, @) =0 i# A +1. In either case the
spectral sequence H*(G)® H&(W, q)=> H*(W, q) collapses implying the homol-
ogy spectral sequences collapses giving Eo(Hx(W, q)) = Hx(G)® HE(W, q) as an
H4(G) module.

THEOREM 3.5. Let G be connected and Hx(G) be Z torsion free. Let
f:X—>Y a G normal map between oriented smooth closed G manifolds of
dimension m. Suppose for each prime p for each He #(N,), K*(f", Z,)=0,
Ki(f)=0 fori<[(m—g)/2]= A and if m — g is odd K, (f) is a Z torsion module. Then
there is a filtration of K(f) such that EOK*(f)—_-H*(G)@H:(k}(Mf’ q); moreover,
HE(M;, q) =0 fori# A and if m— g is even K\(f) = HY11(My, q) is Z torsion free and
is Z torsion if m—g is odd. In particular for m—g even, Ky(f) is a free Hy(G)
module and the hypothesis Hx(G) is torsion free is superfluous.

Proof. Since the degree of f* (for each component of X*) is a unit of Z, [6],
for each He ¥(N,), K'(f",Z,)=H"'(Mf,q,Z,). Since (My)"=M;: (1.3),
H*(MF, q, Z,)=0 for all p and all He #(N,). Now apply (3.4) with W= M;
noting K™ 7(f) = K;(f) and (1.9).
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Remark 3.6. Certainly the hypothesis that H4(G) be torsion free can be
removed from the hypothesis with only minor changes in the conclusion.

4. Localization in H’ép(q, Z,) and homological dimension of Z(G) modules

Throughout this section G is finite. Using [9], we show a relation between
homological dimension of Z(G) modules and localization in Hg(q, Z,). The first
result is an easy consequence of the universal coefficient theorem and [9] (4.11):

THEOREM 4.1 [9]. A finitely generated Z(G) module M which is Z torsion
free is projective iff for each prime p M® 2Z, is Z,(G) projective.

This together with the results of [9] and a few elementary lemmas gives

THEOREM 4.2. A finitely generated Z(G) module M has homological dimen-
sion <1 if for each prime p, Hg(q, M®Z,)=0 for large i. If in addition M is Z
torsion free, then M is projective over Z(G). (Moreover if M® Z, is replaced by M,
the condition is necessary and sufficient.)

Using the fact that H ='(é,,,(q, MQ®Z,)is an H "ép(q, Z,) module, we have this more
convenient statement:

THEOREM 4.3. Let M be a finitely generated Z(G) module (which is Z free)
then the homological dimension of M is <1 (<0) if for each prime p and each
multiplicative set s € I:I’ép(q, Z,), s'lH"c‘;p(q, M® Z,)=0. Moreover if Z, is replaced
by Z, the condition is necessary and sufficient for zero homological dimension.

Proof. This is immediate from (4.2) and (2.5).

Our principle application occurs when M is a (graded) module arising from the
cohomology of a G space. Say M = H*(W, q). The universal coefficient theorem
H*(W, q, Z,) = H¥(W, q)® Z,®Tor (H**'(W, q), Z) clearly implies

COROLLARY 4.4. Let W be a G space, with ge WC. If H'(W, q) is a finitely
generated A module (with each H'(W, q) Z free) then the homological dimension
of each H'(W, q) is =<1 (<0) if for each prime p and multiplicative set se€
H%(q, Z,), s 'H&(q H(W,Z,)=0 or if for each seH%(q),
sT'HE,(q, H'(W, q))=0.
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5. Defining x(f)

Throughout this section f: X — Y is a G map between G spaces whose total
cohomology is finitely generated over Z. Then Hg,(M;, q) is a finitely generated
Z(G/Go) module for each i. We give conditions insuring that the definition

x(f) = 2(=1)'Hg,(M;, q) € Ko(Z(G/ Go)) (5.1)

makes sense. Clearly x(f)=0 if f is a homotopy equivalence. It measures the
deviation from being a homotopy equivalence.

THEOREM 5.2. Suppose for each prime p and each Ke ¥(N,) that
H*(Mf »q, Z,)=0. Then H GO(Mf, q)=0 for i large. If also the spectral sequence
HE,6,(q, H6(M;, q, Z,))=> HE (M}, q, Z,) collapses for each p, then each
Hg,(M;, q) has homological dimension <1 (<0 if Hs,(M;, q) is Z free) over
Z(G/Go) and x(f) makes sense. Alternatively if the spectral sequence collapses with
integral coefficients the same conclusion is valid.

Proof. The total cohomology of M; is a finitely generated Z module. Suppose
H'(M;, q) =0 for i> N. Then H'(M;, q, Z,) =0 for i>N+1 for each prime p. By
(3.3) Hg,(M; q, Z,)=0 for i large. Examining the spectral sequence
H*(Go, Z,)® HE (M;, q, Z,)=> H*(M;, q, Z,), we see that if d is the largest in-
teger with HG(M;, q, Z,)#0 then g+d=<N+1. Since this holds for each p,
Hs,(M;, q)=0 for i>N+1—g.

Now suppose the spectral sequence in the statement of the theorem collapses.
Then there is a filtration (of Z(G,/Go,) modules) of HEP(Mf, q, Z,) with
EoH%,(M;, q, Z,) equal to HE 6,(9, H6,(M;, g, Z,)). Let s be any multiplicative
set in H 64Go(q Zp). This gives rise to a multiplicative set again called s in
H}'_’;p(q, Z,) under the obvious algebra homomorphism. By (3.2),

(Mf, q, Z,,) 0. Since localization is exact, s~' and E, commute; thus

Gp,Go(q, H%.(M;, q, Z,))=0. Apply (4.4) replacing G by G/G, and W by

Mf 6.Elq % g,E. This shows Hg, (M}, q) has homological dimension <1 over
Z(G/Gy).

Remark 5.3. The spectral sequence of 5.2 certainly collapses if
HiGo(Mf, q, Z,) =0 for all but one value of i. This is a frequent situation of
application. See e.g. (3.5).

THEOREM 5.4. Suppose G is a finite group and there is a point ye 'Y with
Gy = 1. Then x(f) = x(f) provided both are defined.
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Proof. G operates freely on M;—°M; which is M;— M, by (1.5). Thus the
cellular cochain complex C*(M;, M) = C* is a free A module. Clearly x(C*)=
3(—=1)'C! is zero in Ko(A).

The exact sequence of cochain complexes 0 — C*(M;, M,)— C*(M;, q) —
C*(M,, q) — 0 gives rise to an exact triangle

H*(M;, M) » H*(My, q)

H*(M,, q

which implies that H'(M;, M) has finite homological dimension over Z(G) so
x(f,°’f) = 2(-1)H'(Mj, M) = x(C*) = 0. But x(f)=xCH+x({, .

LEMMA 5.5. If G is a p group and the conditions of 5.2 are satisfied, x(°f) is
defined.

Proof. Apply (3.1) with W=M;. Then ,W=M, and H*(M,, q, Z,)=0; so
H*(M, q) is a Z torsion module with no p torsion and for each i, H'(M,, q) has
homological dimension <1 over Z(G) by (4.3).

6. K«(f) as an Hy«(G) module

We are now prepared to discuss the structure of K4(f) as an Hg(G) module.
The homology algebra Hx(G) is the ‘‘twisted” tensor product
Hy(Go) ®, Z(G/Gy). In fact H4(G,) is a Z(G/Go) module. x® =g *xg for xe
H4(Go), ge G/Go and ge G representing g The multiplication in the twisted
tensor product is given by x@ w - x' @ w'=x - x' @ ww' for x, x'€ Hyx(Go).

THEOREM 6.1. Let Hy(G,) be Z torsion free and f: X — Y be a G normal
map between smooth closed oriented G manifolds of dimension m. Suppose for each
prime p and for each H € #(N,) that K*(f¥, Z,) =0, K;(f) =0 fori <[(m —g)/2]= A
and if m— g is odd K,(f) is a Z torsion module. Then there is a filtration of Kx(f)
by Hy(Go) modules such that EoK «(f) = He(Go)® K, (f) and K, (f) is a projective
Z(G/Go) module if m—g is even and has homological dimension <1 if m—g is
odd; moreover, when m—g is even, the hypothesis on Hx(Go) is superfluous,
X() = 2[K(f)*] and K«(f) is a stably free Hy(G) module iff x(f)=0.

Proof. The first conclusion is a restatement of (3.5) noting HY*(M;, q) = K, (f).
For the second, note that Hg, (M}, q)=0 unless i =A when m—g is even or
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i=A+1 when m— g is odd by the universal coefficient theorem. Thus the spectral
sequence of (5.2) collapses and Hg,(Mj, q) = K'(f) has homological dimension <1
fori=A (m—g even) or i=A+1 (m—g odd). In the first case K*(f) is Z torsion
free since Ki(f)=0 for i<A; so in this case K*(f) is a projective Z(G/G,)
module. When m — g is odd, K, (f) = Extz (K**'(f), Z); so it too has homological
dimension =1.

Since Hg,(My, q) =0 for i#A or A +1 depending on m — g, x(f) = £[K*(f)] or
+[K**'(f)]. Moreover, in the first case K, (f) =Homz (K*(f), Z) = K*(f)* by the
universal coefficient theorem; so K, (f) is also Z(G/G,) projective. If it is free over
Z(G/Gy), then K(f) is free over Hy(G).

7. Application to the G normal cobordism problem

Let ye H«(Go,) denote the orientation class and define a homomorphism
w1:G/Gy— Z,={£1} by

Y8 =wi(g)y for g<=G/Go (7.1)
Let [ X]e€ Hx(X) denote the orientation class for X and define w,: G/G,— Z, by
g[X1= wa(g)[X] (7.2)

When the hypothesis of (6.1) hold and m — g is even, we can define an integral

valued non singular bilinear form { ) on K, (f) using the intersection pairing ° in
Hy(X);

(x,y)=xo(y-y)eZ; x yeK,\(f) (7.3)

Then for ge G/G,, (gx, gy)=w(g)x, y) where w(g)=wi(g)w,(g). This follows
from the fact that vy-(gy)=(yg) y=(gy*) y=g(y*-y) and gacgB=
wa(g)(a°B). The fact that ( ) is non singular i.e. induces an isomorphism
K, (f)=Hom_ (K,(f), Z) of Z(G/G,) modules follows from the fact that the
intersection pairing K, (f)® K, +,(f) = Z is non singular and the isomorphism of
H4(Go) modules of Hy(Go)® K, (f) and K«(f) is defined by a®B — a - B i.e. by
the structure of K4(f) as an Hx(Go) module. Thus we have

COROLLARY 7.4. If the hypothesis of (6.1) hold, K,(f) is a projective
Z(G/Goy) module supporting a Z valued non singular bilinear form ( ) satisfying

(8x, gy) = w(g)x, y) for ge G/Go, x, y € Ki(f) and w(g) = wi(g)w2(g).

Of course we can also view { ) as a bilinear form (over A) on K, (f) with values
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in A by setting

xy)= 2 (xglyg

geG/Go

This is to conform to the standard notation for this situation when G = G/G, acts
freely on Y [13]. Under certain hypothesis on °*X e.g. dim *X/G <3 dim X/G, it is
possible to define a self intersection form u : K, (f) = A/I where I is the subgroup
of A consisting of v+(—1)*"'% for veA and v— ¥ the automorphism of A
defined by ¥ 3,8 =Y. w(g)asg .

When x(f) =0, so K,(f) is A free,

o(f)=(Ki(f), (, ), ) € Lar(G/Go, w) (7.5)

represents an element of the group L,,(G/Gy, w) of Wall [13]. Under suitable
hypothesis e.g. trivial principle isotropy group, 7 (Y)=0 and dim°‘X/G<
3dim X/G, o(f) is the only obstruction to finding a G normal cobordism between
(X, f) and (X', f') where f': X'— Y is a homotopy equivalence. Thus x(f) is a
primary obstruction and o(f) a secondary obstruction to making f a homotopy
equivalence. Of course this is all relative to the hypothesis of (6.1).

To achieve the full obstruction theory for the G normal cobordism problem
(1.8), we first generalize x(f) and o(f) slightly by introducing x(f, Z,)) €
Ko(Z,)(GIGo)) and a(f, Z(,)) € Loa(Z)(G/Go), w) where Z,, is Z localized at p.
This is to be able to treat maps whose degree is a unit in Z,,. For each p, partially
order the conjugacy classes of groups in #(N,) by setting K=< H if K contains a
conjugate of H. Roughly each conjugacy class K in #(N,) contributes two
obstructions xx (f) = x(f%, Z,) and ok (f) = a(f*, Z,) as K/K, is a p group. In fact
xx(f) is defined only if x.(f)=0 and or(f)=0 for L<K and corresponds to
replacing G by N(K)/K and f by f*:X* — Y¥ in our preceeding discussion.
Here N(K) is the normalizer of K and x.(f)e IZO(Z(,,)(L”)), oL(f) e
L.(Z4)(L"), wp) where L/L, is a p group, L'=N(L)/L and L"=L'/L}.

This very brief discussion illustrates the obstruction theory for dealing with the
hypothesis of (6.1) and shows how the Smith theory conditions show up in a
constructive manner for handling the G normal cobordism problem.

For a complete discussion of the application of the obstruction theory for
G =S" see [6]. There all the obstructions x.(f) vanish because L" is 1.

8. The homomorphism o : Z¥ - Ky(Z(G))

As a consequence of (4.3), we see that if the order of G is n and q is prime to
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n, Z, viewed as a Z(G) module has homological dimension <1; so represents an
element [Z le KO(Z(G)) Swan showed [11] that this gives rise to a homomorph-

ism oG : Z¥ — Ko(Z(G)) from the multiplicative group of units of the ring Z, to
Ko(Z(G)). He proved the

THEOREM 8.1 [11]. o is zero if G is cyclic.

Since this is important for our study, we give a very simple geometric proof.

Proof. Let G'=S' and G=Z,<S" be the cyclic group of order p (not
necessarily a prime). Let N and M be the complex two dimensional G’ modules
defined by

(i) N:t(zo, z1) = (tzo, t92,), z=(z9,21)€EN
(i) M:t(zo, 1) = (tzo, t"2,), z2=(z9,21)eM

Here te S'c C and q is an integer prime to p. Choose integers a and b so that
—ap+bq=1. Define a G' map w: N —> M by

(20, 21) = (2527, 28+ 25) (6.2)

This gives rise to a G' map from the unit sphere of N to the unit sphere of
M:f:S(N)— S(M) by f(z) = w(2)/|w(2)|.

Restrict the action to G and set X = S(N), Y = S(M). Since the degree of f is
1 [8], [7], f is a homotopy equivalence so x(f) is zero. Note that G acts
semi-freely on X and Y with X ={(z0,0)||z0|=1} and Y° ={(0, z,) | |z:| = 1};
moreover, °(zo,0)=(0,2%) is a map of degree q. Clearly HZ(M,rcf)r-Zq and
H'(M;, q)=0 for i#2. Since Mso=(M;)®, G acts trivially on Z,. Since G acts
semi-freely on X and Y, °f=fC. Thus xCH=x({f°)=[Z,]= 0s(q). Since x(f)=
xCf) by (5.4), 0=x(f)=x(f) = oc(q).

COROLLARY 8.3. Let G be an arbitrary finite group of order n acting
semi-freely on X and Y and f: X — Y a G map. Suppose each H' (Mo, q, Z,) = 0.
Then x(°f) is defined. If x(f) is also defined x(f) € image oc.

Proof. Each H ‘(Mfo, q) is a Z torsion module of order prime to n apd hence
has homological dimension =<1 over Z(G). Since G acts trivially on H'(Mys, q),
the class it represents in Ko(Z(G)) is in the image of 0. Since G acts semi-freely
on X and Y, f°="°f; so x(f)=x(f®) ¢ image og.

COROLLARY 8.4. Suppose G is Z, with p prime. Suppose also the hypothesis
of (5.2). Then x(f)=0.
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Proof. The hypothesis of (5.2) guarantee H*(Ms, q, Z,) =0. The result now
follows from (8.3) and (8.1).

9. An example with x(f)#0

Let G = Q be the quaternion group; so Q ={+1, +i, +j, £k} < H where H is
the quaternion skew field. Viewing H as a left complex vector space, it is a
complex Q module with Q acting by right multiplication. Note that the function
h:H— C defined by h(x +yj)=x*+y*is Q invariant if Q acts trivially on C and
x and y are the complex coordinates of x+yjeH. This shows that for each
integer A, the variety

VA={(ZO’ 21, 22, X, Y)E Cst | h)\ = 0}

h (2o, 21, 22, X, y) = zo+ 23 + 23+ x* +y*

is Q invariant. Here Q acts on C>*xH by (u, v)q=(u, vq) for ge Q, we C> and
veH. Set

LA = V,\ﬂS(CSXH)

where S(C>xH) is the unit sphere in C’xH. Clearly L, is Q invariant.
The subvariety W, ={(zo, z1, 22, X, y)€ L, | x =y =0} is the fixed point set L3
and its homology is given by

HI(WA);'-ZM I_II(WA)=Z, l=0,3

and H,(W,)=0. See [3], p. 275. The action of Q on L, is semi-free so the
singular set °L, is LY = W,.

Let A be an odd integer and choose integers a and b such that —2a+Ab=1.
Define a Q map f: L, — S(C>*xH) by

(26 23, %2, %, )
(2623, 22, x, YII

f(zo, 21, 22, X, y) =
Then
(i) Both f and f° have degree 1

(i) fe:Hx(L2 Z,)— Hx(S(C*xH)?, Z,) is an isomorphism
(iii) H'(Mj, q)=0 for i#5 and H>(M;, q)=H*(L,) is a Z torsion module of
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odd order [3], p. 279.
(iv) H'(Mye, q)=0 for i#3 and H* (Mo, q) = HA(W,) = Z,

These facts insure that both y(f) and x(f?) are defined and

THEOREM 9.1. x(f) = x(f®) = 0o(A). For A =3, x(f) #0.

Proof. Since the actions are semi-free, the first equality follows from (5.4)
while the second follows from (iv). The fact that 0o(3)#0, is a result of Swan

[11].

Remark 9.2. The map f:L, — S(C>*xH) is a Q normal map. The Q normal
bundle of L, < C>xH is L, X R*® with trivial Q action on R>.

One might suspect that the invariant x(f) is completely determined by the
Sylow subgroups, a phenomenon which occurs for example for the cohomology of
a group. This is not the case. To see this let J, = S(C>xH) be the subvariety
zo+z3+25+23°+25°=0. The group G=2Z;XQ acts semi-freely on J,. The
action is induced by the action of Z;X Q on H defined by viewing Z; as the
multiplicative subgroup of C of 3rd roots of unity and allowing Z; to act via left
multiplication on H and Q via right multiplication. The same map f as above
gives a G normal map f:J, = S(C*°xH) and again x(f)==[Z\]=0c(A)e
Ko(Z(G)). The order of G is 24 and a5(17)#0 but 0z,(17)=0 and 0o(17)=0.
See [11].

Remark 9.3. The Q variety L, has higher dimensional analogs generated by
the functions z)+ z24- - -+ 23 +x1+---+x5, as k and [ vary.

Remark 9.4. The fact that x(f) = x(f©) = 06(3) when A =3, shows that (L,, f)
is never Q normally cobordant rel LY to (X', f) with f' a homotopy equivalence
even though f: Hx(L?, Z,) » Hx(S(C*xH)?, Z,) is an isomorphism.

10. Application to Equivariant Homotopy Groups of Spheres

If 3, i=0, 1 are homotopy spheres supporting an action of G and f:3,— 3,
is a G map of degree 1, then f*:35'— 31" is a map whose degree is non zero
mod p for every p group H in G (Smith theory). In particular this means that if G
acts semi-freely on 3; (i.e. the only isotropy groups are G and 1) then deg f€ is a
unit in Z, where n=order G. For cyclic groups, deg f° can be an arbitrary
element of Z¥. See e.g. the example of (8.1). In general there are additional
restrictions, namely

PROPOSITION 10.1. Let f:3,— 3; be a degree 1 G map where G acts
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semi-freely on 3; and suppose X is a homotopy sphere for i=0, 1. Then
agc(deg f°)=0 in Ko(Z(G)).

Proof. ag(deg f®)=x(f¢)=x(f)=0 because f is a homotopy equivalence.
For example if G=Q is the quaternion group of section 8, then
deg f¢# £3(8).

Proposition 10.1 is an example of the relation between the homological
invariants of G manifolds and G maps. For another example, if 3; i=0, 1 are
rational homotopy spheres supporting an S' action with 37 = ¢ and f: 3, — 3, is
an S' map, then deg f is uniquely determined by the S' manifolds 3.
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