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G Maps and the Projective Class Group

Ted Pétrie1

0. Introduction and Motivation

Let G be a compact Lie group and /:X—&gt; Y be a G normal map (see §1)
between smooth closed G manifolds X and Y. We are interested in the relation
between the homological dimension over H*(G, R) of K*(/, R)
ker (H*(X, £)-&gt; H*(Y, R)) and Smith theory. The latter states that if / is a G

map between two G spaces (not necessarily manifolds) which induces an

isomorphism in mod p homology, then for each p subgroup K of G, the fixed

point mapping fK also induces an isomorphism in mod p homology.
To study this relationship we introduce an invariant x(f)G K0(Z(GIGo)) (the

reduced projective class group of the group ring of G/Go) for a G map /:X-» Y
which satisfies the conclusions of Smith theory for each p subgroup K of G. Hère
X and Y need not be manifolds.

We expect that x(f) will be a useful tool in other areas of G homotopy theory.
Since our application is in G normal cobordism theory, we emphasize the
relationship mentioned in the first paragraph.

In order to motivate the ideas, let X and Y be smooth closed oriented G
manifolds. The singular set of X written SX is the set of points of X whose

isotropy groups are not principle. If G acts freely on X, then sX &lt;t&gt; and XIG is a

manifold of dimension m - g if dim X m and dim G g.

The following results serve as a starting point for our study.

THEOREM 0.1. (Folklore) If G is connectée and acts freely on Y and

*,(/) 0 for i&lt;A [(m-g)/2] and m-g is even, then K*(/) H*(G)® Kk(f) as

an H*(G) module and Kk(f) is free over Z.

THEOREM 0.2 [5] and [12]. If G is finite, so H*(G) Z(G), and acts freely
on Y with Xl(/) 0 for i&lt;k and m is even, then Kt(/) 0 for iV A and Kk(f) is

Z(G) projective and zéro in K0(Z(G)). If m is odd and Kt(f) 0 for i&lt;\ and

KK(f) is aZ torsion module, then Kk(f) has homological dimension &lt;1 over Z(G)
and gives zéro in K0(Z(G)).

1 Author is a Guggenheim fellow. Research partially supported by an N.S.F. grant.
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Observe that the condition that G act freely on Y implies SY=&lt;£ a very
restrictive condition; however, examples show that some restrictions on SX and SY

are necessary for conclusions like those of (0.1) and (0.2). The conclusions of
Smith theory are restrictions on SX and SY and together with the assumption that
K,(f, Z) 0 for i &lt; A are just the conditions necessary to establish the analog (6.1)
of 0.1 and 0.2. Of course some condition on SX e.g. dimsX/G&lt;èdimX/G is

necessary to achieve Kt(f, Z) 0 for i&lt;À. Not only do the singular sets appear
implicitly in the définition of xif) (5.2), but also in its calculation (5.4) where

The relation between #(/), K*(/) and Smith theory is (6.1) which under the
conditions there gives xif)= ^t^xCf, Z)*]. One of the interesting conséquences of
this is that xif) (and so XA(/, Z)) dépends not only on the p subgroups of G but
on ail subgroups (§9). This is certainly a new feature in G homotopy theory.

This paper is organized as follows: The first four sections are technical. In §5

we define xif)- A key ingrédient hère is a paper of Rim [9]. In §6 we give the
main resuit, the structure of K*(f, Z) as an H*iG) module. In §7 we give a very
brief outline of the application of xif) to the G normal cobordism problem. In §8

we discuss the Swan homomorphism aG-Zt-* K0(ZiG)), relate it to xif) an^

prove geometrically a theorem of [11]. In §9 we give examples where xif) ^ 0 and
in §10 we give an application to equivariant homotopy groups of sphères.

This paper represents the lectures of the author during the summer of 1975 at
the Centro de Investigacion del I.P.N. Mexico and the University of Chicago
whose hospitality is gratefully acknowledged.

The author thanks C. T. C. Wall, Guido Mislin, Bob Oliver and Ib Madsen for
comments pertaining to this work, which definitely benefited from their remarks.

1. Notation

Throughout we consider only compact Lie Groups. Let G be such a group and

g its dimension. Its connected component is denoted by Go, its maximal torus by
T and N is the normalizer of T. If p is a prime, Gp is the inverse image in G of
the Sylow p subgroup iG/G0)p of G/Go.

l, H/Ho is a p group}. (1.1)

The sets %iNp) play a central rôle and hâve two important properties

(i) If G is finite or abelian and H and K are in %iNp), so is H • K.
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(ii) If L &lt;=¦ Np, it has a finite normal subgroup Fc L H No with Fp 1,

L/F=LP and if N(L) dénotes the normalizer of L, N(L)c=
N(LP) • L (by Sylow&apos;s theorem on the conjugacy of Sylow sub-
groups). Note N(L)P&lt;=:N(LP)P. Thèse normalizers are taken in
Np.

If X and Y are G spaces and /: X -&gt; Y is a G map, M/ is the mapping cône of
/. It is a G space with a canonical fixed point q e (Mf)G Mf corresponding to
the point obtained by identifying X to a point. Hère fG : XG -&gt; YG is the induced
map of the fixed point sets. The equality

(Mf)G MG (1.3)

is important and includes the convention that Mh point if h is a map of the
empty set. The isotropy group of a point x e X is denoted by Gx and the singular
set of X denoted by SX is defined as

SX {x g X | Gx ¥¦ principal isotropy group}/ (1.4)

Let s/:sX-&gt; SY dénote the restriction of / to SX Then

MSf. (1.5)

Suppose that E is a contractible G space on which G acts freely so the orbit
space ElG is the classifying space BG of G. Let C*(X) dénote the chain complex
of XxG£ If M is a module over the group ring A Z(G/G0), we write
HG(X, M) and H%(X, M) for the homology of the chain complexes C*°(X)(g)AM
and HomA (CG°(X), M). In particular

HS(X, A) H£0(X, Z), HS(X, Z) H*(*xGE, Z). (1.6)

If A is an algebra over A and M is an A module, then H*(X, M) is an H*(X, A)
module. Set HG(X, A) ker (H%(X, A) -&gt; H*(X, A).

When G is a finite group, K0(A) is the reduced projective class group of A.
That is the Grothendieck group of A modules of finite homological dimension
modulo the subgroup generated by free modules. The involution of K0(A) defined
by M -* Homz (M, Z) M* is denoted by *.

In what follows, ail manifolds are smooth and oriented and ail G spaces hâve

only a finite number of conjugacy classes of isotropy subgroups. Let X and Y be

smooth closed G manifolds of dimension m.
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DEFINITION

A G normal map /:X-&gt; Y consists of a G map / whose degree is 1

together with a spécifie G bundle map F: vx -* £ covering / from the
stable G normal bundle vx of a G imbedding of X in a real G
module to some G vector bundle £ over Y. Briefly this is denoted by
(X,/). Note F defines an isomorphism vx~f*l;.

The définition of a G normal cobordism between two G normal maps (X,,/,)
j 0, 1 Y is fixed) is straightforward. This generalizes the définition of [4] where
G l.

The G normal cobordism problem: Given a G normal map (X, f) to
Y. When is (X,/) G normally cobordant to (X&apos;,f) with f a

homotopy équivalence?

Define K*(/, R) ker (H*(X, R) -* H*(Y, R)), K*(/, R) coker
(H*(Y, R)-» H*(X, £)). Thèse groups satisfy duality Kl(f, R) Km_,(/, R) and a

universal coefficient theorem Kt(f, R) Kt(f, Z)&lt;8)zR©Tor(Kl-1(/, Z), jR) and
similarly for K*(/, R). When R is Z, we abbreviate K*(/, Z) and #*(/, Z) by

and X*(/). For a G normal map (X, f) to Y we hâve

,R) and Kl(f,R) Hl+1(Mf9q,R). (1.9)

2. Behavior of HG(X,M) for Subgroups

LEMMA 2.1. Suppose X is an N space and M is a ZP(N/NO) module. Then

Hn(X, M) -» Hnp(X, M) is a monomorphism.

Proof. The composition of restriction H%(X, M) -» H*p(X, M) and transfer
H*p(X, M) -* Hn(X, M) is multiplication by the index of Np in N.

LEMMA 2.2. Let A be a A algebra on which G/Go acts as the identity. Then

HS(X, A) is a subalgebra of H&amp;X, A).

Proof. This follows from [2] applied to the fibration GIN-» XxNE -* XxGE.
There is a homomorphism r : H%(X, A) ~» H%(X, A) with 7r*f(x) x(G/N) • jc for
xeH*(X, A). Since the Euler number of G/N is 1, the resuit follows.

We need two results about finite génération over H%(q, Zp).
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LEMMA 2.3. Suppose G is connectée and X is a G space whose total Zp
cohomology is finite dimensional over Zp. Then H%(X, Zp) is a finitely generated
H%(qyZp) module.

Proof. H%(q, Zp) is Noetherian and there is a spectral séquence of H%(q, Zp)
algebras E2 H%(q, Zp)®ZpH*(X, ZP)^H%(X, Zp).

Since E2 is finitely generated, the resuit follows.

LEMMA 2.4. Suppose G is a finite p group and M is a finitely generated ZP(G)
module. Then H%(q, M) is a finitely generated H%(q, Zp) module.

Proof. Let I be the kernel of the augmentation ZP(G)-*ZP. Then I is

nilpotent, say In 0 [1]. Filter MasM^IM^&apos;-o FM 0. We hâve an exact
triangle

H%(q, Ik+lM) &gt; H%(q, îkM)

H%(q, IkM/Ik+1M)

and each IkM/Ik+1M is a Zp vector space with trivial action of G. The resuit
follows by induction.

LEMMA 2.5. Suppose M is a (graded) finitely generated H%(q, Zp) module
and for each multiplicative subset s e HG(q, Zp), s&quot;1 M 0. Then M is zéro for large
i.

Proof. Suppose F H%(q, Zp) has one algebra generator y of positive dimension

and M has one generator m as a F module. Let s be the set of powers of y.
Since s&apos;1M 0, ykm 0 for some k. Then M1 0 for i &gt; k dimension
(y) • dimension (m). The gênerai case is similar.

3. K*(f) as an H*(G) module-G connectée

LEMMA 3.1. Let WbeaG space with qeWGï&lt;f&gt;and H*{WH, q, Zp) 0 for
ail H € X(NP). Then H%W, q, Zp) 0 where pW U Hc*(np) Wh.

Proof. If Np is finite or abelian, this follows from Meyer-Vietoris and induction

by (1.2)(i). In gênerai we show H%(pW,q) 0 implying H%W,q) 0. (Zp
coefficients understood.) We can suppose G NP and choose P&lt;=:%!(G) with
Wpï WG and contained in no other P&apos; in 2if(G) with this property. Order the

conjugacy classes of isotropy groups Q, containing P so that G^Qo and if
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conjugate of Q, contains Q} then i&lt;j. Note Q^^P for i^O. As a matter of
notation, let r be the largest index and Qr P (eventhough P may not be an

isotropy subgroup). Define Wo= WG and Wn+1 GW°&quot;+1U Wn. The W, give a G
filtration of GWP and the Wp give an N(P) filtration of Wp. Thèse filtrations
produce spectral séquences Er^&gt;H%(GWp, WG) and E&apos;r^&gt;H%(P)(Wp, WG) and
the inclusion of spaces a map of spectral séquences Er —&gt; E&apos;t which is an

isomorphism of Ex to E\ because Ho(Wt9Wl^1)^ H^p^W^W^) is an

isomorphism for ail i. In fact this map is the composition of thèse isomorphisms:

H%(Wt, WU)5*H%(GxN(QÔ(WQ&gt;, W°i1))

^H%iP)(N(P)xNiP)nNiQÔ(WQ&gt;,

H%(P)(N(P)WQ&gt;,

Only steps a and p require comment. Since Qip P, N(Qt)p (N(Q.) fl N(F))P
by (1.2)(ii). Since HÎ(A,B) HÎJ(A9B) for L in Np by (1.2)(ii), this shows a is

true. For |8 the key facts are (GW°0P N(P)O°^ and N(P)(GW°&apos;)Q&apos; N(P)WQ&gt;

if some conjugate of Q; contains Q,. For gQjg&apos;^Q^P implies geN(P)Qj by
Sylow&apos;s theorem.

This argument shows the natural map H%(GWP, WG)-+ H%(P)(WP, WG) is

an isomorphism, but the latter group is zéro because Pe 3€(NP). The proof now
follows by induction considering PW/GWP.

LEMMA 3.2. Let W satisfy the hypothesis of (3.1). Then for each multiplicative

set s e H%p(q, Zp) (the kernel of H%p(q, Zp) -+ H*(q, Zp)), s&quot;1^ W, q, Zp)
0. 1/ s g ÉS^iq), then s^H^iW, q) 0.

Proof. s~1H%J&lt;W,q,Zp)^&gt;s~1H%p{pW,q,Zp) is an isomorphism. To see this

note that each xeW-pWhas isotropy group (Np)x which is finite or order prime
to p by 1.2(ii). This means that s maps to zéro in H*Np)x(q, Zp); so

s^Hf^iq, Zp) 0. This implies s^Ht^W, PW, Zp) 0. Since H%W, q, Zp) 0

by (3.1), H*p(pW, q, Zp) 0. For the second statement, note that each x e W-pw
has isotropy group (Np)xeN0, 6%^^) ~» H*0(q) is zéro and H*p(pW, q)-+
H*O(PW, q) is an isomorphism by (3.1).

COROLLARY 3.3. Let G be connectée and W satisfy the hypothesis of (3.1)
and hâve its total mod p cohomology finite dimensional over Zp. Then

HlG(W,q,Zp) 0 for large i.

Proof. By (2.1) and (2.2), H%{ W, q, Zp) is a subalgebra of H%p(W, q, Zp). Let
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seHG(q,Zp)czHNp(q,Zp) be any multiplicative set. Then s~lH%p(W, q, Zp) 0

(3.2); so s^HtiW, q, Zp) 0. But H%(W, q, Zp) is a finitely generated H%(q, Zp)
module by (2.3). The resuit follows from (2.5).

THEOREM 3.4. Let G be a compact connected Lie group with H*(G) Z
torsion free and W a G space with q e WG # &lt;t&gt;. Suppose that (i) for some integer m,

Hl(W,q,R)=Hm^2(Wr,q,R)for ail i and every R, (ii) if A =[(m-g)/2]+l,
Ht(W, q) 0 for i&lt; A, (iii) HK(W, q) is a Z torsion module if m-g is odd and (iv)
for each prime p and for each Ke3€(Np) H*(WK, q, Zp) 0. Then there is a

filtration of H*(W,q) such that E0(H*(W,q)) H*(G)®H$(W,q); moreover,
H?(W, q) 0 for iV A and if m-g is even H°(W, q) is Z free and is Z torsion if
m- g is odd. In particular for m-g even, H*(W, q) is a free H*(G) module and
the hypothesis H*(G) is torsion free is superftuous.

Proof First note that HlG( W, q, Zp) 0 for large i (3.3). Let d be the largest i
such that HlG(W, q, Zp) # 0. The spectral séquence H%(W, q, Zp)&lt;g)H*(G, Zp)=&gt;

H*(W,q,Zp) has a non zéro term in E2 of bidegree (d, g) as Efg
HG(W,q,Zp)&lt;8)Hg(G,Zp). This term survives to £«&gt; and shows

d But then Hm_g_d+2(W, q, Zp)#0 so m-g-d + 2&gt;

and d&lt;m-g-[(m-g)/2] + l. Also HlG(W,g,Zp) 0 for i&lt;

[(m - g)/2] +1 since the same is true of Hl(W, q, Zp). Thus HlG(W, q, Zp) 0 for
i¥&quot;A if m-g is even and for i^K, A + l if m-g is odd. This shows that
HlG(W,q) 0 for i* A and Hg(W, q) is Z free if m-g is even. If m-g is odd
HG*\W, q) is a Z torsion module and HlG(W, q) 0 iV À +1. In either case the

spectral séquence H*(G)&lt;g)HG(W,q)^&gt;H*(W,q) collapses implying the homol-

ogy spectral séquences collapses giving E0(H*(W, q)) HHc(G)(g)H*(W, q) as an

H*(G) module.

THEOREM 3.5. Let G be connected and H*(G) be Z torsion free. Let

f : X —&gt; Y a G normal map between oriented smooth closed G manifolds of
dimension m. Suppose for each prime p for each He$d(Np), K*(/H, Zp) 0,

Ki(f)= 0 for i &lt; [(m — g)/2] A and if m-g is odd Kk(f) isaZ torsion module. Then
there is a filtration of K*(f) such that E0K*(f) H*(G)®H*(Mf,q); moreover,
H?{Mf, q) 0 for i*\andifm-g is even Kk (f) H?+i(Mf, q) is Z torsion free and
is Z torsion if m-g is odd. In particular for m-g even, K*(f) is a free H*(G)
module and the hypothesis H*(G) is torsion free is superfluous.

Proof. Since the degree of fK (for each component of XK) is a unit of Zp [6],
for each HeX(Np), Kl(fH,Zp) Hl+1(M?,q,Zp). Since (Mf)H M/H (1.3),

H*(Mf,q,Zp) 0 for ail p and ail He%(Np). Now apply (3.4) with W Mf
noting Km~l(f) =#,(/) and (1.9).
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Remark 3.6. Certainly the hypothesis that H*(G) be torsion free can be

removed from the hypothesis with only minor changes in the conclusion.

4. Localization in H%p(q,Zp) and homological dimension of Z(G) modules

Throughout this section G is finite. Using [9], we show a relation between
homological dimension of Z(G) modules and localization in HGp(q, Zp). The first
resuit is an easy conséquence of the universal coefficient theorem and [9] (4.11):

THEOREM 4.1 [9]. A finitely generated Z(G) module M which is Z torsion

free is projective iff for each prime pM®zZp is ZP(G) projective.

This together with the results of [9] and a few elementary lemmas gives

THEOREM 4.2. A finitely generated Z(G) module M has homological dimension

&lt;1 if for each prime p, HlGp(q9 M®ZP) O for large i. If in addition M is Z
torsion free, then M is projective over Z(G). (Moreover if M®ZP is replaced by M,
the condition is necessary and sufficient)

Using the fact that H%p(q, M0Zp) is an HGp(q, ZP) module, we have this more
convenient statement:

THEOREM 4.3. Let M be a finitely generated Z(G) module (which is Z free)
then the homological dimension of M is ^1 (^0) if for each prime p and each

multiplicative set s e H%p(q, Zp), s~xH%p(q, M®ZP) 0. Moreover if Zp is replaced

by Z, the condition is necessary and sufficient for zéro homological dimension.

Proof. This is immédiate from (4.2) and (2.5).

Our principle application occurs when M is a (graded) module arising from the

cohomology of a G space. Say M-H*(W, q). The universal coefficient theorem
H*(W, q, Zp) H*(W, q)®Zp0Tor (H*+1(W, q), Z) clearly implies

COROLLARY 4.4. Let WbeaG space, with q e W°. If Hl(W, q) is a finitely
generated A module (with each Hl(W9q) Z free) then the homological dimension

of each Hl(W9q) is ^1 (^0) if for each prime p and multiplicative set se
S s-1HSp(q,Hl(W,Zp)) 0 or if for each seH%p(q),
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5. Defining

Throughout this section /:X-* Y is a G map between G spaces whose total
cohomology is finitely generated over Z. Then HlGo(Mf, q) is a finitely generated
Z(G/G0) module for each i. We give conditions insuring that the définition

(Mf, q)eKo(Z(G/Go)) (5.1)

makes sensé. Clearly x(/) 0 if / is a homotopy équivalence. It measures the
déviation from being a homotopy équivalence.

THEOREM 5.2. Suppose for each prime p and each Ke96(Np) that
H*(Mf, q, Zp) 0. Then HlGo(Mf, q) 0 for i large. If also the spectral séquence
^Gp/GoC* HGo(Mf,q,Zp))^&gt;HGp(Mf, q,Zp) collapses for each p, then each

HGo(Mf,q) has homological dimension &lt;1 (&lt;0 if HlGo(Mf,q) is Z free) over
Z(G/G0) and \(f) makes sensé. Alternatively if the spectral séquence collapses with
intégral coefficients the same conclusion is valid.

Proof The total cohomology of Mf is a finitely generated Z module. Suppose
Hl(Mf, q) 0 for i &gt; N. Then Hl(Mf, q, Zp) 0 for i &gt; N+1 for each prime p. By
(3.3) HGo(Mf, q, Zp) 0 for i large. Examining the spectral séquence
H*(Go,Zp)®HS0(Mf,q,Zp)4&gt;H*(M/,q,Zp), we see that if d is the largest in-
teger with HGo(Mf, q, Zp) / 0 then g + d&lt;N+l. Since this holds for each p,
HlGo(M/,q) 0for i&gt;N+l-g.

Now suppose the spectral séquence in the statement of the theorem collapses.
Then there is a filtration (of Z(Gp/G0) modules) of HGp(Mf,q,Zp) with
E0HOp(Mf9 q, Zp) equal to Hop/o0(4 H%0(Mff q, Zp)). Let s be any multiplicative
set in HGp/Go(q,Zp). This gives rise to a multiplicative set again called s in
HGp(q, Zp) under the obvious algebra homomorphism. By (3.2),
s~1HGp(Mf,q9Zp) 0. Since localization is exact, s~l and E0 commute; thus
s&quot;1ffS[/Go(*HSo(Mf,q,Zp)) 0. Apply (4.4) replacing G by G/G0 and W by
MfxGoElqxGoE. This shows HGo(Mf, q) has homological dimension &lt;1 over
Z(G/G0).

Remark 5.3. The spectral séquence of 5.2 certainly collapses if
HlGo(Mf, q, Zp) 0 for ail but one value of i. This is a fréquent situation of
application. See e.g. (3.5).

THEOREM 5.4. Suppose G is a finite group and there is a point yeY with
Gy 1. Then \(f) x(*f) provided both are defined.
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Proof. G opérâtes freely on Mf-sMf which is Mf-MSf by (1.5). Thus the
cellular cochain complex C*(Mf, M^) C* is a free A module. Clearly #(C*)
^(-îyc1 is zéro in K0(A).

The exact séquence of cochain complexes 0—» C*(Mf, MSf)—? C*{Mf, q)-*
^(Msp q)-&gt; 0 gives rise to an exact triangle

H*(Mf, MSf)

which implies that Hl(Mf, M^) has finite homological dimension over Z(G) so
0. But

LEMMA 5.5. If G is a p group and the conditions of 5.2 are satisfied, x(*f) is

defined.

Proof. Apply (3.1) with W Mf. Then pW MSf and H^M^q, Zp) 0; so

H^iM^ q) is a Z torsion module with no p torsion and for each i, H&apos;iM^ q) has

homological dimension ^1 over Z(G) by (4.3).

6. K*(f) as an H*(G) modale

We are now prepared to discuss the structure of K#(f) as an H*(G) module.
The homology algebra H*(G) is the &quot;twisted&quot; tensor product
H*(G0)&lt;8&gt;,Z(G/G0). In fact H*(Go) is a Z(G/G0) module. xg g~1xg for xe
H*(G0), geG/Go and geG representing g. The multiplication in the twisted
tensor product is given by x (8) w • x&apos; ® w&apos; x • xf ® ww&apos; for x, x&apos;e H*(G0).

THEOREM 6.1. Lef H*(G0) fce Z torsion /ree and f:X-+Y be a G normal

map between smooth closed oriented G manifolds of dimension m. Suppose for each

prime p and for each H e X(NP) that K*(fH, Zp) 0, Kt(f) 0 for i &lt; [(m - g)/2] A

and if m-g is odd Kk(f) is a Z torsion module. Then there is a filtration of K*(f)
by H*(G0) modules such that E0K*(f) H*(G0)® Kk(f) and Kk(f) is a projective
Z(G/G0) module if m —g is even and has homological dimension ^1 if m — g is

odd; moreover, when m-g is even, the hypothesis on H*(G0) is superfluous,

±[K*(/)*] and K*(f) is a stably free H*(G) module iffx(f) O-

Proof. The first conclusion is a restatement of (3.5) noting H?°(A4f, q) Kk(f).
For the second, note that HG0(Mf, q)-0 unless i A when m - g is even or
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i À +1 when m — g is odd by the universal coefficient theorem. Thus the spectral
séquence of (5.2) collapses and HlGo(Mf, q) Kl(f) has homological dimension ^1
for i A (m - g even) or i A +1 (m-g odd). In the first case Kx(f) is Z torsion
free since K,(/) 0 for i&lt;A; so in this case KK(f) is a projective Z(G/G0)
module. When m-g is odd, KK(f) Extz(Kk+1(f), Z); so it too has homological
dimension &lt;1.

Since H^A^ q) 0 for i* A or A 4-1 depending on m - g, *(/) ±[KA(/)] or
±[KA+1(/)]. Moreover, in the first case KÀ(/) Homz (KA(/),Z) KA(/)* by the
universal coefficient theorem; so KA(f) is also Z(G/G0) projective. If it is free over
Z(G/G0), then K*(/) is free over H*(G).

7. Application to the G normal cobordism problem

Let yeH*(G0) dénote the orientation class and define a homomorphism
w1:G/G0-&gt;Z2

78 w1(g)7 for gcG/Go (7.1)

Let [X]e H*(X) dénote the orientation class for X and define w2:G/Go-* Z2 by

g[X]=w2(g)[X] (7.2)

When the hypothesis of (6.1) hold and m - g is even, we can define an intégral
valued non singular bilinear form &lt; on Kk(f) using the intersection pairing ° in
H*(X);

&lt;x,y&gt; xo(r.y)€Z; x,yeKK(f) (7.3)

Then for geGIG0, (gx, gy)= w(g)(x, y) where w(g) Wi(g)w2(g). This follows
from the fact that y • (gy) (yg) • y (gy8) • y g(yg • y) and ga ° g/3

w2(g)(a°j3). The fact that is non singular i.e. induces an isomorphism
Kx(f)^Uomz(Kk(f),Z) of Z(G/G0) modules follows from the fact that the
intersection pairing Kk(f)&lt;8KK+g(f) -* Z is non singular and the isomorphism of
H*(G0) modules of H*(G0)®XA(/) and K*(/) is defined by a&lt;g)j3 -* a • j3 i.e. by
the structure of K*(f) as an H*(G0) module. Thus we hâve

COROLLARY 7.4. If the hypothesis of (6.1) hold, Kx(f) is a projective
Z(G/G0) module supporting a Z valued non singular bilinear form satisfying
(g*, gy)=w(g)(x, y) for ge G/Go, x,yeKx(f) and w(g) w1(g)w2(g).

Of course we can also view as a bilinear form (over A) on Kk(f) with values



622 TED PETRIE

in A by setting

(*&gt;y) L &lt;*&gt;g-1y&gt;g

g e G/Go

This is to conform to the standard notation for this situation when G — GIG0 acts

freely on Y [13]. Under certain hypothesis on SX e.g. dim SX/G&lt;\ dim XIG, it is

possible to define a self intersection form /x : Kk(f) -&gt; A/J where I is the subgroup
of A consisting of v + ^l^&quot;1^ for veA and ï/-*î&gt; the automorphism of A
defined by Lâ^g Igc ^(g)agg~\

When *(/) 0, so KA(/) is A free,

&lt;r(/) (Kx(/),( ),/Lt)€L2A(G/Go,w) (7.5)

represents an élément of the group L2\(G/G0, w) of Wall [13]. Under suitable
hypothesis e.g. trivial principle isotropy group, 7Ti(Y) 0 and dimsX/G&lt;
|dim X/G, a(f) is the only obstruction to finding a G normal cobordism between
(X, f) and (X&apos;, /&apos;) where f : X&apos; -» Y is a homotopy équivalence. Thus #(/) is a

primary obstruction and a(f) a secondary obstruction to making / a homotopy
équivalence. Of course this is ail relative to the hypothesis of (6.1).

To achieve the full obstruction theory for the G normal cobordism problem
(1.8), we first generalize x(f) an&lt;J «r(/) slightly by introducing #(/, Z(p))e
Ko(Z(P)(G/Go)) and a(f, Z(v))eL2x(Z{p)(GIG0), w) where Z(p) is Z localized at p.
This is to be able to treat maps&quot; whose degree is a unit in Z(p). For each p, partially
order the conjugacy classes of groups in X(NP) by setting K &lt; H if K contains a

conjugate of H. Roughly each conjugacy class K in 3€(NP) contributes two
obstructions xkW x(fK&gt; Z(p)) and &lt;rK(f) cr(/K, Z(p)) as K/Ko is a p group. In fact
Xk(S) is defined only if ^l(/) 0 and crL(/) 0 for L&lt;K and corresponds to
replacing G by N(K)/K and / by fK : XK -&gt; YK in our preceeding discussion.
Hère N(K) is the normalizer of K and XL(/)eKo(Z(P)(Lw)), o-L(/)€
Ltt(Z(p)(LlO, wL) where L/Lo is a p group, L&apos; N(L)/L and L&quot; L&apos;/L&apos;O.

This very brief discussion illustrâtes the obstruction theory for dealing with the

hypothesis of (6.1) and shows how the Smith theory conditions show up in a

constructive manner for handling the G normal cobordism problem.
For a complète discussion of the application of the obstruction theory for

G— S1 see [6]. There ail the obstructions Xl(/) vanish because L&quot; is 1.

8. The homomorphism ao : Z*-* K0(Z(G))

As a conséquence of (4.3), we see that if the order of G is n and q is prime to
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n, Zq viewed as a Z(G) module has homological dimension &lt;1; so represents an
élément [Zq]eK0(Z(G)). Swan showed [11] that this gives rise to a homomorph-
ism aG :Z*-+ K0(Z(G)) from the multiplicative group of units of the ring Zn to
K0(Z(G)). He proved the

THEOREM 8.1 [11]. aG is zéro if G is cyclic.

Since this is important for our study, we give a very simple géométrie proof.

Proof. Let G&apos; S1 and G Zp&lt;^Sl be the cyclic group of order p (not
necessarily a prime). Let N and M be the complex two dimensional G&apos; modules
defined by

(i) N : r(z0, zt) (fpz0, tqzx), z (z0, zx)eN
(ii) M : r(z0, 2i) (rz0, ^zO, z (z0, Zi) € M

Hère f e S1^ C and &lt;j is an integer prime to p. Choose integers a and b so that

-ap + bq 1. Define a G&apos; map w : N —» M by

(6.2)

This gives rise to a G&apos; map from the unit sphère of N to the unit sphère of
M : / : S(N) -&gt; S(M) by /(z) a&gt;(z)/||a&gt;(z)||.

Restrict the action to G and set X=S(N), Y=S(M). Since the degree of / is

1 [8], [7], / is a homotopy équivalence so x(f) &amp; zero- Note that G acts

semi-freely on X and Y with XG {(z0,0) | |zo| 1} and YG ={(0, zt) | |zi| 1};

moreover, /G(z0,0) (0, zg) is a map of degree q. Clearly H2(Mfo) Zq and

JfCMf, q) 0 for i#2. Since Mfo (Mf)G, G acts trivially on Zq. Since G acts

semi-freely on X and Y, 7 /G. Thus ^(s/) ^(/G) [Zq] crG(q). Since

by (5.4), 0

COROLLARY 8.3. Let G be an arbitrary finite group of order n acting
semi-freely on X and Y and / : X -* Y a G map. Suppose each H\Mf^ q9 Zn) 0.
Then x(sf) is defined. If x(f) is also defined x(f) « image aG.

Proof. Each H\Mfo, q) is a Z torsion module of order prime to n and hence
has homological dimension &lt;1 over Z(G). Since G acts trivially on H^M^q),
the class it represents in K0(Z(G)) is in the image of crG. Since G acts semi-freely
on X and Y, fG 7; so x(f) x(f°)e ima8e ^

COROLLARY 8.4. Suppose G is Zp with p prime. Suppose also the hypothesis

of (5.2).
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Proof. The hypothesis of (5.2) guarantee H*(Mfa, q, Zp) 0. The resuit now
follows from (8.3) and (8.1).

9. An example with

Let G O be the quaternion group; so Q {±1, ±i, ±/, ±k}cH where H is

the quaternion skew field. Viewing H as a left complex vector space, it is a

complex Q module with Q acting by right multiplication. Note that the function
h :H —» C defined by h(x + y/) x4 + y4 is Q invariant if Q acts trivially on C and

x and y are the complex coordinates of x + y/eH. This shows that for each

integer A, the variety

VA ={(z0, zu z2, x, y) e C3 x H | hk 0}

is Q invariant. Hère Q acts on C3xH by (m, u)q (u, vq) for qeQ, fie C3 and

u€H. Set

where S(C3xH) is the unit sphère in C3xH. Clearly LA is Q invariant.
The subvariety Wx {(z0, zt, z2, x, y) e LA | x y 0} is the fixed point set Lj?

and its homology is given by

and H2(WA) 0. See [3], p. 275. The action of Q on LA is semi-free so the

singular set SLA is L? WA.

Let À be an odd integer and choose integers a and b such that —2a + \b 1.

Define a Q map /:LA -» S(C2xH) by

v (zg • z?, x2, x, y)
&apos;1j Z2, X, yj i|/-o b «Ml*U^ZoZi, z2, x, y/H

Then

(i) Both / and fQ hâve degree 1

(ii) /^:Hhc(L?,Z2)~&gt;H*(S(C2xH)q,Z2) is an isomorphism
(iii) Hl(Mf9q) 0 for i^5 and H5(M/,q)sH4(Lx) is a Z torsion module of
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odd order [3], p. 279.
(iv) Hl(Mfo, q) 0 for iV 3 and H3(Mfa, q) H2(Wk) Zx

Thèse facts insure that both x(f) and x(f°) are defined and

THEOREM 9.1. x(f) x(fo) aQ(k). For A =3,

Proof. Since the actions are semi-free, the first equality follows from (5.4)
while the second follows from (iv). The fact that oq(3)s*0, is a resuit of Swan

[H].
Remark 9.2. The map f:Lk -» S(C2xH) is a Q normal map. The Q normal

bundle of Lx c C3xH is Lx x R3 with trivial Q action on R3.

One might suspect that the invariant x(f) &amp; completely determined by the
Sylow subgroups, a phenomenon which occurs for example for the cohomology of
a group. This is not the case. To see this let Jxc=S(C3xH) be the subvariety
Zo + zl + zl + z\2 + zl2 0. The group G Z3xQ acts semi-freely on /A. The
action is induced by the action of Z3 x Q on H defined by viewing Z3 as the
multiplicative subgroup of C of 3rd roots of unity and allowing Z3 to act via left
multiplication on H and Q via right multiplication. The same map / as above
gives a G normal map /: JK -* S(C2xH) and again x(/) *[Zx] ctg(à)€
K0(Z(G)). The order of G is 24 and o-G(17)^0 but o-Z3(17) 0 and crQ(17) 0.
See [11].

Remark 9.3. The Q variety LA has higher dimensional analogs generated by
the functions Zo + z\ + - • - + Z2k+*î + &apos; &apos; * + *2i as k and / vary.

Remark 9.4. The fact that xif) x(f°) ^o(3) when A 3, shows that (LK, f)
is never Q normally cobordant rel L? to (X&apos;, /&apos;) with /&apos; a homotopy équivalence
even though /?:H*(LQ, Z2)^H*(S(C2xH)Q, Z2) is an isomorphism.

10. Application to Equivariant Homotopy Groups of Sphères

If Xt i 0, 1 are homotopy sphères supporting an action of G and /: 20 -» Xi
is a G map of degree 1, then fH :X^-^ Xf is a map whose degree is non zéro
mod p for every p group H in G (Smith theory). In particular this means that if G
acts semi-freely on Xt (i.e. the only isotropy groups are G and 1) then deg fG is a

unit in Zn where n order G. For cyclic groups, deg fG can be an arbitrary
élément of Z*. See e.g. the example of (8.1). In gênerai there are additional
restrictions, namely

PROPOSITION 10.1. Let f:XQ^Xi be a degree 1 G map where G acts
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semi-freely on Xt and suppose X? is a homotopy sphère for i 0, 1. Then
&lt;rG(deg/G) O mX0(Z(G)).

Proof. &lt;rG(deg/G) x(/G) x(/) O because / is a homotopy équivalence.
For example if G Q is the quaternion group of section 8, then

Proposition 10.1 is an example of the relation between the homological
invariants of G manifolds and G maps. For another example, if Xx i 0, 1 are
rational homotopy sphères supporting an S1 action with Xf

&apos;

&lt;f&gt; and /: Xo -» X\ is

an S1 map, then deg / is uniquely determined by the S1 manifolds Xv

REFERENCES

[1] Bass, H., Algebraic K Theory, Benjamin (1968).
[2] Becker, J. and Gottlieb, D., The transfer in fiber spaces, Topology 14 (1975), 1-12.
[3] Bredon, G., Introduction to compact transformation groups, Académie Press (1972).
[4] Browder, W., Surgery on simply connectée, manifolds, Springer Verlag (1972).
[5] Connolly, F., Linking numbers and surgery, Topology 12 (1973).
[6] Pétrie, T., G surgery—G transversality, to appear.
[7] 9 a setting for smooth S1 actions with applications to real algebraic actions on P(CAn),

Topology, 13 (1974), 363-374.
[8] Exotic S1 actions on CP3 and related topics, Inventiones Math. 17 (1972), 317-327.
[9] Rim, D. S., Modules over finite groups, Ann. of Math. 69 (1959), 700-712.

[10] Swan, R. G., Induced représentations and projective modules, Ann. of Math. (2) 71 (1960),
552-578.

[11] Periodic resolutions for finite groups, Ann. of Math. 72 (1960), 267-291.
[12] Wall, C. T. C, Surgery ofnon-simply connected manifolds, Ann. of Math. 84 (1966), 217-276.
[13] Surgery on compact manifolds, Académie Press (1970).
[14] 1

Finiteness conditions for CW-complex, Ann. of Math. 81 (1965), 56-69.
[15] Mislin, G., Walls obstruction for nilpotent spaces, to appear in Topology.

3 Alta Vista Drive,
Princeton, NJ. 08540
U.S.A.

Received 13 December, 1975


	G Maps and the Projective Class Group

