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Growth of leaves

John Cantwell and Lawrence Conlon

Introduction

We study relations between the growth type and the intrinsic topology of
leaves of codimension one. Aside from standard trivialities and a few results on
3-manifolds [C-C2], no such relations hâve been known. Examples show that
leaves with exponential growth can be topologically very simple, such as planes
and cylinders, or very wild, but we will prove that leaves with polynomial growth
cannot be too complicated topologically. Indeed, our main resuit (Theorem 4)
implies the existence, for each n>3, of an uncountable infinity of topologically
distinct (n - l)-manifolds that cannot occur as leaves with polynomial growth in
C2 foliations of any closed n-manifold.

In order to be more précise, we must use the concept of ends of an open
manifold [A-S], [Ri], [Ni]. The technical définition will be reviewed in Section 1,

but a few examples hère may be intuitively useful. The real line U has exactly two
ends, ±o°, as does the cylinder S1 x M. In Figure 1, the surface N{ has a séquence
of isolated ends "converging" to one limit end, and the surface N2 has countably
many séquences of isolated ends approaching limit ends, and a séquence of limit
ends approaching an ultimate limit end. In gênerai, Nk is constructed inductively
by setting 2V0= IR2 and defining Nk to be the infinité connected sum Nk_x#

If N is a manifold, the set fé(N) of ends of N has a topology, as suggested in
the above examples, in which it is compact, totally disconnected, and separable. It
is natural to consider the first derived subset <ê1(N), consisting of the cluster
points of Ï(N), the second derived subset £2(N), consisting of the cluster points
of «HN), etc. By convention, »°(N) »(N). In the above examples, %k(Nk) is a

single point.

DEFINITION. An open manifold N is of type k if gk(N) is a finite, nonempty
set. A closed manifold is said to be of type — 1.

We will see in Section 1 that, for each n>2, there are uncountably many
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94 JOHN CANTWELL AND LAWRENCE CONLON

Figure 1

homeomorphism classes of rc-manifolds that do not hâve type k for any integer

Let M be a closed manifold equipped with a foliation 9. Let Lbea leaf of 9,
xeL.By relativizing a Riemannian metric from M to L, we can define the growth
function gx(t) of L to be the Riemannian volume of the open bail in L of radius t
centered at x. We say that L has polynomial growth of degree r if there is a

polynomial P of degree r such that &(0^-P(f)» * ^0, and r is the smallest integer
for which this is true. At the other extrême, L has exponential growth if there are
positive constants A, B, and C such that gx(t) + C> AeBt, t>0. The growth type
of L is independent of the choice of metric on M and of x € L [P2]. The growth
can also be defined, without a metric, in terms of the growth at x € L of the
holonomy pseudogroup of 9 [P2].

Let 9 be of class C2 and codimension one. For leaves Le3F with polynomial
growth, we will give a detailed structure theory of the closure Lc of L in M. This



Growth of leaves 95

can be viewed as a generalization to foliations of codimension one of the classical

Poincaré-Bendixson theory. This analysis of Lc will make the ends of L visible in
terms of the simpler leaves around which thèse ends are winding, leading thereby
to an upper bound on the type of L. On the other hand, it will also give a lower
bound to the degree of growth of L.

The principal conséquence (Theorem 4) of the above theory will be that leaves

with polynomial growth of degree r can hâve type at most r. If the leaf is proper,
its type can be at most r-1. This generalizes the trivial fact that leaves with
growth of degree 0 are compact.

The case in which L (with polynomial growth) is not compact and does not
wind around any compact leaf is of some independent interest. This happens
precisely when 2F is without holonomy and without compact leaves. In addition to
the considérable structure theory already available for such foliations [No], [Sa],
[T], we prove (Theorem 3) that each leaf has at most two ends.

In Section 6 we sketch some simple examples of leaves not of finite type with
growth properly between polynomial and exponential growth. Independently, G.
Hector [H] has produced similar examples exhibiting uncountably many distinct
nonexponential growth types in a single foliation.

Unless otherwise specified, 2F will dénote a transversely oriented C2 foliation
of codimension one on a closed, oriented n-manifold M.

1. Technicalities about ends

Let N be an open, connected manifold and sélect a nest K1<^ K2CZ • • • c Kt <=

• • • c N of compact subsets such that N= U Kv For each i, suppose that Ul is a

component of N-Kt such that Ux => U2 => • • • => U} =>•••. Then {Ut} is said to
define an end e of N and to be a fundamental neighborhood System of e. Given
another nest {K[} and a corresponding System {U[} defining an end e', we will say
that e - e' if and only if each Ut contains some U\ and each U\ contains some Ur
A séquence {en\ of ends is said to converge to an end e if every fundamental
neighborhood of e is also a fundamental neighborhood of ail but a finite subset of
{en}. Similarly, a séquence {jcn} of points of N converges to an end e if each
fundamental neighborhood of e contains ail but a finite subset of {xn}. There
results a compactification NU?(N) of N, and *(N) is compact, totally discon-
nected, and separable [A-S].

By transfinite induction, we define derived subsets %a (N) for ail ordinals a. As
before, «0(N)= »(N) and, if %a(N) has been defined, then g"+1(N) is the set of
cluster points of ga(N). If a is a limit ordinal and ^(N) has been defined for ail
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|3 < a, then ga(N) O/3<a **(N). In this last case, ga(N) is not empty unless some
is empty, /3<a.

An elementary argument shows that, if £2 dénotes the first uncountable
ordinal, then %n(N) is either empty or is a Cantor set. Thus, one only considers

ga(N) for 0<a</2. Evidently, 9°(N) is a Cantor set if and only if »(N) is

uncountable.

DEFINITION. The open manifold N is of type a<O if ïa(N) is a finite,
nonempty set. If no such a exists, N is of type û.

Examples may be helpful. If {Nk} dénotes the séquence of surfaces constructed
in the introduction, we can form a limit surface Nw lim^^ Nk (where <o dénotes
the first infinité ordinal). Indeed, connected sum has the "absorption" property
JVk#)Vk+1 Nk+1 so we set Na)=N1#N2# • • • #Nk# • • •. Then &*(NJ is a

single point, so this surface has type o>.

In Figure 2 we depict a surface with a Cantor set of ends. It is worth
remarking that the complète Riemannian metric implicit in Figure 2 gives an

example of exponential growth. Indeed, surface area grows roughly like the

powers of 2.

Figure 2
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Given a < O, there are compact, totally disconnected subsets E c [0,1] such

that the a-th derived set Ea is finite and nonempty. The Cantor set gives an
example of E c [0,1] with En * 0. Thus, for 0 < a < H and n > 2, one can imbed
suitable E<=Sn and obtain an n-manifold N=Sn-E of type a. In particular,
there are uncountably many topologically distinct n-manifolds that are not of
finite type.

Ends play a rôle in foliation theory as follows. Given an noncompact leaf L of
SF and e e 8?(L), let {[/J be a neighborhood System for e, dénote the closure of Ut
in the ambient manifold M by Uf, and define the asymptote of e to be Ae H t/tc.
This is a compact, SF-saturated set. In classical Poincaré-Bendixson theory, the
asymptotes of the two ends of a noncompact Une of flow L are called the limit sets
of L.

2. Existence of contracting holonomy

We describe two situations in which the phenomenon of contracting holonomy
will arise in this paper.

Let L be a leaf of 9 such that Lc is transversely a Cantor set. That is, L is

nowhere dense and is not proper. Let R be a finite disjoint union of compact arcs

transverse to 2F such that each leaf in Lc meets the interior of .R. By [PI,
246-247], the holonomy pseudogroup F defined by SF on 1? contains a finitely
generated sub-pseudogroup Fo whose restriction to Lc D R coincides with that of
T. Consequently, [Sa, Theorem 1] implies that, if each leaf of Lc is nonproper,
then arbitrarily near any leaf approached only from one side by L (i.e., a leaf

corresponding to an endpoint of the Cantor set) there passes a leaf of Lc with an
élément of 2-sided contracting holonomy. Actually, the proof in [Sa] shows that
the requirement that every leaf of Lc be nonproper can be relaxed substantially,
and this is necessary for our purposes since we do not intend that Lc be a

minimal set.

THEOREM 1. (Sacksteder) Suppose that L is a nowhere dense, nonproper leaf
of S*, and that some leaf Lo approached by L only from one side is also nonproper.
Then, arbitrarily near Lo, a leaf L1 of Lc can be found which has an élément of
2-sided contracting holonomy.

This resuit, together with methods of J. Plante [P2], has a corollary that will be

needed.

COROLLARY. If L is a leaf of 9 having nonexponential growth, then Lc does

not contain an exceptional minimal set.
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Proof Suppose X^LC is an exceptional minimal set. By Theorem 1, there is a

leaf Lt c:X having an élément y of 2-sided contracting holonomy at (say) xoeLlt
Let J be a compact transverse interval through jc0, small enough that /<= dom (7).
Since L has nonexponential growth and LC\J^0, there is a holonomy invariant
measure /u, defined on J such that fi(J) 1 [P2,3.1]. But {x0} =(X=oyn(J), hence

fi{xo}=l. It follows that each point of the infinité set L1C\J has measure 1, a

contradiction. ¦
Let L and V be leaves of 3> such that L is proper and is in the limit set of V.

Fix a transverse arc T through L and an identification T [—1,1] such that
{0} T H L and L'H (0,1] accumulâtes on 0. Let FL be the pseudogroup on T
defined by the holonomy along L.

The following is what is actually established in the proof of [S-S, Theorem 1].

LEMMA 1. (Sacksteder and Schwartz) Under the above hypothèses, there is an
e >0 such that, for each toe(0, s)<= T, there is an élément yeFL with y(t)<t0,
0<t<e.

THEOREM 2. 1/ V has polynomial growth and L is as above, then L has an
élément of contracting holonomy on whatever side is approached by L'.

Proof. Indeed, suppose L does not hâve an élément of contracting holonomy.
Choose ^gLTKO, e) and yxerL such that y1(t)<t1, 0<t<e. By assumption,
lim YÏ(rx) r2>0. Choose y2^TL such that y2(t)<t2, 0<t<e, and set t3

hmy2(f2)>0. In this way choose infinité séquences {yl}<^rL and {fJ^O, e)
such that 7,(0<rt, 0<f<e, and linv^ 7Ï(rx) tl+1. Let Fk be the pseudogroup
generated by {7^..., yk}, and let gk dénote the growth function of Fk at tx

[P2]. Let g£(n) dénote the number of distinct points of L'HT of the
forai 7fc(k)7k^r1} • * • 7Ï(1)('i) where ail n(i)>0 and Ef=1 n{ï)<n. Thèse points
are necessarily in (fk+1, e). Evidently, gt(n) n + l, and g£+i(n)
g£(n) + gk(n —1)+ • • • +1. It is well known that, if gk(n) is a polynomial in n of
degree fc, then the above summation defines a polynomial in n of degree fc + 1.

Indeed, X"»i *k îs such a polynomial [B], [D], [W]. Furthermore, gk+1(n) dominâtes

gk+i(n). As in [P2], the growth type of V can be computed from the growth
function at tt of a suitable holonomy pseudogroup F relative to a finite generating
set f1. Augmenting F1 by the éléments {7^..., 7k} and their inverses gives a

larger pseudogroup and a new growth function at tu but the type of growth is

unchanged. By the above, it follows that, for each k ^ 1, L' has growth type
greater than that of some polynomial of degree k. This contradiction complètes
the proof. ¦
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Remark. While Theorem 1 holds only for C2 foliations, Lemma 1 and,

consequently, Theorem 2 are true for "continuously C1" foliations, that is, for
foliations intégral toaC°(n-l)-plane field. For C2 foliations, we conjecture that
the condition of polynomial growth on V can be relaxed to nonexponential
growth, but an example in Section 6 shows that this is not true for continuously
C1 foliations.

3. Leaf preserving flows

Let XcMbea compact 3^-saturated set, let U be an open saturated subset of
int (X), and let U be dense in X. Finally, let <p : UxX->X be a C° flow with the

foliowing properties.
(a) The homeomorphism ç>t : X—» X maps each leaf diffeomorphically onto a

leaf, Vf.

(b) The flow is stationary on X—U.
(c) The flow is nonsingular on U and transverse to 8F | [/, the flow lines

coinciding pointwise with the orthogonal trajectories to 3F\ U relative to a

Riemannian metric on M.
(d) If E dénotes the tangent bundle to 8F | U, the Jacobian <pt*:E—» E is a

bundle map varying continuously with t.

The above situation has arisen in [C-C2], in [Sa], and in [PI] with X a

manifold, possibly with boundary. In the présent paper we cannot require that X
be a manifold.

For the following proof, we remark that the endset can be defined via a nest
K1 <=K2<=¦ • • • c£ where each Kx is a compact manifold with boundary. Thus
L — Kx has only a finite number of components.

An end e of L will be called nonproper if the asymptote Ae contains L.

PROPOSITION 1. If Lis a leaf in U that is dense in X, then L has either one
or two nonproper ends.

Proof. If L is dense in X, then at least one of the finitely many components of
L — Kt is also dense in X Call this dense component L^ and, inductively, choose

components U]+l of Uj-KJ+1, each dense in X. Then {L/,} is a neighborhood
System for a nonproper end of L.

We show that there are at most three nonproper ends. If el9 l</<4, are
distinct nonproper ends of L, one can find a compact, connected manifold K<=:L
such that one component W of L - K is a neighborhood both of et and e2, but not
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of e3 nor e4. Let S ci 8K be the boundary of W in L. Since K is connected, L-S
has exactly two components, W itself and a neighborhood V of e3 and e4.

Fix xoeS and choose séquences {xl>n}*=1, 1< i <4, of points of L converging
to et and such that xln —>x0 in M. We can suppose that there are tin e M such that
tt>n-*0 and (Pt,n(x0) xin. By (a) <ptin maps L to itself and, by (d), the diameters of
the sets <pfin(S) are bounded, so for each i 1, 2, 3, 4 we can choose f, thn so that
the manifolds S, ç^ (S) are disjoint and St U S2cz W, S3US4c y. Furthermore,
assuming that each xin is sufficiently "near" et, we obtain a component W of
W- Si - S2 bounded by S1US2U S, and a component V of V- S3 - S4 bounded
by S3US4US.

By (d), the orientation of L is preserved by fa <pM 1 ^ 1 < 4. Orient S so that
W lies to the left and V to the right. Orient S, by carrying the orientation of S to
S% via fa.

If W lies to the right of both Sx and S2, we produce a contradiction as follows.
Since fat(Wf) lies to the left of St and ife(W) lies to the left of S2, the same holds
for W1 ilf1(W) and W2 \\j2{W). Thus W\ is the component of L-St not
containing W and W2 is the component of L — S2 not containing W. We claim
W^i rï W2 0 since, ojtherwise, there is a path from W\ to W not meeting Sx.

Also, Wx and W2<= W. But W1^if/1(W2) ^t^2{W) ^(W)c W2, this being
the desired contradiction. Thus we can assume that W lies to the left of S^

A completely similar argument shows that W cannot lie to the right of S2

while lying to the left of both St and S. Similarly, V must lie to the right of both
S3 and S4. But then, the component of L-S1-S3-S4 bounded by SxUS3US4
lies to the left of Sx and to the right of both S3 and S4, leading to the same
contradiction. Thus L has at most three nonproper ends.

Finally, suppose that el9 e2, and e3 are distinct nonproper ends. One finds a

compact, connected KaL as usual so that L-K has exactly three components
Wv respective neighborhoods of el9 î 1, 2, 3. Let Sl c= SK dénote the boundary
of W, in L, and by drilling suitable tunnels out of K, if necessary, assume that Sx

is connected. Using a séquence in L converging to e1mL\J ^(L) and to xoe Sx in
M, we argue as before to find a real number t such that «/r çt maps L to itself
and has &(K)<^ Wt. Remark that the homeomorphism $: L-+L extends to a

homeomorphism 1^: L U %(L)-+L U ^(L) and that nonproper ends are carried by
tjf to nonproper ends. The manifold «M^i) séparâtes L into two components, one
of which, «^(W^), is a neighborhood of exactly one nonproper end. The component

containing St must also contain W2 and W3, hence cannot be «^(Wx). Thus

$(W±) c Wt and ^(e^ et. If $(W2) does not contain Sl9 then it does not meet Sx

and ttf(W2)<^ Wl9 contradicting the fact that Wt is a neighborhood of only the one

nonproper end ex, Similarly, ^(W3) must contain Sx. But ^(W2) Oitf(W3)
n W3) 0, and this contradiction complètes the proof! ¦
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THEOREM 3. If 9 is a foliation without holonomy {for instance, this is the

case if ^ has no compact leaves and has at least one leaf with nonexponential
growth) then each leaf of (F has at most two ends.

Proof. By the argument in [PI, 6.3], together with the corollary to Theorem 1,

the foliation has no holonomy if it has no compact leaf and at least one leaf has

nonexponential growth. By [Sa, Theorem 6], if ^ has no holonomy, there is a flow
satisfying our hypothèses with X ~ U M, and either ail leaves are compact or
each leaf is dense in M In the case of a dense leaf L, M itself is the only minimal
set of 3% so Ae M, Ve g £(L). By Proposition 1, L has at most two ends. ¦

Remark. We can list ail open, orientable surfaces that occur as leaves in C2

foliations without holonomy of closed 3-manifolds. If Tg dénotes the closed,
orientable surface of genus g, then standard examples on Tg x S1 show that U2

and R2# U2 so occur (for g l) and that T» and T^iïT^ so occur (for g>l),
where T^ dénotes the orientable surface with one end and infinité genus. By
Theorem 3 and the classification theory [Ri], the only remaining possibilities are
U2#T^ (R2#Tg, and U2# U2#Tg, g>l. A noncompact leaf in a foliation
without holonomy is dense and, by [Sa, Theorem 6] and [P2, Theorem 6.3], it has

polynomial growth. Thus, Theorem 5 of [C-C2] shows that the above possibilities
cannot occur.

4. The structure of Lc

Let L be a leaf of 9 having polynomial growth of positive degree. Suppose M
is not a minimal set. By the corollary to Theorem 1, there must be a compact leaf
in Lc, and it is standard that there can only be finitely many such.

DEFINITION. Each compact leaf of Lc is said to be of class 0. A leaf V c Lc
is of class fc > 1 if L' is asymptotic only to leaves of class at most k — 1 and to at
least one leaf of class fc-1.

Let C dénote the union of ail leaves of finite class in Lc - L. We will establish
the following two results by a séquence of lemmas.

PROPOSITION 2. There are only finitely many leaves in C, and each has an
élément of contracting holonomy on whatever side is approached by L.

PROPOSITION 3. 1/L is proper, then LC-C L. Otherwise, U LC-Cisa
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dense subset ofX Lc, U is open in M, and there is a topological flow <p : U x X—»

X such that X, U, and <p satisfy properties (a), (b), (c), and (d) of Section 3.

For proper leaves the analogies with Poincaré-Bendixson theory should be

évident.

LEMMA 2. // L'c:Lc -L is a leaf of finite class, it is a proper leaf and,
consequently, V has an élément of contracting holonomy on whatever side is

approached by L.

This lemma is évident, the élément of contracting holonomy being guaranteed
by Theorem 2.

Fix a compact transverse 1-manifold JR (possibly with boundary) such that, for
each leaf F of class 0, F H R is a single point in int (R). It follows that every leaf
of Lc meets int (i?). Note that we do not demand that R be connected.

LEMMA 3. For each fc>0, there are at most finitely many leaves in Lc of
class k,

Proof For k 0, this has been observed above, so suppose fc> 1. Let {LjK°-i
be an infinité set of leaves of class fc, and suppose that there are only finitely many
leaves of class ^k — 1. This will lead to a contradiction and the lemma will follow
by induction.

We may suppose that every Lt is asymptotic to a fixed leaf V of class k — 1.

Let T=[-l, 1] be a subinterval of R with V D T {0} and such that T meets no
other leaf of class <fc —1. Using the élément of contracting holonomy on L', we
can find a compact interval Je: T—{0} such that each Lt meets / in a point xt. Let
xo€/ be a cluster point of {xt} and let Lo be the leaf through x0. Evidently,
L0<=-Lc and Lo cannot be of class ^fc — 1. If Lo were proper, then its élément of
contracting holonomy (Theorem 2) would provide the contradiction that some Lt
is asymptotic to Lo. If Lo is asymptotic to a proper leaf L'Q meeting int (T-{0}),
then the élément of contracting holonomy on L'Q gives the same sort of contradiction.

If Lo is locally dense, it is asymptotic to L, hence to every Lp and any one of
the leaves L, can be chosen to play the rôle of Lq above. Thus, Lo is nowhere
dense, is not proper, and is not asymptotic to any proper leaf meeting int (T-{0}).
Without loss of generality, we assume that the endpoints of R do not lie in L£,
hence L% fil? « K is a Cantor set and the endpoints of the components of T-K
(except for 0 and the endpoints of T) correspond to nonproper leaves. Let z0 be
such an endpoint. By Theorem 1, it follows that, arbitrarily near z0 in jR, hence in
T—{0}, there passes a leaf Lq^Lq having an élément of 2-sided contracting
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holonomy. Since the séquence {LJ approaches Lo, it approaches L'o, and the
contracting holonomy of L'o again causes some Lx to be asymptotic to Lq, a leaf
not of class < k — 1. ¦

LEMMA 4. TTiere is a largest integer q>0 /or wfiicfi there exists a leaf in
Lc — L o/ c/ass q. Furthermore, L has growth of degree at least q +1.

Proof. If there were no such integer, then, by Lemma 2 and the argument in
the proof of Theorem 2, we could show that the growth type of L dominâtes

polynomials of arbitrarily high degree. The same argument proves the second
assertion. Détails will be left to the reader. ¦

The proof of Proposition 2 is now complète.
We will find a noncompact 1-manifold J^R — C such that every leaf of If — C

meets the interior of /, and there will be a holonomy invariant measure /Lt on J,

supported in If H J and finite on compact sets. This involves a technically fussy
application of [P2, Theorem 3.1 and Lemma 3.2].

Let Ct dénote the union of leaves in If -h of class at most /, 0<j<q. Of
course, C Cq.

LEMMA 5. For each j 0, 1,..., q there is a finite set of connectée corn-
ponents of R — C, such that every leaf of Lc — Cj meets at least one of thèse

components.

The easy proof of this lemma (by induction on /, using the éléments of
contracting holonomy of Lemma 2) will be left to the reader.

Let {Pu Pm} be a set of components of R - C R - Cq satisfying the assertion

in Lemma 5, each being met by some leaf of If — C. If Pt (pl9 qt), then both
px and qx belong to C. It is also possible that one endpoint of P, will belong to Pl9

in which case it belongs to Si? and the other endpoint. belongs to C.

We define Jt c pv If pt contains one of its endpoints, set J, Pv If P, (pt, qt)
and L H Pt clusters at both pt and qt, again set J, Pv If L H P, does not cluster at
po choose ax e (p,, qt) such that (pl9 aj fl Lc 0. Similarly, if L H P, does not cluster
at ql9 choose bt e (p,, qt) such that [6,, <&) H Lc =0. If both situations hold, we can
take at < bv In thèse three cases we define Jt to be respectively [at, qx), (p,, b%\ or
[a,, 6J. Let / dénote the union of ail /„ a noncompact 1-manifold with possibly
empty boundary. Every leaf of Lc - C meets the interior of J.

Using the éléments of contracting holonomy of Lemma 2, choose closed
intervais A, c Jt such that every leaf of 9 that meets Jt also meets the interior A?
(taken relative to Jt) of Av We emphasize that A? will contain an endpoint if that
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point is also in ôJt. Let A dénote the union of ail Al5 a compact 1-manifold with
boundary, and let A0 dénote the union of ail A?, this being the interior of A
relative to J.

Let {Ul9..., Us} be a regular open cover of M in the sensé of [P2], together
with compact arcs A} <= U} transverse to 9, such that every leaf of 9 meets the
interior of some Ar Without loss of generality, suppose m<5 and A,cA,,
l<f<m. Let F be the pseudogroup on A Uj=i A finitely generated by the
transition functions ylJ:AjnUl-^Al as in [P2]. Let TA be the pseudogroup
induced on A by F. Let Fk dénote the sub-pseudogroup of FA finitely generated
by compositions of the yi;'s in chains of length <fc. Then FA is the increasing
union U Fk and, in the sensé of [P2], FA has nonexponential growth at x e L D A.
By [P2, Theorem 3.1], there is a /^-invariant normalized measure jlla on A
supported in Lc H A. If F3 dénotes the pseudogroup induced on J by 99 then the
fact that each leaf meeting / also meets A0 implies that /u.A extends to a nontrivial
Fj-invariant measure /ll on J, supported in Lc D J and finite on compact subsets of

/ [P2, Lemma 3.2].

LEMMA 6. Let Lo be a leaf meeting supp (jll) and différent from L. Then Lo
cannot be proper.

Proof Suppose Lo is proper. Let xoe Lo D/csupp (/u,). There is an élément of
contracting holonomy at x0 on whatever side is approached by L fl /, hence there
is such a contraction on whatever side is approached by supp (jul). Suppdse, then,
that x0 is not isolated in supp (/li) and let xt esupp (/ll) be close enough to x0 (say,

on the right) so that [x0, xjcdom (70). Then /x(yo(*i), ^i]= m(ToUi)5 7o(^i)] and

i)) xJ>0 (since the interior point yo(*i) belongs to the support), hence

i)f *J>0- since («o» ^i]= U»-i (rSUi), Jo'1^)], it follows that
i] 00> contradicting the fact that /ut is finite on compact subsets of J. Thus,

x0 must be isolated in supp(/x), so fi{xo}>0. If L0fl/ accumulâtes at yeJ, a

compact neighborhood of y in J will hâve infinité measure, so Lo can only be

asymptotic to leaves of C. Since Loçt Q it follows that Lo is of class q + 1. Since

Lo 5e L, this contradictsr Lemma 4. ¦
LEMMA 1. If L meets supp (/&) and is the only leaf of If that does so, then

Lc — C L and L is of class q + 1 (hence L is proper).

Proof. Since supp (p) is closed in /, the leaf L cannot be asymptotic to any leaf
in c except, perhaps, to itself. In this latter case Lc H J L H / is nowhere dense
and perfect, hence this set is uncountable. But a finite set of transverse arcs
cannot meet a single leaf in an uncountable set of points. Ail assertions
follow. ¦
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LEMMA 8. If supp (/u,) is met by some leaf Lo ^ L, then every leaf ofLc-C is

locally dense in M and supp (fi) /.

Proof. Suppose Lo is not locally dense in M. Without loss of generality,
assume that the endpoints of R do not lie in LJJ. Then, by Lemma 6, Lc0 D R must
be a Cantor set. Also, by Lemma 6, LqDJ cannot be met by a proper leaf

différent from L. Not every endpoint of intervais in the complément of LCQ in
int (/) can correspond to a proper leaf since, in that case, ail would lie on L and L
would not be proper after ail. Thus, there is y g int (/) such that y is an endpoint
of a component of R — LCQ and the leaf through y is nonproper. Arbitrarily near y

in i?, hence in int(/), there is zeLcQC\R corresponding to a leaf having an

élément of 2-sided contracting holonomy (Theorem 1). This is a cluster point in /
of supp (n), so the argument in the proof of Lemma 6 again applies and

contradicts the finiteness of fi on compact sets.

Thus Lo is locally dense in M, and, necessarjly, L c int (Lc0) and L is dense in
that set. It also follows that L H/c supp (fi), hence that Lc D J supp (/ut). Thus,

supp (ia) is open and closed in / and every leaf meeting supp (pi) is dense in that
set. ¦

In order to complète the proof of Proposition 3, we consider the case in which
L is not proper. That is, every leaf of Lc - C is locally dense in M. Set X Lc and
U LC - C, and remark that every leaf in U is dense in X. We want to produce a

topological flow <p : U xX->X satisfying (a), (b), (c), and (d) of Section 3.

In the standard way, choose a smooth transverse circle X to 9 such that X^U and
such that X is an intégral curve to a unit normal field v to 8F. Since L meets X and
has nonexponential growth, one again applies [P2, Theorem 3.1] to produce on X
a normalized measure v invariant under holonomy. Each leaf of 8F| U meets X in a
dense subset, so supp (v) X. There results a transverse invariant measure (again
denoted by v) on the saturated set U with supp (v) U, hence one obtains local
reparametrizations of the intégral curves to v \ U so as to define a local flow on U
that préserves the local leaves.

If Locz C is a leaf bordered on at least one side by U, the existence of the
élément of contracting holonomy implies that the measure is unbounded near Lo
on whatever side is bordered by U. Consequently, since each L'^C is either
bordered on at least one side by U9 or is approached on at least one side by such
leaves, the local flow extends to one on ail of X, stationary at ail points of C and
nonsingular on U. By the compactness of X, this defines a global flow and
properties (a), (b), and (c) are satisfied. For property (d), proceed as in [Sa,
Theorem 6] by changing the differentiable structure on U so as to make the flow
smooth and so as not to change the differentiable structures of the leaves nor the
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smoothness of $F\ U. The new tangent bundle of U contains £ in a natural way as

the tangent bundle of 9\ U and property (d) follows. The proof of Proposition 3 is

complète.

5* The topology of L

We continue with the hypothèses and notations of Section 4.
For 0< k < q, let Ek be the set of e € ^(L) such that Ae contains a leaf of class

k. Let Eq+1 be the set of nonproper ends of L. Remark that %(L) E0^E1=>
• • • ^Eq =>Eq+1 and that JEq+1 is empty if L is proper, and, in any case, is finite

by Proposition 1. Recall that the derived set E\ is the set of cluster points of Ek.

PROPOSITION 4. If 0<fc<q, then Ejc J^+1.

Proof. Let e^E\ and let {eJ}^1 be a séquence of éléments of Ek converging to
e in %{L). Since there are only finitely many leaves of class k, we lose no
generality in assuming that there is one such leaf Lo contained in every Ae/. We
can also suppose that the filtration Kt <= K2 <=¦ • • • <= Kn a • • • c L is such that one

component Ut of L — Kt is a neighborhood of e and of ail e} with / > i, 1 < / < oo.

Finally, it can be arranged that Ul+1 is not a neighborhood of en for each i. That is,

for each i, Ut - Ul+1 is a neighborhood of e, but not of e} for jV i. Also, {UX-i is

a neighborhood System for e and Lq^CLT, —L/l+i)c for ail i.

Select xo€Lo and a transverse arc T properly crossing Lo at x0 and such that
T—{x0} meets no leaf of class ^k. We can assume that ([/,-l/I+1)DT accumulâtes

on x0 from the right for ail L

Let Yo be the élément of contracting holonomy defined on To (x0, y]c T by
a loop Oo on Lo based at x0. For each i, choose e, > 0 such that, for every x e To

that is e,-close to x09 the holonomy path from x to Yo(*) that is the lift of cr0

misses the compact set Kl+1 cL<^M. We can assume e, 10. Choose xt e
17, - I7l+1) H To to be et-close to x0. Then yS(*i)€ 17, - 17I+1 for ail n > 0. If i* /, it

follows that the sets {YS(*,)}n=o and {YS(*,)}n=o are disjoint.
For each integer i>0 there exists an integer n^O so that yl=yôril(xl)e

[Yo(y)? y]. We claim that the points y, are mutually distinct. Otherwise, for some
iV / and for n > max {nt, nj, we would hâve Yo~n<(*i)= 7o~n|(^/) in contradiction to
the above paragraph. Let y' € [Yo(y)> y] be an accumulation point of {y,} and let L'
be the leaf through y'. Since T-{x0} meets no leaf of class ^fc, L'is not such a

leaf.
For a fixed but arbitrary number i-f 1, choose m so large that Y^Cy) is e,-close

to x0. Since also xt is ^-close to x0 for jz:i +1, we see that Yo*(y/)= To1"11^^,) is a
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point of C/1+1. That is, yZ(y,)e[yZ+1(y)9yZ(yy]nUi+l9 /^î + 1. Thus Ul+1
accumulâtes at y™(y')eV. Since L'<^LC is a leaf not of class <fc, it follows that
eeEk+1. ¦

We are ready to prove the main resuit. We need not assume M to be
orientable nor 9 to be transversely orientable.

THEOREM 4. Let L be a leaf of dimension n — l in a C2 foliation of a closed

n-manifold. If L has polynomial growth of degree r, then L has type at most r. If L
is proper, then the type is at most r—1.

Proof. By passing to a finite cover we obtain the situation in which the
n-manifold M is orientable and the foliation is transversely orientable, so we can
assume this without loss of generality.

If L is compact, then r 0 and the type of L is — 1. If M is a minimal set, then

r> 1 and, by Theorem 3, the type of L is 0. Thus, we assume that M is not a

minimal set and that L is noncompact.
By Lemma 4, r > q +1. By Proposition 4, the type of L is at most q +1. If L is

proper, then Eq+1 0 and the type is at most q. ¦
Elsewhere we hâve shown [C-Cl] that every orientable surface of finite type

occurs with polynomial growth as a leaf in suitable C°° foliations of suitable closed
3-manifolds. It is not true [C-C2] that every such surface so occurs in ail closed

3-manifolds.
We do not know an example of a C2 foliation with a leaf of type r having

growth of degree r, but it is not difficult to construct examples, for ail integers r
and p with 1 < p < r, of smooth foliations with leaves having growth of degree r
and type r — p.

We give an application of our theory to foliations "almost without holonomy."
Such _a foliation has nontrivial holonomy only along the compact leaves [M].

COROLLARY. // 9 is almost without holonomy, then each leaf is of type at
most 1, and the proper leaves are of type at most 0. The leaves of type 1 hâve at
most two limit ends.

Proof. We assume there is a compact leaf. Otherwise we are reduced to
Theorem 3. It is known, and easily proven using [Sa, Theorem 4 and the proof of
Theorem 6] and a relative version of [P2, Theorem 6.3], that every leaf of 9 has

polynomial growth. By Theorem 2, each leaf can only be asymptotic to a compact
leaf or to a nonproper leaf, so, for any noncompact leaf L, the integer q of
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Lemma 4 is 0. By Proposition 4, if L is proper and noncompact, it is of type 0,
while a nonproper leaf L is of type at most 1. For a nonproper leaf, Proposition 1

asserts that Ex has at most two éléments. Since the limit ends are in El9 ail
assertions are proven. ¦
6. Subexponential growth

We give examples showing how essential it has been to assume polynomial
growth as opposed to subexponential growth in the results of this paper.

Let T designate the closed, orientable surface of genus 2, and choose disjoint
circles Cx and C2 on T that together do not separate T. Let F, G:I->I be C
diffeomorphisms, 0<r<oo, that are Changent to the identity at 81. Cut Txl
apart along QxJ and reglue with the identification (jc, t) (x,F(t)) and do the

same along C2xl with (x,t) (x,G(t)). This converts the product foliation of

TxItoaC foliation of Txl, Cr-trivial at the boundary, denoted by ^(F, G).
This can be viewed as part of a Cr-foliation of TxS1. If r 0, the foliation is

continuously C1.

Fix F (with r oo) so that F(t)>t on int(I). For notational convenience,
identify / with [-«>,«>] in such a way that F(f) f + 1, -oo<f<oo. Also, fix a

basepoint x0 € T.

We will choose G Ga, O^a^w, and so obtain infinitely many foliations

y &(F, GJ. The symbol L" will dénote the leaf of 9a containing the point
(jc0, 0- Remark that L^ L^+1.

Set Go identity. Every leaf of 9°9 except the boundary leaves Tx{±oo}? will
be homeomorphic to the surface of type 0 with two ends as pictured in Figure 3.

Let 0<No<Nl< • • • <Nk< • • • be a séquence of integers. We will define

{Gk} inductively, l<fc<<o, so that Gk-Gk.1=:(pk is a C°° bump function van-
ishing identically outside of (Nk9 Nk +1). If we choose the bump functions so that,
for each r>0, the séquence {«pi10}^ of rth derivatives converges to 0 uniformly
and rapidly enough, we can guarantee that Gw limfc^^, Gk is a C°° diffeomorph-
ism and is C°°-tangent to the identity at ±». In any case, G» will be a

homeomorphism.

Figure 3
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Figure 4

Choose c]=0^a1<b1^l dl and define <p1 Gx-G0 as above so that

supp ((pi) [N± 4- auNt + 6J. Inductively, choose ck<ak<fek<<ik so that cke
(ak-i,bk-i) and Gk_1(Nk_1 + ck) Nk_1 + dk, and choose <pk Gk-Gk_1 so that
supp (<pk) [Nk + ak, Nk + bk\ Ail of this can be done in such a way that the first fc

dérivatives of <pk hâve absolute values uniformly as small as desired. Thus,
Gw \\vak_J,(û Gk is a C°° diffeomorphism as desired.

LEMMA 9. If ak<t<bk, then L* is a surface of type k, and if te
o %]U[fck, dk], then L)=L^~\ Finally, if te f}k ï [ak, bk], then L? is of type <o.

Proof. For te(ak, bk)y L* Lks where s r + JVk. Then s(n) C2(s), n € Z, will
define distinct points for distinct values of n, and L£ will be the infinité connected
sum of the leaves L^(~), nel (for k 1, cf. Figure 4).
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By induction, the leaves L*(~) are of type fc-1, so L* is of type fc. Clearly,
L^L^"1 if te[ck, ak]U[bk, dk\ Finally, if tef)[ak,bkl choose a fundamental
System {V,} of open neighborhoods of Tx{oo}? let Ct dénote the complément of Vt
in Tx[-oo,oo], and arrange that 91*\Cl &l\Cl and that L?D Vt has exactly one
component of type >/, 0^i<oo. It is rather easy to see that this is possible. If
K c L^ is compact, choose N so large that K c: CN, hence exactly one component
of L?-K is a neighborhood of ends of type >N. It follows that 8W(L") is a single
point. ¦

Remarks. The closure of L? contains leaves of class fc, ail k > 0. If c, a} and

d} bj for /^l, then Lf is an everywhere dense leaf, but if cJ<ai<bJ< dt for ail

/ > 1, then L™ is a nowhere dense, nonproper leaf. Thèse situations are in contrast
with the behavior of leaves with polynomial growth.

LEMMA 10. // Nk>(fc + 1)2 for ail k and if te flk-i [<*k> Kl then L? has

neither exponential nor polynomial growth.

Proof. Since Lf is of infinité type, it cannot hâve polynomial growth (Theorem
4). For 0<a <û>, let gnim) dénote the number of distinct points in [~oo, oo] that
can be reached by applying to t a word in F and Ga of length at most m. By
standard theory, g, has the same growth type as the leaf Lf, 0<<*<û>. We will
show that limm_MO(l/m) log (ga>(m)) 0, thus proving that Lf has nonexponential
growth. The proof of this is due to Hector [H] and substantially simplifies an
earlier argument of the authors. If fc2 < m ^ (fc +1)2, then m ^ (fc 4-1)2 < Nk and so

gu>(m)= gfc-i(^) — (2m + l)k (a very generous inequality). Since k < Vm, it follows
that (l/m)log(g£O(m))<(l/Vm)log(2m + l) for ail m>0. By L'Hôpital's rule,

A variation on the above thème produces an example showing that, for
continuously C1 foliations (as defined in Section 2), the statement of Theorem 2

becomes false when the assumption of polynomial growth is replaced by that of
nonexponential growth.

Again take Go identity and require that <pk Gk - Gk^t be a bump function
with support in [Nk, Nk +1]. We let ak l/(k + 3), pk (k 4- 2)/(fc + 3), and require
that
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This time, G^ hm^^ Gk îs only asserted to be a homeomorphism and the
foliation 9™ is continuously C1. Every leaf of 9" is proper.

For 0 ^ a < a), the leaf L% is independent of a and will be denoted by L. The
limit set of L?/2 contains L and, as before, a suitable choice of {Nk} will guarantee
that Li/2 has nonexponential growth.

Again we can choose a fundamental System of open neighborhoods {Vt} of
Tx{oo} such that 9a>\Q 9l\Cl9 Q the complément of Vx in Tx[-00,00]. Since L
has trivial germinal holonomy in each 91, it follows that the same is true for L in
&". In particular, L cannot hâve an élément of contracting holonomy in 9".

We remark that one can demonstrate the impossibility of carrying out this
construction in such a way that F is of class C2 and G^ of class C1. This requires a

generalized version of [K, Lemma 1].
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