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Quadruple points of 3-manifolds in S4

MlCHAEL H. FREEDMAN*

A folk theorem (see Banchofï [B]) says that the number of normally triple
points of a closed surface normally immersed in 3-space is congruent modulo two
to its Euler characteristic. In gênerai, a normal immersion of a compact 7i-manifold
in an n + 1-manifold will hâve a finite number, 0, of (n + l)-tuple points. 0, taken
mod 2, is well defined under bordism of both the immersion and ambient
manifold. An attractive place to try to evaluate 0 is on the abelian group,
"(oriented bordism of immersed n-manifolds in Sn+1, connected sum)" Bn, since

Bn is naturally isomorphic to the stable homotopy group 7rn. Counting (n +1)-
tuple points détermines a homomorphism, 0n : 7rn —» Z2. The figure eight immersion

of a circle shows that 01 is an isomorphism; Banchoff's proof shows that 02 is

the zéro map; the main resuit of this paper is that 03 is the unique epimorphism
tt3 — Z24—» Z2. Thus, we show that a (actually any) oriented 3-manifold may be

generically immersed in S4 with an odd number of quadruple points. Like Smale's
inversion of S2, our proof is abstract and does not yield an example.

A pleasing conjecture is that 6n is the stable Hopf invariant for ail n.

§1. Bn is the nlh Stable Stem

Ail terminology will be smooth; the sphères, S1, are given a standard orientation.

Let X be a compact oriented n H-1-manifold with boundary components

divided into d~X and d+X. (X;d~X,d+X) 9-U (Sn+1x[-l, +1]; Sn+Ijc-1,
Sn+Ixl)is called an immersed bordism between fld~X and fld+X if / is a relative
immersion. Let Bn be the set of immersions, g, of compact oriented n-manifolds,
M, modulo the équivalence relation of immersed bordism. Bn is a group under
connected sum of ambient sphères away from the immersions.

* The author is partially supported by an NSF grant.
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Since vM j-*-* Sn+1 is trivialized by the orientations, g détermines a trivialization

of r(X)©ex. According to Smale-Hirsh theory immersions exist (and are

unique up to regular homotopy) which induce arbitrary trivializations of t{M)®
ex and r(X)© e *. Consequently Bn {trivializations of t(M)© e *}/

{trivializations which extend to trivializations of t(X)©£1, where dX M}. The

Pontryagin-Thom construction détermines a homomorphism in : Bn —» 7rn.

Since tt^SO, S0(n + l)) 0 i<n, a stable trivialization of vM détermines a

trivialization of r(M)©e1;soin is epic. Since tt^SO, S0(n + 2)) 0 i<rc + l, a

stable trivialization of vx détermines a trivialization of t(X)©e1; so i is monic.

THEOREM 1. Bn~<irn

§2. Generic immersions

Let G:M —» Sn+1 be an immersion of a compact manifold. g détermines

maps g, •}—X *.* '-big diagonal)-» (Sn+1x • • • *Sn+1). g^1 (small diagonal)
i -copies

Ml is the /-tuple set of g"1. It is easy to see that the Mt are compact. An
argument using the Thom-transversality theorem shows that g may be C°°

approximated by an immersion g with g, transverse to the small diagonal for ail i ;

such immersions will be called normal. Mx g"1 (small diagonal) is an orientable
Mx • • • xM

submanifold ofv *-: /but does not hâve a prefered orientation since either
i -copies

Mx • • • xM Sn+1x • • • xSn+\ .„or * *-: / will not inherit an orientation from îts factors.
i -copies i -copies

Since an immersion is locally 1-1 the symmetric group S(i) acts freely on M, ; let
N, be the quotient manifold. When i n +1 thèse considérations applied to
/:X—» Sn+1x[—1,1] show that the number of n + 1-tuple points of g détermine a

well defined homomorphism dn:Bn-* Z2.
The condition that g is a normal immersion has this équivalent form: every

point in Sn+1 should hâve a chart which intersects g(M) in the / hyperplanes
x/1 0,X/2 0,..., xh =0, l^;*!, < </j<n + l. (For an open dense set of
points / will be zéro.)

§3. The commutation of 03

Hère is the program for Computing 03. Starting with a generic immersion of an
oriented 3-manifold, g:M -» S4 we find N2 naturally immersed in S4 with a
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normal bundle having twisted (if N2 is nonorientable) Euler class zéro. Lemma 2

shows that the Hopf invariant of [g] e B3 tt3, H[g], is congruent to the Euler
characteristic x(N2)- In lemma 4 we replace N2 by a surface N2 with the same
Euler characteristic (mod2) and also immersed in S4 with twisted Euler class

zéro. When g has an even number of quadruple points, we show that the above
immersion is regularly homotopic to a generic immersion with an even number of
double points. It follows from a theorem of Whitney's [W] that a generically
immersed surface in S4 with an even number of double points and with twisted
Euler class zéro must hâve even Euler characteristic. So when 63[g] 0, N2
admits an immersion with the above properties. Hence x(N2) x(N2) 0 (mod 2).

Now by Lemma 2 03[g] O implies H[g] 0, i.e. ker(H)=>ker(03). Since

H : tt3 —> Z2 is an epimorphism, so is 03 : u3 —» Z2. Knowing tt3 Z24 now com-
pletely détermines 03.

Let tt.Mx - - - jcM—» M be the projection from the /-fold product of an
oriented n-manifold to the first factor. The following commutative diagram shows

that the restriction of tt to Mt is an immersion.

t(A)

à is the small diagonal of (Sn+1)1. gt is an immersion so (&|)s|S:t(M1)-> (A) is an

injection, a is the restriction of projection to the first factor; a% is an isomorph-
ism and therefore (tt/M,)* is an injection as desired.

Let h be the map making the diagram:

commute. gOir is an immersion, so h is an immersion.

LEMMA 1. The normal 2-plane bundle VN29h2>sn+1=z vh2 has a section.

Proof. The normal bundle *>N29»m is trivialized by (say) the normal vector, v.

g*(t>) détermines a linearly independent pair of vectors vx and v2 in vh2. vt + v2
defines the desired section.
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COROLLARY 1. If n 3 then x(vh2) 0eH2(N2; Ztwlsted) where the

coefficients are twisted by w1(r(N2)) when N2 is nonorientable.
We need to ask the question: When is there an imbedding *:M2-> N2xRn~1

making the diagram

commute!

If i is the Une bundle associated to (M2 -^> N2), i will exist if £ l has géométrie
dimension <n-2. Since dim (N2) n — 1 this will happen if the Stiefel-Whitney
classwn_1(C1) 0

From now on we consider the case n 3. Hère M2-^—^ JV2 is a two fold
covering of a possibly non-orientable surface by an orientable surface. If
w1(tN2)?éO, M2—^> N2 is the orientation covering so w1(f) w1(tN2)» In this

case Ç®tN2 is trivial since w1(^©rN2) w1(^) + w1(rN2) 0 and w2(£+tN2)
Wx(f) • w^r^) + w2(tN2) Wl(f) • w^rAy + (w^rN,))2 0. As a resuit r1 ^N2.

If w1(rN2) 0, w1(f0f0TN2) w1(f)+w1(f) O, w2aez:©TN2) w1(^)2 +
w2(tN2)^ WiC^-f w1(rN2)2 0 + 0 0. So r1 £ + TN2. In both cases w2(r1)
w2(tN2), but w2(tN2)[N2] is congruent modulo 2 to the Euler characteristic
so w2(^~1)[N2] ^(N2)(mod2). We now prove:

CLAIM. If i' is a generic immersion making the preceeding diagram
commute, then #(double points (**')) x(N2) (mod2).

Proof If the Euler characteristic of every xomponent of N2 is even then
wn_1(^~1) 0 and, as stated above, V may be chosen to be an imbedding. Any two
choices for i' are regularly homotopic so #(doublepoints (ï))^0 (mod 2) for any
generic i\ For the gênerai case we must consider the following example:

(IX y, z], (x, y))
RP2XR2

proj

M*
[x,y,z]

Note that ([0,0,1], (0,0)) is the only multiple value for i' and that i' is normal.
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To remove a generic double point of an arbitrary ï one forms the connected sum

N2#RP2 at [0,0, l]eRP2 and (the projection of the double point of f) eJV2.
Thus a generic double point of ï over a component of N2 may be removed at the

expense of lowering the Euler characteristic of that component by 1. This reduces
the claim to the case first considered.

LEMMA 2. The Hopf invariant H[g]^X(N2) (mod 2).

Proof. We use the following définition of the Hopf invariant of a g irn. By the
Freudenthal suspension theorem there is an a g tt2ix+1 (Sn+1) which stablizes to a.
Let a : S2n+1 -> Sn+1 represent a1 and be transverse to * g Sn+1. a~x{*) is a framed
submanifold of dimension n in S2n+1. Any frame vector détermines a self-linking
number a"1^')) which, modulo 2, is the Hopf invariant.

is a framed immersion.The composition g':M <^—> Sn+lc—?S'
si > 5x0

The number of double points of a generic immersion, g, approximating g' is

easily seen to be congruent modulo 2 to the self-linking number of a generic

framed imbedding approximating g":M 9-^ Sn+1°—> Sn+1xRn. By our défini-
S" > 5X0

tion this self-linking number modulo 2 is H[g]. We will show #(double
points g) x(JV2) (mod 2).

g can be chosen so that the diagram

S*xR2

commutes. The douple points of g are the double points of g/ : ir(M2y-
goir(M2)xR2. There is a generic immersion j:M2-+ N2xR2 making

go7r(M2)xR2

N2xR2
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commute. Our characterization of g being generic implies that h2 only identifies 0

and 1-simplexes of N2. So the number of double points of / is equal to the
number of double points of g. Lemma 2 now follows by setting j ï in the
discussion immediately preceding its statement. I

If g : M <)-> S4 is a generic immersion of an oriented 3-manifold, h2:N2 J-* S4

though not usually generic does hâve singularities of a spécial kind. As an analogy
it is helpful to imagine the singularities of the double point set of a generically
immersed surface in 3-space. The next lemma considers the case: q has no
quadruple points. We analyse the singularities of h2 to show that h2 is regularly
homotopic to a normal immersion with an even number of double points.

LEMMA 3. // g fias no quadruple points then h2:N2 9-» S4 is regularly
homotopic to a generic immersion with an even number of double points.

Proof. Let T be the subset of S4 in the image of three distinct points under g.

T is a finite family of circles. hJ'.N-h^il)-^ S4 is an imbedding since

gO7r/:M2-»M is 2-1 on M2D(gXg)~1(TxT). From our characterization of
generic maps, we see that some normal open 3 - disk d3) to T in S4 may be

parametrized to meet h2(N2) in a {jCj-axis U x3-axis}<=: R3, Consider the distortion
depicted below as a standard model for separating the sheets of h2(N2) in a

neighborhood of a point on T. h2 is moved slightly in the normal directions to T.

Specifically if the xl9 x2 and x3-axes are generated by the vectors xt (1, 0, 0),

xraxis x2-axis
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x2 (0,1, 0) and x3 (0, 0, 1) the curves in diagram 1 are géodésie arcs xl9 x2, x3,

on the unit sphère determined by the condition that their midpoints be (0, -V2/2,
V2/2), (>/2/2909-J2/2) and (-V2/2, V2/2,0) respectively. Let 0 be the 3x3
matrix with thèse vectors as its rows.

If the model on the left for h2(N2) H d3 is transported around a circle, c, of T
the resulting monodromy of the axes may be represented by a 3x3-orthogonal
matrix, M, with the property that two entries in each row are zéro and the

remaining entry is ±1. The i-th row indicates to which axis (and with which
orientation) the i-th axis is transported. (We note that i^S4 is orientable so

Det (M)= +1). If the model on the right is invariant under the linear transformation

(also denoted by M) defined by right multiplication by M, then our model

may be used to separate the sheets of h2(N2) along ail of C. In gênerai, though,
separating thèse sheets along C will resuit in a finite number of generic double
points; our présent purpose is to calculate this number in terms of M. Put

xtM= xx, x2, or x3 as xlM=±x1, ±x2, or ±x3. The model on the right is invariant
under M iff xtM- xtM for / 1, 2, and 3; if the above equality fails to hold we
will see that D(M) J,3=1(l-(xl6M)'(xlM0))(mod2) (-dénotes vector dot pro-
duct) measures the failure. Note that xl61xl and ji^MS ± x tM. Since M is

orthogonal x^MlXjM, as a resuit xfiM and xtM0 both lie in the plane Px

perpendicular to' xtM and must hâve one of four possible coordinates (restricting
our coordinate System to this plane) in that plane: (i^/2/2, ±y]2l2). The number,
(1 — {xfiM) • (x,M0)), is equal (mod 2) to the number of times a transverse arc, yo
in P, from xfiM to xtM$ must cross the coordinate axes. The arc yt détermines a

homotopy from xtM to xtM through géodésie arcs. Using the model on the right
for most of C and then "splicing in" this homotopy at the end we may separate
the sheets of h2(N2) along ail of C with generic double points resulting from
transverse crossings of the coordinates axes by yr It follows that h2 is regularly
homotopic to a gênerai immersion with X.D(M) double points, where the sum is

taken over each circle component to T.

We complète the proof of Lemma 3 by showing that for every admissible

M,D(Af)s0 (mod2),D(M)^l-l3=1(xieM)'(xlM0)^l-Il]=1(0M)l] (mod 2).
Put (M)tJ |(M)J. Ail the non-zero terms in the last sum are ±1/2, replacing M
by M reverses an even number of thèse signs so we hâve D(M)
ij-L^iCflMX^Mfl),, (mod 2). If M is a simple transposition 0M=(6M)T
MT0* -M6 so D(M)^ 1 +Zf,Jrl(<9M)f7= 1 +Zw-i(«)5= 1 + 3 0. If M is a cycle
of order 3, one checks that 6M M6 so again D(M) 0 (mod 2). The lemma
follows. I

When g has an even ^ 0 number of quadruple points, we perform some

oriented 0-surgeries to enlarge our ambient manifold S4 to #(S1xS3). We note
k -copies
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that if one chose to, this freedom could be built in from the start; our bordism

group, Bn, is isomorphic to "bordism of immersions of oriented 3-manifolds in
stably framed 4-manifolds". An oriented 0-surgery is the opération of removing
an imbedded S°xDn from an oriented n-manifold and gluing back D1 x S""1 in a

standard manner so as to obtain a new oriented manifold. The notion is often
generalized to an opération on a pair, (oriented n-manifold, oriented (rc-1)
dimensional submanifold). Below we will perform oriented 0-surgery with S°xO
imbedded on a pair of generic quadruple points of a immersed 3-manifold in S4;

for this an additional but obvious extension of the notion is required. Rather than
give an abstract définition, we hâve written out the results of our 0-surgery on
(S4, g(M)).

Let q9q',..., qk, q'k be the quadruple points of g arbitrarily paired. For each

pair (ql9 q[) we perform an oriented 0-surgery on S4 and a corresponding modification

of g. In terms of the image of g the resuit of a single surgery is: (S4,

image(g) - (S0 x D4, S0 x U hyperplanes xx 0, x2 0, x3 0,x4 0)

U(D1xS3,D1x(s3Pl
hyperplane

Call the new immersion g: M -> #kSxxS3.

If within each chart, D4, about a quadruple point of g the positive direction
along the 4 axes is consistently determined by the différence of the orientations on
S4 and M, the new manifold M will be oriented, and in fact diffeomorphic to
M #% (S1 x S\ Let M2 and N2 correspond to M2 and N2. As proved for N2, N2
is immersed (by h2) in #k(S1xS3) with x(vk) Q- N2 abstractly is the resuit of

)fc 6fc 0-surgeries on N2. Since a 0-surgery does not change the Euler

characteristic modulo 2, #(N2) x(N2) (mod2). We are ready to prove:

LEMMA 4. If g has an even number of quadruple points, there is a surface N2

satisfying:
D xjN2) *(iV2)(mod2)
2) N2 is generically immersed in S4 with an even number of double points; call

its normal bundle v.

3) X(v)

Proof The N2 constructed above is immersed in Vk (S1 x S3) with the above
normal bundle condition. The proof of Lemma 3 shows how to regularly homotop
this immersion to satisfy condition 2. N2->Vk S1xS3. Framed surgery on k
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circles in (Vk (S1 x S3)-image (N2)) returns the ambient manifold to S4 without
affecting the normal bundle of N2. I

A theorem of Whitney's [W] says that if a compact surface, Q, is imbedded in
S4 with normal bundle v and x(v)= m ' generator eH2(Q; Ztwlsted) then m

2x(Q) (mod 4). The introduction of a double point changes the twisted Euler class

x(v) by ±2 • generator. As a resuit, Whitney's theorem stated for immersions of Q
in S4 becomes: m 2^(Q)±2(# double points of 0) (mod 4). If g has an even
number of quadruple points Whitney's theorem for immersions and Lemma à

show that xC/V2) and therefore x(N2) is even. Lemma 2 now says that H[g] 0.

Thus we hâve 03[g] O implies H[g] 0, Le. ker(H)=>ker(03). Since H:tt3^ Z2
is well known to be an epimorphism, 03: ir3 —» Z2 is also epic. Since tt3 Z24, 03 is

completely determined, we hâve proved:

THEOREM. 03 : ir3 —> Z2 is the unique epimorphism.

§4. Remarks and problems

Remark 1. Since the /3-homomorphism : tt3(SO) —> tt3 is onto, every élément
of B3 is realized by an immersed 3-sphère. In particular there is a generic
immersion of S3 in S4 with an odd number of quadruple points.

Remark 2. There is no local argument for converting quadruple points of
M *}-* S4 to double points of M 9->S4xR2 as inspection of the immersion
4(T3) <^ T4 obtained by omitting successive circle factors will show. It seems to
be necessary to work down through the strata to prove our theorem, so analogous
computations for n > 3 are likely to be more difficult.

Remark 3. In this paper we hâve gone to great trouble to express the Hopf
invariant in terms of the lowest dimensional strata of a generic immersion
g:M3^> S4, and our arguments hâve been spécial to the dimensions involved.
There is, however, a simple way in every dimension of reading off the Hopf
invariant from the highest dimensional strata, the double point set. If £ is the line

bundle associated to M2^^N2, H(g) 0 ifï wn_1(e"1) O on ail but an even
number of path components of N2. This is easily seen by compfaring our définition
of Hopf invariant with our solution to the "question" preceding corollary 2.

PROBLEM 1. Is there a generic immersion of S3 in S4 with a single

quadruple point?
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PROBLEM 2. Explicitly construct a generic immersion of S3 in S4 with an
odd number of quadruple points.

PROBLEM 3. Compute 6n for n > 3.

Conjecture. 6n is the stable Hopf invariant.
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