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A characterisation of the ellipsoid in terms
of concurrent sections

G. R. BURTON AND P. MANI

Dedicated to Hugo Hadwiger on his seventieth birthday

1. Introduction

The ellipsoid has the property that parallel pairs of its sections are directly
homothetic. It has been known for some time that this property characterises the

ellipsoid among finite-dimensional convex bodies; some early proofs of this are
referred to in Bonneson and Fenchel [4], page 142. Recently, Aitchison, [1] and

[2], has proved some stronger converse results involving only sections close to the

boundary. Our main resuit characterises the ellipsoid in terms of the property that
its parallel sections through a pair of fixed points are directly homothetic; this

answers affirmatively a conjecture proposed by P. Gruber at Oberwolfach in
1974.

THEOREM 1. Let 2< fc < d, letKbe a convex body in Ed, and let ax and a2
be distinct points of Ed. Suppose that for every k-flat A through the origin in Ed,

(a1 + A)DK is directly homothetic to (a2 + A)DK. Then K is an ellipsoid.

We must, of course, regard the empty set as being directly homothetic to itself.

Rogers [8] and Burton [5] hâve shown that a convex body is determined up to
direct homothety when its sections through a fixed point p are known up to direct
homothety. However, the body may not be determined up to a homothety which

préserves p; Burton conjectured that this indeterminacy could only occur for the

ellipsoid. Our second resuit proves this conjecture, and is deduced from Theorem
1.

THEOREM 2. Le* 2<fc<d, let K and K' be convex bodies in Ed, and let p
and p1 be points of Ed. Suppose that for every k-flat A through the origin in Ea,

(p + A)HK is directly homothetic to (p' + A)n K\ Then there is a directly homothetic

map F of Ed such that F(K) K'. If T(p) # p', then K and Kr are ellipsoids.
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486 G. R. BURTON AND P. MANI

A spécial case of Theorem 2, which assumed K was centrally symmetric and

that péK, was given by Burton [5]. Using Theorem 1, we are also able to

re-prove the False Centre Theorem of Aitchison, Petty, Rogers [3] and Larman
[7]:

FALSE CENTRE THEOREM. Let 2<fc<d, let K be a convex body in Ed

and let p be a point of Ed. Suppose that A D K is centrally symmetric whenever A is

a k-flat of Ed containing p. Then K is centrally symmetric. If p is not the centre of
K, then K is an ellipsoid.

2. Proof of Theorem 2 and the False Centre Theorem

In this section, we show how Theorem 2 and the False Centre Theorem follow
from Theorem 1.

LEMMA 2.1. Let2<k<dand let K and K' be convex bodies in Ed. Suppose
that tt(K) is directly homothetic to tt(K') whenever tt is an orthogonal projection on

a k-flat. Then K is directly homothetic to K'.

Proof. If tt is an orthogonal projection on a linear 2-flat, then there is an

orthogonal projection <£ on a linear fc-flat such that ir 7r ° </>. Thus tt{K) is

directly homothetic to tt{K'). It therefore suffices to consider the case k 2,

which Rogers [8] has done.

LEMMA 2.2. Let 2^ k < d, let K and K' be convex bodies in Ed and let p and

p' be points of Ed. Suppose that (p + A)HK is directly homothetic to (p' + A)HX'
whenever A is a k-flat through the origin in Ed. Then K is directly homothetic to K'.

Proof. The case fc 2 has been considered by Rogers [8] and Burton [5].
Suppose k > 2, and let ir be an orthogonal projection on a linear (d - k + 2)-flat
0. If A is a linear 2-flat in <P, then A ir(p) + A + 9X and A1 n(p') + A + 4>x are

parallel fc-flats which contain p and p' respectively. So A H K is directly homothetic

to ATlK', and (ir(p)-f A) H ir(K) tt(A H K) is directly homothetic to
Or(p') + À)nir(K'). Thus ir(K) is directly homothetic to Tr(X'). It follows from
Lemma 2.1 that K is directly homothetic to K'.

Proof of Theorem 2. By Lemma 2.2 there is a direct homothety F such that
F(iC) K'. Suppose that F(p)^p\ Let A be any linear fc-flat in Ed. Then
(p + A)HK is directly homothetic to (p' + A)DK\ so (r(p) + A)OK' is directly
homothetic to (p' + A)HK'. It now follows from Theorem 1 that K' is an ellipsoid.
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LEMMA 2.3. Let 2<fc<d, let K be a convex body in Ed and let peEd. If
AC\K is centrally symmetric for every k-flat A which contains p, then K is centrally
symmetric.

Proof. If A is a k-flat which contains p, then A DK is centrally symmetric, so

(-A)fl(-K) is a translate of A DK, and -pe-A. By Lemma 2.2, -K is directly
homothetic to K. Comparing diameters, -K is a translate of K, so K is centrally
symmetric.

Proof of the False Centre Theorem. By Lemma 2.3, K has a centre of

symmetry a, say. Suppose a^p. Consider a linear k-flat A. Then (2a-p + A)nK
is a central reflection of (p + A)flK which is centrally symmetric, so

(2a-p + A)nKisa translate of (p + A) H K. It now foliows from Theorem 1 that
K is an ellipsoid.

3. Réduction of Theorem 1 to 3 dimensions

In this section we shall suppose that Theorem 1 holds for fc 2, d 3, and we
shall deduce the resuit for gênerai k and d.

First assume that K, ax and a2 satisfy the hypothesis of Theorem 1 with k 2,

d>3. Let ç be any 2-flat which contains ax and intersects intK Then <p is

contained in a 3-flat <P which contains a2. Let Ax and A2 be parallel 2-flats in <P

which contain ax and a2 respectively. Then A1DK is directly homothetic to

A2C\K; since A1O(<PnK) A1DK and A2D($nK) A2HK, we can apply the
3-dimensional case of Theorem 1 to show that <P H K is an ellipsoid. Thus çHK
is an ellipse, for every 2-flat <p which contains ax and intersects the interior of K.
It now follows that K is an ellipsoid; an elementary proof of this is given by
Burton [5], generalising a resuit in Busemann [6], page 91, which referred only to
sections through an interior point.

Now consider the case 2 < k < d. Let it be the orthogonal projection on a

linear (d — k + 2)-flat <P of Ed, and suppose initially that ir(a^) ^ Tr(a2). Consider a

linear 2-flat A in 0. By considering (at + A + Q^HK and {a^A + Q^nK we
find that (Tr(a1) + A)n'ir(K) is directly homothetic to (ir(a2) + A)nir(K). It now
follows from the cases already considered that tt(K) is an ellipsoid. By continuity,
this holds for ail (d - k 4- 2)-dimensional orthogonal projections tt. Hence K is an

ellipsoid; this may be deduced by dualizing the above-mentioned resuit about
sections in Busemann's book.
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4. Theorem 1 in 3 dimensions

Throughout the rest of the paper, K will be a fixed convex body in E3, and ax
and a2 will be distinct points of E3 such that for every plane A containing 0,

(al + A)nK is directly homothetic to (a2 + A)nK.

The purpose of Lemmas 4.1 to 4.8 will be to show that aff {au a2} intersects
the boundary of K in two smooth exposed points, and that when K has been

projectively transformed so that its support planes at thèse points are parallel, its
sections parallel to thèse planes are directly homothetic and hâve collinear centres
of symmetry. The approach during some of thèse Lemmas resembles that of
Aitchison, Petty, Rogers [3] and Larman [7].

LEMMA 4.1. The Une-segment [al9 a2] contains inner points of K.

Proof. First consider the possibility that [al9 a2]DK <f>. We could then choose a

support plane A of K which contained ax say, but which separated a2 from K.
Thus ateAnK while (a2- a1 + A)DK= <j> which is impossible. So

[a1,a2]flK5é((>. If [al>a2]nK {a1}, then a2 would lie in a plane a2 + A which
was disjoint from K, and yet a1e(a1 + A)r\K9 which is impossible. So K contains

relatively interior points of [al9 a2].

Let us suppose that [ax, a2]nint K= <f>, so that ax and a2 lie in a support plane H
of K If axé K, then there would be a plane A containing al9 and having direction
close to that of H, such that A DK <j> but (a2~a1 + A)DKï <J>. Thus [au a2]c
HDK.

Consider the possibility that HC\K is a facet of K. Choose a Une / through 0

which is parallel to H, and so that (di + l)nK and (a2+l)f)K are disjoint, the
former being a line-segment. We can suppose that oo^ a^ 1, where a is the ratio
of the length of (at + /) fl K to that of (a2 +l)DK. Let cx and c2 be corresponding
end-points of (% + OnK and (a2 + l)C\K respectively. For each plane A which
contains but is not parallel to H, we hâve

In particular this shows that cr#<». Let b be a point of HHK for which
b ' (ci-c2) is maximal, and let (bn) be a séquence in K\JFf which converges to b.

Let An be a plane which contains l and satisfies bn e a2 + An. Then
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so taking the limit

This is impossible since

[a(b - c2) + d] • [d - c2] b • (ct - c2) + ||cx - c2||2

+ (cr - 1)(6 - c2) • (d - c2) > b • (d - c2).

Hence HflK is a line-segment. Let / be a Une through 0 such that at+l
contains inner points of K. Considération of parallel sections of K which contain
(a1 + l)DK and (a2+l)DK respectively shows that (a2+l)C\K is a proper
line-segment. We shall suppose o-^l, where or is the ratio of the length of
(ax + OHK to that of (a2+I)nK Then for every plane A containing l but not
parallel to H O K, we hâve

A H (-ai + K) a[A H (-a2 + K)].

Let b be the point of HflX for which b - (al-a2) is maximal and let (bn) be a

séquence in K\[/ + aff(H(1 K)] which converges to b. Let An be the plane which
contains i and satisfies bn€a2 + An. Arguing as for the case above, we find

and

[a(b-a2) + aj • {ax-a2)>b- (at-a2).

We conclude that [ax, a2] contains inner points of K, completing the proof.

We shall work with Cartesian coordinates, and write ex (1, 0, 0), e2 (0,1,0)
and e3 (0,0,1). Whenever S c {1, 2, 3}, we write Ls lin {^ : i e S} and dénote

by irs the orthogonal projection on Ls. In view of Lemma 4.1, we may assume
after an affine transformation that K H afï {au a2} [0, €j and that L23 supports K
at 0. Let Z be a support plane of K at ex. We can also assume that ax • ex<
a2 • d.

From Lemma 4.1 and the observation that is impossible for exactly one of ax
and a2 to lie in K, we hâve:

Remark. Either ax • ex <0< K a2 • d or 0^ ax • d < a2 ' ^i — !•
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LEMMA 4.2. The point i(a1 + a2) is interior to K.

Proof. Suppose this is false, so ax and a2 are not in K. We may suppose
\{ax + a2) € [0, ax\ Since (at + L23) H K <j>, we hâve (a2 + L23) H JC <£>. Let / be a

line through 0 in L23, and let g be a non-zero vector in L23 whose direction is

perpendicular to /. Consider a plane A^L23 which contains /, and points xte
ax + A with 0^ xx • et ^ a2 • et for i 1,2. Then |jc2 • g| ^ |xa • g|, and equality can

only occur if x1 and x2 lie in \(ax + a2) + L23 in which case \{ax + a2) 0. Consider
now the case when A and x2 are chosen so that x2 is a point of K for which x2 • g
is maximal. Let xt be any point of (ax + A) H K, which must be non-empty, so that
l*i • g|-l*2* g|- The above argument shows that \xt • g| \x2 • g|, 5(ax + a2) 0

and xx and x2 are both in L23. Then (ax + A) Ci K <= L23, so (a2 + A) < K c L23 also.

This shows that the two support Unes of F= L23HK parallel to / are distinct and

at equal distances from 0. Varying /, we find that F is a facet of K and F= -F.
Notice that every support plane of K through a2 intersects K in a subset of L23.

Return to a fixed / and g. Let 0<a<l, and let x* be a point of {aex + L23)r\K
for which \x* • g\ is maximal. Then the plane H2 which contains a2 and x* + l
intersects the relative interior of F. Comparing intersections with F, the section
G {ax — a2 -f- H2) H K is a translate of H2 H K by a vector in L23, so G contains a

point x* of (aei-\-L23)f)K. The considérations of the first paragraph show that
I** ' g^l** * s\ which is a contradiction.

Consider a unit vector ueL23, write P(M) lin{w, ex} and write v(<p, u)

cos <pel 4- sin <pu for real ç. The section P(u)C\K has two one-sided tangent rays at

ex\ let the one which lies in the half-plane {xeP(u):x • w^O} be parallel to the

vector wx(u), having Wi(u)- m 1. The other ray will then be parallel to the

vector w^-u). In the same way define the vector wo(w) corresponding to a

tangent ray at 0.

For small positive <p let a» +lin{t?(<p, u)} intersect K in the line-segment
[6,(9, u), c,(<p, m)] where (fc,(<p, u)-ct(<p, u)) • ex>0, for i 1,2.

We find that

if

if

if a * €i
c.(v,«)=I/ — > if û,-

As «p -> 0+, 9~1(b2(<P> w)~^i(9> ")) approaches a limit

if a! • ex<0<l<a2
if
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and <p~1(c2(<p, w)-c1(<p, u)) approaches a limit

x_ f^2 i)wo() (i «i)wq(u) if a1

1(^2-^)- ei)wo(-u) if 0<aj • e1<a2- ex<\.

LEMMA 4.3. The vectors Zi(u) and zo(u) are nowhere zéro continuous func-
tions of u. For i 0,1, if zt(u) is a multiple of zt(-u) then wt(u) -wt(-u).

Proof. Continuity follows from the continuity of wt and w0. Since a2 • ex >
a1-e1, zt and z0 are non-vanishing. Suppose that zx(u) kzx(-u). In the case

0^at- e1<a2- el<l it is immédiate that w^u) is a multiple of w^-u) and

comparing the scalar products with u we obtain w1(u) -Wx(-m). If ax • ex<0<
l<a2 ' ex and w^w) is not a multiple of w^-u), we find

al-el-l a2-e1-\

Then A -1 and a2 • 6x -1 1 - a! • ex. This contradicts Lemma 4.2, so Wx(u) is a

multiple of Wi(-u), and it follows that w^u) - vv^-w). The case i 0 is similar.
When J and m are distinct coplanar Unes, let $($[/, m] be the pencil of Unes

determined by / and m; that is, if /fl m^ </>, $£[/, m] is the family of ail Unes which
contain 10 m, while if / is parallel to m, then $($[/, m] is the family of ail Unes

parallel to / and m. Write

mo(u) lin {zo(w)}, and m^u) el + lin {z^w)}.

LEMMA 4.4. For each unit vector u e L23 there is a plane II(u) which contains

Lu and such that every point of II{u) Hbd K belongs to a Une of ^[mo(M),
which supports K.

Proof. Fix u and define

/0(<p) aflE{c1(<p, w),c2(<p, m)}

^((p) aff {b^ip, m), b2(<P> m)}

for small positive <p. As <p -> 0+, the Unes lo(<p) and l^ç) tend to mo(M) and

respectively. Let ©^ be the orthogonal projection on lin{u(<p, m)}-1.

For small positive <p, O^iai) and ®<p(a2) are distinct relatively interior points of

O^iK). We can therefore choose distinct parallel chords Ii(<p) and I2(q>) of O^K)
which contain O^ia^ and ©<p(a2) respectively, and which are divided in the same
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ratio by thèse points. Write

which contains ai9 and let A^ be the direct homothety such that

Then Q^A^a?) must divide Ix(<p) in the same ratio in which @<p(a2) divides I2(<p),

so &(pAq>(a2)=0<p(a1). Thus 4<p préserves P(u). In particular,

4f(W9,«))=*i(9,«) (1)

^(c2(<p,u)) c1(cp,M). (2)

Choose a séquence (<p(n)) of positive numbers tending to zéro so that H2(<p(n))

converges to a plane U(u) which contains Lx.
Consider xeil(u)nbd K, and choose x(n)eH2(<p(n)) H bd X so that x(n)-> x

as n -> oo. Let

y(il) A^Jxin)) € I^Mn)) H bd K

and write fc(n) aff{x(n), y(n)}. Then 49(n) préserves fc(n), and in view of (1) and

(2), fc(n)e$P[/0(<p(tt)), li(<p(n))]. As n-»oo? x(n) and y(n) tend to x, and since

fc(n)nintX lies between Hj(ç>(n)) and H2(<p(n)), k(n) tends to a support line k

of K at x, with fc€$£[mo(u), mxtu)].
Let F be the set of unit vectors u in L23 for which P(u) is parallel to two edges

of 7T23(1C), or P(m) contains a point collinear with each of two edges of tt23(K).
Clearly F is countable and -F= F. When ué F, there is exactly one plane TI(u) as

described in Lemma 4.4.

LEMMA 4.5. If u is a unit vector in L23\r, then U(u) 17(-u).

Proof. Let h and k be support Unes of 7r23(K) at points p and q respectively in
/T(u), such that h and fc are images under ir23 of Unes in ^[mo(M), m^u)] which

support JC. Suppose IJ(-m)/1I(m), and that /I(-ii) intersects relbd tt23(X) at
points p' and q' which lie on the same sides of P(u) as p and q respectively.
Define support Unes h' and fc' of tt23(K) at p' and qf in the same manner as above,
with u replaced by -k.

Since u € F, we can suppose that h n ir23(K) {p}. Choose a projective
transformation T of L23, which préserves ail lines through the origin, such that T(h)
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and T(k) are parallel to lin {m}. Then T(h') is not parallel to T(h), so T(ft')
intersects lin {m}. But T(fc') is either equal to T(fc) or intersects lin{u} on the

opposite side of 0 from T(ft'), since T{p') and T(q') are on opposite sides of TI(u).
This shows that W and k' are neither both parallel to lin{u} nor concurrent at a

point of lin {u}, which is inconsistent with Lemma 4.4. We conclude that TI{u)

LEMMA 4.6. The points 0 and ex are smooth on K.

Proof. Suppose this fails, and let b e {0, ej be non-smooth. Then for ail unit
vectors w in L23, apart possibly from those in a certain two élément set A, b, is a

non-smooth point of P(u)nK. For such w, w1(u)7é-w1(-M) if b et or
wo(u) ^ — wo(—u) if b 0, so that by Lemma 4.3 Zi(u) is not a multiple of Zi(-w)
or zo(u) is not a multiple of zo(-u)', in either case, ^[mo(u),
m1(u)]^^[m0(-u),m1(-u)l Write £(u) for the family of Unes in ^[mo(u),
m^u)] which support K. We show that it is possible to define a continuously
varying plane #(w) for unit vectors weL23\A, such that <P(u) II(u) when u&T.
Suppose this is impossible, so there are séquences (un), (u*) of unit vectors in

L23\F which converge to a vector uiéA, and so that J7(wn) and II(u*) converge to
distinct planes II and 17* respectively. By continuity, and since il(un) Tl{-un),
we find that each relative boundary point of IIH K belongs to a line in %(u) and

to a line in X(-u). Similarly each relative boundary point of II* DK belongs to a

line in £(m) and to a line in £(-u). Since £(w) ^ £(-w) this is impossible, for the
conical or cylindrical surfaces whose families of edges are £(m) and %(-u) are

completely determined by their intersections with the planes II and J7*. We
deduce the existence of #(w) as claimed; note that each relative boundary point
of 4>(u) H K belongs to a line in SE(u) and to a line in !£(-u). It is clear that if u*
is a unit vector in L23\4 and u is sufficiently close to <J>(w*), then 0(w)# 4>(w*).

Hence we can choose an arc X of unit vectors in L23\4 so that <P(u) attains more
than one value for u e X. Choose by continuity an interior point u' of X such that
<P{u) is non-constant on every neighbourhood of u' in X.

By continuity we can choose a neighbourhood U of b in bd K and a

neighbourhood S of u' in X such that for every xeU and u e S, x lies on distinct
Unes from ^[mo(u)9 mt(u)] and from $[mo(-M), mx(-M)] that define a plane
which intersects the interior of K. If u € S and x e UD<P(u) then x lies on distinct
Unes from £(u) and from £(-u) that define a plane which intersects the interior
of K, so x is non-smooth. By choice of w', it follows that the non-smooth points of
K contain a non-empty open subset of the boundary of K. This is impossible since
almost ail boundary points of K are smooth. We conclude that 0 and et are
smooth points of X.
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Recall the support plane Z which was defined before Lemma 4.2. Observe

now that m^w) Z fl P(u) and mo(w) L23 H P(u) for ail unit vectors u e L23. We

may assume that ZHL23 is either empty or is parallel to L2. Then there is a

projective transformation T having the form

such that T(Z) is parallel to L23.

LEMMA 4.7. T(K) is bounded, and the sections of T(K) parallel to L23 are

directly homothetic and hâve centres of symmetry of Lt.

Proof. To prove that T(K) is bounded, it will be sufficient to suppose that

ZnL23/ <j> and to prove that ZflL23nK <\>. Let us assume this is false. First
consider the possibility that ZflL23nX is a line-segment I, and choose a

relatively interior point x of L By Lemma 4.4 there is a plane A which contains

Ll9 such that every point of A flbd K lies on a support line of K containing x. If
<P is a plane containing I which also contains an inner point of K, then at most
one end point of <P H A H K lies on a support line of * fl K through x, which is a

contradiction. We may therefore assume that Z fi L23 fl X is a single point y. Let
0 be the plane linjej, y}. Then by Lemma 4.4 every point of <PObdK lies on

support Unes of K through each point xof ZflL23\{y}; if we let x approach y, we
find that 4> is a support plane of K, contradicting the fact that Lx contains inner
points of K. Hence T(K) is bounded.

Consider any unit vector u e L23, and let £(u) be the family of ail support Unes

of T(K) which are parallel to lin {u}. The family

consists of those support Unes of K which belong to $P[mo(u), mx(u)\ and by
Lemma 4.4 there is a plane Tl(u) which contains Ll9 such that every point of
U(u)n bd K belongs to a member of X0(u). Then every point of 17(w)nbd T(K)
belongs to a line in S£(m), since TJI(w) 17(u), modulo missing points at infinity.

Choose 0<£<f<1 and let

P relbd (-fo + T(K)) H L23

F relbd (-{'ex + T(K)) (1L23

t(0) cos 0e2 + sin 0e3
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and suppose the curves P and P' are described by the points p(0)t(6) and

pf(0)t(6) respectively, where p and p' are positive, for real 0.

If u is a unit vector in L23 and p(B)t(0) is the unique point of contact of a

support Une of P parallel to lin{u}, then p(0)f(0), p(0 + tt)î(0 + tt) and p'(O)t(B)
ail belong to JI(m). So p(0 + 7r)f(0 + 7r) and p'(0)t(0) lie in support Unes of P and
P' respectively parallel to lin {u}. So if p(0)f(0) is an exposed point of P, then the
set of tangent Unes to P at p(0)f(0), the set of tangent Unes to P at p(0 + ?r)f(0 +
tt) and the set of tangent Unes to P' at p'{0)t(0) are just translates of one another.

By approximation, it follows also that if p(0)t(0) and p(<p)t((p) are the end points
of an edge I of P, then p(0 + Tr)t(0 + tt) and p(<p + Tr)t(<p + tt) lie in a support Une

of P parallel to I, and that pf(0)t(0) and p'((p)t(<p) lie in a support Une of P'
parallel to L Hence for every 0, the sets of tangent Unes to P at p(0)t(0), to P at

p(0 + Tr)t(0 + TT) and to P' at p'(0)t(0) are just translates of one another. We
deduce that

1
D+p(0) ^ ^

p(0) 'rv 7

p(0 + ir)~-rv~ "' p'(0)

where D+ and D_ dénote differentiation on the right and left respectively with
respect to 0. Hence

j-e (p(0)/p(0 + ir)) 0 j-e

whence p(0)/p'(0) and p(0)/p(0 + 7r) are constants. So P is directly homothetic to
P1 and -P cP for some positive c; comparing diameters we find c l. This

proves the Lemma.

LEMMA 4.8. 0 and ex are exposed points of K.

Proof. We suppose the Lemma is false, and assume without loss of generality
that 0 is not an exposed point of K. In view of Lemma 4.7, 0 must be a relatively
interior point of a facet F of K, with Fc L23, and 0 is the centre of symmetry of
T(F). Let {b, c} {<*!, a2} rearranged so that ||fr||^||c||. Consider a Une /cL23
which intersects F in a single point. Let H be aff({b}U /), H'=c-b + H and let
V H'nL23. Then H'DK is directly homothetic to HDK, and /' is parallel to /,

so if /' intersects K, VHK must be a single point; in any case, it follows that /'
does not intersect the relative interior of F. Since V is distinct from /, and has no
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greater distance from 0 than / has, it follows that /' is on the opposite side of 0

from /. This shows that a2 • ex > 1 > 0 > at • el9 and that the other support line of F
parallel to / has no greater distance from 0 than / has. Varying / and taking limits,
we find that the support function h of F satisfies h(u)^h(-u) for ail ueL23, so

that h(u) h(-u). Hence F has 0 as centre of symmetry. Returning to the
considération of the line /, we now find that /' supports F, so l -/' and therefore
a2 -a1. This is impossible by Lemma 4.2.

LEMMA 4.9. If ax • ex<0<l<a2 • ex then Z is parallel to L23.

Proof. Let Mx and Nt be the two support planes of K which contain a1 + L2,
and write

M2= a2-a1 + Ml,N2= a2-a1

so that M2 and N2 are also support planes of X; for if say M2 did not support K, a

suitable slight altération in the directions of M2 and Mt would yield parallel
planes containing a2 and ax respectively, with exactly one of thèse planes
intersecting K, which is impossible. Suppose that Z is not parallel to L23, so that T
maps the plane at infinity onto a translate A of L12. Then

(T(Mt))H(T(M2)) f+L2, (T(Nt))H(T(N2)) g4-L2

where / and g are points of A (1L13, and the bars indicate closure. The planes
TiMx) and TiNJ support T(K) and are symmetrically placed about L12 by
Lemma 4.7.Hence the triangle conv{/, g, ax} is isosceles with base [/, g]. Similarly
conv{/, g, a2} is isosceles with base [/, g], This is impossible since [au a2] is

parallel to [/, g]. Thus Z is parallel to L23.

We now abandon ail the notation which has accumulated so far, with the

exception of a,, K introduced at the beginning of section 4, Ls, tts, el9 Z
introduced after Lemma 4.1 and T introduced before Lemma 4.6. Write P
tt23T(K), so that

for O^fiSl, where k is a continuous concave non-negative function, fc(0)

fc(l) 0, r1fc(^)~+ °° as £-* 0+ and (1 - £rxfc(ê) -? oo as £ -* 1". Whenever x is a

compact convex set, let h[X,.] dénote the support function of X. Our aim in
Lemmas 4.10 to 4.14 will be to show that P is an ellipse.

Choose a non-zero vector y€L23 such that lin {y} intersects the relative
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boundary of P at smooth points. Let ubea vector in L23 such that v • y 0 and

h[P, v] \\vf. Choose j3 with 0<|/3|<l which will be fixed for some time. Let

\ for 0<£<l, be the Une such that

equality being modulo missing points at infinity. Write

Let <î>€ be the unique direct homothety of E3 which satisfies

Every support plane of T(K) at a point of lin^, y}flbd T(K) is parallel to a

certain Une lin {d} in L23, by reason of the smoothness ensured by the choice of y.
So there is a solid cylinder or pointed cône C which contains K, such that every
plane which supports K at a point of lin {el9 y} is also a support plane of C. Then
since 0 is an exposed point of K,

CnL23c=lin{d}.

Let ¥ç be the unique direct homothety which satisfies

which exists for ail small positive £ We find that

for some real numbers M€>0 and À€; we shall suppose that (d-v) • v 0.

Write

LEMMA 4.10. As £->0+, r(£) 0(k(£)) and s(£)

Proo/. Let p be the Hausdorfï metric on compact subsets of E3, and write

K,(t) H,(() H K, C,(«) H,(£) H C, A lin {eu y}
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for / 1, 2. We first show that

i; (3)

as £-? 0+. Suppose this fails, so there exists e >0 and a séquence (£n) of positive
numbers tending to zéro with

p[Ki(fc.),Ç(&)]>6fc<&) (4)

for each n. Let / be a line which contains a relatively interior point of A H K, and
which belongs to the pencil determined by the edges of G For each n, we can by
(4) choose a plane J7n containing / so that

P[nn n *,(&), u

Then we can choose corresponding end-points xn, zn of i7nnK,(fn), I7nnC,(£n)
respectively such that

|k-zJ>ek({J (5)

for each n. Let wn be the corresponding end-point of Un n A D K, and let
pn aff{xm wn}, qn afï{zn, wn}. Then qn contains an edge of C, and

inf {angle between qn and A : n 1,2,.. .}> 0 (6)

(7)

The angle between xn - zn and u tends to tt/2 as n —> », so using (5), (6) and (7),
the angle between pn and qn is bounded away from 0 for large n.

Replace (£n) by a subsequence so that xn tends to a point x and 17n tends to a

plane U containing {x} U / as n -> ». Then pn and qn tend to support Unes p and q
respectively of II H X at x, using (6), and p# q. This is impossible since FI n C has

a unique support line at x. Hence (3) is established.
We hâve

so

fê 1
(8)
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Now

where f(|) is the ratio of <Pt, and f(£) -» 1 as £ -» 0+, so

by (3). Combining this with (8) and writing it in terms of support fonctions, we
obtain

as £—*0+. By considering g ±ex we obtain r(£) 0(fc(£)), and taking g

eu e2, e3 we then find that s(^) 0(fc(£)).
Let o- (a2 • Cj^^Ox • et), so by Lemma 4.2 |a| < 1, and define

LEMMA 4.11. As e^0+, fc^r1^^)-* R* where R*
1R2(f)-*llî where Rf .R* + (o--l)/3d, and 1

Proof. Since

T(K(f «è, + k(Ç)(Pn Ou + lin {y})) £ex + fc(fl(P n (|3d + lin {y}))

and ^ 0(k(^)), we hâve

as ^-*0+. The map T"1 is differentiable, D^iO) is the identity map and the
maximum distance of points of T(R(Ç)) from 0 is 0(k(£)), so k(^)~1R(^) and

approach the same limit as £->0+, hence kiÇ)'1R(tj)-*¦ R*.
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Since T(H2(Ç)) contains the point (a2 • e1)(a2 • e^^fik^d we find that
H2(£) contains the point (l + f(£))/3fc(£)d where t(Ç)-*O as £-*0\ For small

positive £

(H2fé) nc)n L23

(h^é) non l23

so cr(l + r(^))i3k(^)(i M€(l + r(^))/3k(^)d + A€d and since M€->1 we hâve Àc~
(o—l)0fc(f) as £->0+. Then, since

we hâve

as £->0+. Finally,

so that W&^Rtâ)-* Rf by Lemma 4.10.

LEMMA 4.12. Le* k(£) be the distance of 0 from R^fl^, or +oo i/ this

intersection is empty. Then

liminf£_*()+k(£)>0.

Proof. If lin {y} is parallel to both L23 and Z then k(£) +oo for 0 < g < 1. We
therefore need only consider the case when Z n L23 n lin {y} ^ 0, and we can

assume that y6ZflL23.

Suppose the resuit fails, so there exists a séquence (£(n)) converging to 0+ and

mn e JRt(^(n)) n L23 such that mn -> 0 as n -* ». Write <pn *€(ll) and let T(pM) be

the midpoint of T(R(Ç(n))), so that ail the points pn lie in a certain plane il which
contains Ll5 since

for ail n and q. For some an we hâve
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Since pn • ex > y • ex 0, we hâve an < 1, and since <pn tends to the identity map as

n-»oo, we hâve an—>1, so we may assume an>0 for ail n. Let the ray from a2

through pn intersect the boundary of K at a point bn and intersect L23 at a point

Write

Then [un,mn] is parallel to [y,/JcL23, so uneL23. Since unéintK, (pn(pn)eK,
(pn(bn)eK and fcne[/n,pn] we hâve

une[<pn(bn),<pn(fn)l

Then

\Wn(Pn)-<Pn(y)\\ \\<Pn(Pn) " <Pn(fn)

As n-^ooy mn and <pn(pn) both tend to 0 and <pn(y) tends to y, so

\\<Pn(bn)-<Pn(fn)

Hence as n

Write bn T(bn), fn T(fn), pn T(pn), and observe that for each n, bn, /„, pn
and a2 are collinear points of FI. Let w be the end of II n P with pn • w > 0 for ail
n, so that ^ ||u||~2w • v satisries l>^~1^>0. Let K* nr\T(k). Then

and the relative boundary of K* contains the point

[0, qn] intersect [bn, a2] at rn 6nqn where

^a2 ¦ et.
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-/J \\rn -U _rn-e1-L-el OnÇ{n)
_

i im"/"i(ïô-
as n -> ».

Using the projective invariance of the cross-ratio [bn, pn ; /„, a2] we find that as

n

by (9). This contradicts (10), which proves the Lemma.

LEMMA 4.13. There are séquences (£n), (£n) of positive numbers tending to

zéro such that fc(£n)^i(£n) converges to a chord R* of P, such that R*= pR* for
some /la > 0.

Proof. For 0<£<l let the end-points of T(RX(Ç)) lie in the planes £'
and r^i + ^23 with T^f. By Lemma 4.12 there is an t|>0 such that
contains no point of L23 within distance y\ of 0 when £ is small. Then for small
positive £ the angle between T{RX{^)) and its orthogonal projection on L23 is less

than tan"1(2^7rî), so

Where W is the diameter of F. Since k is concave and k(0) 0 we hâve

so that

(H)

as ^-»0+.
Since the ends of T(Ri(^)) belong to the relative boundaries of fe!

and of £"ei + fc(^")P, we can choose a séquence (£„) tending to 0 from above, such
that fc(ftr1T(JÏi(6,)) tends to a line-segment J?f whose ends will, by (11), be in
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relbd P. The differentiability of T"1 now ensures that k^O^RiiD tends to Rf.
By Lemma 4.11, fc^r^^J-^Rf, so we conclude that R* fiR* for some

LEMMA 4.14. P is an ellipse.

Proof. We now allow j3 to vary, and introduce 0 as an argument for JR*, JR*

and JR£. Then

- \)d c= cr/3d + lin {y}

lin {y}).

If /a(j3)<1, then JR*(j8) is doser to 0 than JR*(j3) and has shorter length;
since K*(j3) is a chord of P, we irtust therefore hâve /x(j8)> 1. If /a(/3)> 1, then the

length of K?(j3) is greater than that of R*(j3), so |/u,(|3)cr/3|<|0|, while if jll(j8)= 1

then 1^0)^1 |o-j3|<|j3|.
Fix p0, and let ^ be the number with least absolute value which satisfies

for real numbers a, À; interpret JR*(O) as P filin {y}. Suppose that /S^O. Write
crj81, so that |p2|<l/3i|. Then

(p1(a -1) + À)d.

This is impossible by choice of j3l5 so we conclude that px 0. Thus the midpoint
of J?*(j30) lies on lin {d}. Since j80 was chosen arbitrarily, it follows that the chords
of P parallel to lin {y} hâve collinear midpoints. Varying y over the smooth points
of P and taking limits, we find that the chords of P parallel to any given Une hâve
collinear midpoints. Then P is an ellipse, by a standard resuit given in Busemann

[6], page 92.

After an affine transformation, we can suppose that P is the unit circle, and
then

bd T(K) {(jc, y, z) : y2 + z2 (fc(x))2,0 < x < 1}.

The remaining Lemmas prove that K is an ellipsoid.
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LEMMA 4.15. Suppose L23 is not parallel to Z. Then K is an ellipsoid.

Proof. In view of Lemma 4.9 and the Remark, we hâve

0^ax • e1<a2 • e^l.
If a1ebdK, then the support plane H of K at ax would satisfy HflX {a1},
while a2-a1 + H would intersect K in a proper section. So

0<a1- e1<a2m e1<l.

We also find that T is the projective transformation

T(x, y, z) (1 + Ôz)"^*, y, z), for some S # 0.

Notice that by rotational symmetry, T(K) is preserved by the reflection R in L12.

Consider a plane H which contains at + L2, and form the séquence of sections

HoH T(K) where Ho H, Ht H T(K) where Hx R(H0),
H2DK where H2 T'1^), H3DK where H3 a2- ai + H2,
H4HT(K) where H4=T(H3),H5nT(K) where H5 R(H4),
H6HK where H6= T"1^), H7HX where H^^-a^H^
H8PiT(K) where H8=T(H7);

ail of thèse sections are projectively équivalent. Write ax • et fi, a2 • et a, and
consider a point (/3 + x, y, z)eH, with z^±l/S. Then

Ho contains (|3 + x, y, z), Ht contains (j3 + x, y, - z),
ff2 contains (1 + 8z)~\p + x, y, - z),
H3 contains (1 + Sz)"^» + x + 8z(a - /3), y, - z),
H4 contains (a + x + Sz(a-j3), y,-z),
H5 contains (a + x + Sz(a- j3), y, z),
H6 contains (1 - ÔzT^ot + x + 8z(a - j8), y, z),
H7 contains (1 - Sz)~x(p + x + 2ôz(a - j3), y, z),
H8 contains (/3 + x + 28z(a-/3), y, z);

in particular, ai + L2cH8. If we repeatedly apply this process to the plane
ax + L23, which contains the point (/3,0,2S), we find that the sections

T(K) H (ax + lin {e2,2Ô63 + 4n82(a -
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are ellipses for n 0,1, 2,... .Taking limits, we find that L12 H T(K) is an ellipse
whose perimeter has équation

4(x-|)2 + A2y2=l

for some A^ 0 by, symmetry in Lx. We can now détermine the function k, and we
find that T(K) is the ellipsoid whose surface has équation

so K is then an ellipsoid as claimed.

LEMMA 4.16. Suppose that Z is parallel to L23. Then K is an ellipsoid.

Proof. In this case, T is the identity map. Write a2 ex a, ax • ex - |8, and for
small positive À let

which contain ax and a2 respectively. The relative boundaries of
and 7r13(H2(À)nK) hâve équations

(12)

(13)

respectively, where R(x) (k(x))2. There are numbers <Pk>0, tk such that

^A) n K) 4>A7r13(H2(A) D K + (fA, 0, 0),

since thèse régions are symmetric about Lx. For i 1, 2 let J,(A) [£,(A), tî,(A)] be

the interval

so that 4>A

Using (12) the équation of the relative boundary of 7r13(H2(A) H K) can also be

written
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From (13) and (14) we deduce

<Pl\2(x-a)2-k\<PKx + tk-p)2=<PlR(x)-R(<PKx + tK) (15)

for ail x £ J2(À). Notice that *A -? 1, fA -> 0 as A -> 0.

We next show that JR is twice differentiable on (0,1). First let us show that
Kx + tx for ail xeJ2(A) when À is small and positive.

We hâve

where (c,(A)-fc,(A)) • et>0 for î 1,2. Since7r12(K) is smooth at 0 and el9 we
hâve

as A-»0+. From Lemma 4.2 it follows that |a|>|0| and |l-a|<|l-j8|, so

\c2W-e2\<\cl(\)-e2\

for ail small positive A. Since tt12(K) is symmetric in Lu has no edges parallel to
L2, but has support lines parallel to L2 at 0 and eu we find that

c2(A)-e1>c1(A)-e1

b2(\)'el>bï(k)-e1

for ail small positive A. That is,

î?2(A)>tî1(A),

whenever A g 1 (0, /ut), say. We can also suppose that £2 and r)2 are monotonie on
I.

Defining

we find x-(*xx + rx)^^(A) for x€/2(A), and Ç is a positive continuous function
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on J. Let x e (0,1), choose k'el so that x eint J2(À') and choose, by the concavity
of k,y e(x-£(À'), x)nint J2(À') such that R is twice differentiable at y. Choose
A e(0, A') such that y <&Kx + tx. From (15) it now follows that R is twice
differentiable at x.

Differentiating (15) twice with respect to x, we obtain

R"(x) R"(<Pxx + tK) (16)

for xeintJ2(À). H ^'eI and x, yeintJ2(À') satisfy x-Ç(\')<y<x, we can, as

above, choose A e(0, À') such that

By (16) we then hâve R"(x) R"(y). It follows that jR" is constant on int J2(A'),
and so R" is constant on (0,1). Therefore R is a quadratic forai. Since R(0)
JR(1) O and R is positive on (0,1), we hâve

R(x) A2(x-x2)

for some A 5*0, and the surface of K is the ellipsoid with équation

Lemmas 4.15 and 4.16 now show that K is an ellipsoid. This complètes the

proof of Theorem 1.
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