A note on the realizaiton of distances within sets in euclidean space.

Autor(en): Larman, D.G.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 53 (1978)

PDF erstellt am:
16.07.2024

Persistenter Link: https://doi.org/10.5169/seals-40784

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

A note on the realization of distances within sets in euclidean space

D. G. Larman

Dedicated to Professor H. Hadwiger on his seventieth birthday

In 1944 and 1945 H . Hadwiger [1, 2] proved the well known theorem.

THEOREM 1. Let E^{n} be covered by $n+1$ closed sets. Then there is one of the sets within which all distances are realized.

In 1972, D. G. Larman and C. A. Rogers [3] introduced the concept of critical distance and a critical number for a finite configuration and used it to give a considerable improvement of Theorem 1. The principal result of [3] was

THEOREM 2. If E^{n} is covered by less than $\frac{1}{6} n(n-1)$ sets then there is a set of the covering within which all distances are realized.

The purpose of this note is to give a configuration which leads to

THEOREM 3. If E^{n} is covered by less than $\frac{1}{178200}(n-1)(n-2)(n-3)$ sets then there is a set of the covering within which all distances are realized.

A considerable generalization of this configuration leads me to make the conjecture:

CONJECTURE. If E^{n} is covered by less than $\frac{1}{3}\left(\frac{4}{3}\right)^{3 n / 4}$ sets then there is a set of the covering within which all distances are realized.

Using the theory of configurations developed in [3], Theorem 3 follows from the following theorem.

THEOREM 4. Let A be the $\binom{n}{5}$ distinct 5-tuples chosen from n objects $1, \ldots, n$. Let B be a subset of A such that no two 5 -tuples in B overlap in exactly two objects. Then the cardinality $|B|$ of B is at most $1485 n(n-1)$.

We require the following three lemmas.

LEMMA 1 (Hilton and Milner). Let A_{1}, \ldots, A_{r} be sets, each with k distinct elements chosen from the set $1,2, \ldots, n$. Suppose that

$$
A_{i} \cap A_{j} \neq \varnothing, \quad 1 \leq i<j \leq r
$$

but that

$$
\bigcap_{i=1}^{r} A_{i}=\varnothing .
$$

Then, provided $2 k \leq n$,

$$
r \leq 1+\binom{n-1}{k-1}-\binom{n-k-1}{k-1}
$$

Proof. See A. J. W. Hilton and E. C. Milner [4].

LEMMA 2. Let $A_{1}, \ldots, A_{r} ; B_{1}, \ldots, B_{s}$ be sets, each with 2 elements, chosen from the set $1, \ldots, n$ such that

$$
A_{i} \cap B_{j} \neq \varnothing, \quad 1 \leq i \leq r, \quad 1 \leq j \leq s
$$

Then either

$$
\min (r, s) \leq 3
$$

or

$$
\bigcap_{i=1}^{r} A_{i} \cap \bigcap_{j=1}^{s} B_{j} \neq \varnothing .
$$

Proof. We assume that $\min (r, s) \geq 4$. Suppose first that there are two nonoverlapping members of A_{1}, \ldots, A_{r}, say A_{1}, A_{2}. Since each of B_{1}, \ldots, B_{s} must meet each of $A_{1}, A_{2}, A_{3} ; s \leq 3$. Consequently, every two members of A_{1}, \ldots, A_{r} overlap and similarly every two members of B_{1}, \ldots, B_{s} overlap. So, using lemma 1 with $k=2$, and noting that $r+s>3$,

$$
\bigcap_{i=1}^{r} A_{i} \cap \bigcap_{j=1}^{s} B_{j} \neq \varnothing
$$

as required.

LEMMA 3. Let 12345 be a 5 tuple and let abcd be four distinct numbers amongst 12345. Let $C(a, b, c), C(a, b, d)$ be two families of 5-tuples, each with at least four members, chosen from the n numbers $1, \ldots, n$. If each member of $C(a, b, c)$ meets each member of $C(a, b, d)$ in at least three numbers and each member of $C(a, b, c), C(a, b, d)$ meets 12345 in precisely $(a, b, c),(a, b, d)$ respectively then there exists $e \neq 1,2,3,4,5$ such that e belongs to each member of $C(a, b, c) \cup C(a, b, d)$.

Proof. This is an immediate consequence of Lemma 2.
Proof of Theorem 4. Let $\mathbf{b}=b_{1} b_{2} b_{3} b_{4} b_{5}$ be a member of B. We shall say that \mathbf{b} is good (with respect to B) if there exists a two tuple within b which is contained in at most 54 members of B. Otherwise \mathbf{b} is bad (with respect to B).

The strategy in proving the theorem is to associate every member b of B with a good member $\phi(\mathbf{b})$ of B in such a way that no good member of B has more than 55 members of B associated with it.

In defining the mapping ϕ it will be enough to suppose that the 5-tuple $\mathbf{a}=12345$ is a member of B and define $\phi(\mathbf{a})$.

If \mathbf{a} is good then $\phi(\mathbf{a})=\mathbf{a}$.
Otherwise a is bad.
Suppose first that there are at least 465 -tuples which overlap a in 4 numbers. Then there are at least ten 5-tuples which (say) have the numbers 1234 in common with a. We list ten such 5-tuples $1234 k$ with k as close to 5 in the ordering of $1, \ldots, n$ as possible. Assume, without loss of generality, that these ten 5 -tuples are $12346,12347, \ldots, 1234(15)$.

If one of these 5 -tuples is good then we choose one such 5-tuple say $1234 k$ to be $\phi(\mathbf{a})$.

The 5-tuple $1234 k$ receives at most $10\binom{5}{4}=50$ associations in this way.

Otherwise each of
$12345,12346, \ldots, 1234(15)$
are bad. For $5 \leq k \leq 15$, consider the 5 -tuple $1234 k$. There are at least 545 -tuples of B which contain the two tuple $4 k$. Since each of these 5 -tuples must overlap $1234 k$, and hence each of

$$
12345,12346, \ldots, 1234(15)
$$

in at least three numbers, they each must contain at least two of the numbers 123. So there exists at least 18 of these 5 -tuples, forming a set C_{1}^{k} and numbers $\alpha(k), \beta(k)$, chosen from 123 , such that each member of C_{1}^{k} contains $\alpha(k) \beta(k) 4 k$. We may suppose $\alpha(k) \beta(k)=12$ for four values of k. Similarly, working with the two tuple $3 k$, there exists a set C_{2}^{k} and numbers $\gamma(k) \delta(k)$, chosen from 124 , such that each member of C_{2}^{k} contains $\gamma(k) \delta(k) 3 k$. Consequently there exists two values of k, say 5,6 with $\alpha(5) \beta(b)=\alpha(6) \beta(6)=12$ and $\gamma(5) \delta(5)=\gamma(6) \delta(6)$.

Suppose, without loss of generality that every member of C_{1}^{k} contains $124 k$ and every member of C_{2}^{k} contains $123 k, k=5,6$.

The 4 tuples 1245,1236 only have two numbers 12 in common. Apart from $12345,12456,12356$ the members of C_{1}^{5} and C_{2}^{6} contain one number chosen from $7, \ldots, n$. Further for these members the numbers in $7, \ldots, n$ must be the same throughout. Consequently C_{1}^{5} and C_{2}^{6} have cardinality at most 4 which is impossible.

So now we may suppose that there are at most 455 -tuples of B which overlap \mathbf{a} in 4 numbers. Since \mathbf{a} is bad there will exist, for each two tuple $i j, 1 \leq i<j \leq 5$, at least ten 5 tuples in B which contain $i j$ and which overlap a in exactly three numbers.

Therefore, there are at least four such 5-tuples containing the two tuple 12 and a fixed third number of $\mathbf{a}, 3$ say. Let C_{1} be the set of all 5-tuples in B which meet a in exactly 123 . Similarly there are at least four such 5 -tuples containing the two tuple 45 and a fixed third number, 3 say. Let C_{2} be the set of all 5-tuples in B which meet a in exactly 345 .

Notice that no members of the families C_{1}, C_{2} contain any of the two tuples $14,15,24,25$. The two tuple 15 can be accounted for in three different ways i.e. there exists a collection of at least four 5-tuples in B which meet a in precisely one of
(i) 125
(ii) 135
(iii) 145 .

We analyse these three cases in some detail.
(i) 125. Let C_{3} denote all the 5 -tuples of B which contain 125 and which overlap a in precisely 125 . Then C_{3} has at least four members. In this case the triples 123 and 125 share two numbers 12 and so, using Lemma 3, there must be another number, 6 say, such that each of the 5-tuples in C_{1} and C_{3} also contain 6.

No member of C_{1}, C_{2}, C_{3} contains either of the two tuples 14,24 . The two tuple 14 can be accounted for in three different ways, i.e. there exists a collection $C_{4}\left(C_{5}\right.$ or $\left.C_{6}\right)$ of at least four 5-tuples in B which meet a in precisely one of the triples (a) 124, (b) 134, (c) 145.
(a) 124. Applying Lemma 3 to C_{1} and C_{4}, it follows that each member of C_{4} contains 6.
(b) 134. Applying Lemma 3 to C_{1} and C_{5} it follows that each member of C_{5} also contains 6 . Applying Lemma 3 to C_{2} and C_{5} it follows that every member of the families C_{2} and C_{5} must share a common number outside \mathbf{a}. As C_{5} contains at least four members, this number must be 6 . Hence every member of C_{1} contains 1236 and every member of C_{2} contains 3456 . So there must exist a member of C_{1} and a member of C_{2} which meet precisely in two tuple 36 , which is impossible. So case (b) cannot arise.
(c) 145. Applying Lemma 3 to C_{3} and C_{6} it follows that each member of C_{6} contains 6. Applying Lemma 3 to C_{2} and C_{6} it follows that every member of the families C_{2} and C_{6} must share a common number outside a. As C_{6} contains at least four members, this number must be 6 . So again there must exist a member of C_{1} and a member of C_{2} which meet precisely in the two tuple 36 , which is impossible. So case (c) cannot arise.
(ii) 135. Let C_{7} denote all the 5 -tuples in B which contain 135 and which overlap a in precisely 135. Applying Lemma 3 to C_{1} and C_{7}, it follows that every member of C_{1} and C_{7} share a common number, 6 say, outside a. Applying Lemma 3 to C_{2} and C_{7} it follows that every member of C_{2} and C_{7} share a common number outside a. As C_{7} has at least four members, this number must be 6. So again there must exist a member of C_{1} and a member of C_{2} which overlap in precisely 36 , which is impossible. So case (ii) cannot arise.
(iii) This case is exactly the same as (i) with 1 and 5, 2 and 4 interchanged. Consequently the only possible configuration is as in (i) a. i.e. there exists a number 6 say so that every 5 -tuple in C_{2} and C_{8} contains 6 , where C_{8} is the family of 5 -tuples in B, with at least four members, which meet a in precisely 145 . Also there exists a family C_{9} of 5 -tuples in B, with at least four members, each of which contains 6 and meets a in precisely 245 .

From these considerations it follows that, up to a permutation of the numbers 12345 , there is only one possible configuration which can arise, namely that of case (i) a.

Hence we may assume that there exists four families $C_{1}, C_{2}, C_{3}, C_{4}$ in B, each with at least four members, and each meeting a in precisely three numbers. There is also a number, 6 say, such that

1236 belongs to \mathbf{x} for each \mathbf{x} in C_{1}
345 belongs to \mathbf{x} for each \mathbf{x} in C_{2}
1256 belongs to \mathbf{x} for each \mathbf{x} in C_{3}
1246 belongs to \mathbf{x} for each \mathbf{x} in C_{4}.
We also suppose that $C_{1}, C_{2}, C_{3}, C_{4}$ are maximal.
We shall show that every member of C_{1}, C_{3} and C_{4} is good. Because of the
symmetry, it suffices to show that a member of C_{1}, say 12367 is good. Since C_{1} has at least four members, we suppose that the four membered set D
$12367,12368,12369,1236(10)$
is in C_{1}.
If another 5-tuple $x=x_{1} x_{2} x_{3} x_{4} x_{5}$ in B contains the two tuple 17 then, because of D, \mathbf{x} must contain at least two of the numbers 236 . This yields three cases according to whether \mathbf{x} contains
(a) 23 (b) 26 (c) 36.
(a) Here x contains 1237 and so, considering the families C_{3}, C_{4}, \mathbf{x} must be 12367. So the two tuple 17 is in only one member of B and hence 12367 is good.
(b) Here x contains 1267 and so, considering \mathbf{a}, \mathbf{x} must contain one of 345 . So the two tuple 17 is in at most four members of B and hence 12367 is good.
(c) Here \mathbf{x} contains 1367 and so, considering the families C_{2}, C_{4}, \mathbf{x} must be 12367. So the two tuple 17 is in only one member of B and hence 12367 is good.

Hence 12367 is good as are all the members of C_{1}, C_{3}, C_{4}. Define $\phi(\mathbf{a})$ to be one of the members of $C_{1}, C_{3}, C_{4}, \phi(\mathbf{a})=12367$ say. This completes the definition of ϕ.

We next look at the number of members of B which could be assigned to 12367 in this way.

Suppose that $\mathbf{b}=b_{1} b_{2} b_{3} b_{4} b_{5}$ is such a 5 -tuple. Then it may be supposed that $b_{1} b_{2} b_{3}$ are amongst 12367 and that there exists another number b_{6} amongst 12367 but different from $b_{1} b_{2} b_{3} b_{4} b_{5}$ so that there exists four families $D_{1}, D_{2}, D_{3}, D_{4}$, in B, each with at least four members, and each meeting b in precisely three numbers. Further
$b_{1} b_{2} b_{3} b_{6}$ belongs to x for each x in D_{1} $b_{3} b_{4} b_{5}$ belongs to \mathbf{x} for each \mathbf{x} in D_{2} $b_{1} b_{2} b_{4} b_{6}$ belongs to x for each x in D_{3} $b_{1} b_{2} b_{4} b_{6}$ belongs to \mathbf{x} for each x in D_{4}.

If b contains only one of 123 then b contains 67 . However, b would then meet some member of C_{1} in exactly two numbers, which is impossible.

If \mathbf{b} contains 123 but not 6 then, using C_{3} and $C_{4}, \mathbf{b}=\mathbf{a}$. If \mathbf{b} contains 1236 then \mathbf{b} is in C_{1} and hence \mathbf{b} is good. So $\phi(b)=\mathbf{b} \neq 12367$.

If \mathbf{b} contains 12 but not 3 then, using C_{1}, b contains 126 . Also, using \mathbf{a}, b contains at least one of 4 and 5 . If b contains 4 and 5 then $b=12456$. If b contains 4 but not 5 then b is in C_{4} and if b contains 5 but not 4 then b is in C_{3}. In either case b is good and so $\phi(b)=b \neq 12367$.

If \mathbf{b} contains 13 but not 2 then, using C_{1}, \mathbf{b} contains 136 . Using C_{3}, C_{4}, it follows that $b=13456$.

If \mathbf{b} contains 23 but not 1 then, using C_{1}, b contains 236 . Using C_{3}, C_{4}, b $=23456$.

Consequently at most four 5-tuples of B are associated with 12367 in this manner.

Combining (1), (2) and (3), it follows that for each good 5-tuple \mathbf{b} of $B, \phi^{-1}(\mathbf{b})$ has at most 55 members. Each good 5-tuple b of B contains a two tuple which occurs in at most 54 members of B. Since it is only possible to choose $\binom{n}{2}$ two tuples from the numbers $12 \cdots n$ it follows that
$|B| \leq 1485 n(n-1)$ as required.
Remarks. We may construct a suitable B in Theorem 4 by insisting that each member of B contains 123 and the other two numbers making up the 5-tuple are chosen in $4, \ldots, n$. This yields a set B with $|B|=\frac{1}{2}(n-4)(n-5)$ members which, using Theorem 4 , is essentially best possible.

Generalizing this situation, take $4 k$ numbers $1,2, \ldots, 4 k$ and consider all $2 k$ tuples A chosen from these $4 k$ numbers. Consider a subset B of A such that no two members of B overlap in exactly k numbers. It seems reasonable to suppose that B will have as many members as possible when B is constructed by insisting that every member of B contains $12 \cdots k+1$ and the other $k-1$ numbers are chosen amongst the numbers $k+2, \ldots, 4 k$. If this were so then an application of Stirling's formula would prove the conjecture mentioned in the introduction.

REFERENCES

[1] Hadwiger H., Ein Uberdeckungssätze für den Euklidischen Raum, Portugaliae Math., 4 (1944), 140-144.
[2] -_, Ueberdeckung des Euklidischen Raumes durch Kongruente Mengen, Portugaliae Math., 4 (1945), 238-249.
[3] Larman D. G. and Rogers C. A., The realization of distances within sets in Euclidean space, Mathematika 19 (1972), 1-24.
[4] Hilton A. J. W. and Milner C. A., Intersection theorems for systems of finite sets, Quart. J. Math., Oxford (2), 18 (1967), 369-384.

Department of Mathematics, University of Washington,
Seattle,
U.S.A. 98195

