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A note on the realization of distances
within sets in euclidean space

D. G. Larman

Dedicated to Professor H. Hadwiger on his seventieth birthday

In 1944 and 1945 H. Hadwiger [1,2] proved the well known theorem.

THEOREM 1. Let En be covered ftyn + 1 closed sets. Then there is one of the

sets within which ail distances are realized.

In 1972, D. G. Larman and C. A. Rogers [3] introduced the concept of critical
distance and a critical number for a finite configuration and used it to give a

considérable improvement of Theorem 1. The principal resuit of [3] was

THEOREM 2. If En is covered by less than \n{n — 1) sets then there is a set of
the covering within which ail distances are realized.

The purpose of this note is to give a configuration which leads to

THEOREM 3. If En is covered by less than î7^ôô(n-l)(n-2)(n-3) sets then

there is a set of the covering within which ail distances are realized.

A considérable generalization of this configuration leads me to make the

conjecture:

CONJECTURE. If En is covered by less than Kt)3n/4 sets then there is a set of
the covering within which ail distances are realized.

Using the theory of configurations developed in [3], Theorem 3 follows from
the following theorem.

THEOREM 4. Let A be the f 1 distinct 5-tuples chosen from n objects

1,..., n. Let B be a subset of A such that no two 5-tuples in B overlap in exactly
two objects. Then the cardinality \B\ of B is at most 1485n(rc-l).
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530 D G LARMAN

We require the following three lemmas.

LEMMA 1 (Hilton and Milner). Let Al9... 9Ar be sets, each with k distinct
éléments chosen front the set 1,2,..., n. Suppose that

but that

Then, provided 2k

n-k-l

Proof See A. J. W. Hilton and E. C. Milner [4].

LEMMA 2. Let Au Ar; Bl9... ,BS be sets, each with 2 éléments, chosen

from the set 1,..., n such that

Then either

min(r, 5) ^3

or

nA.nnu/0.
1=1 j=i

Proof. We assume that min(r, s)>4. Suppose first that there are two non-
overlapping members of Al9..., Ar, say Al9 A2. Since each of Bl9..., Bs must
meet each of Al9 A2, A3; s < 3. Consequently, every two members of Al9..., Ar
overlap and similarly every two members of Bl9..., Bs overlap. So, using lemma
1 with fc 2, and noting that r + s>3,

flAnfÎB/0
as required.
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LEMMA 3. Let 12345 be a 5 tuple and let abcd be four distinct nwnbers

amongst 12345. Let C(a, b, c), C(a, b, d) be two families of 5-tuples, each with at
least four members, chosen from the n numbers 1,..., n. If each member of
C(a, b, c) meets each member of C(a, b, d) in at least three numbers and each

member of C(a, b, c), C(a, b, d) meets 12345 in precisely (a, b, c), (a, b, d) respective^

then there exists e^\,2, 3,4, 5 such that e belongs to each member of
C(a,b,c)UC(a,b,d).

Proof This is an immédiate conséquence of Lemma 2.

Proof of Theorem 4. Let b b^b^bs be a member of B. We shall say that b
is good (with respect to B) if there exists a two tuple within b which is contained
in at most 54 members of B. Otherwise b is bad (with respect to B).

The strategy in proving the theorem is to associate every member b of B with
a good member $(b) of B in such a way that no good member of B has more than
55 members of B associated with it.

In defining the mapping <f> it will be enough to suppose that the 5-tuple
a= 12345 is a member of B and define <£(a).

// a is good then <£(a) a. (1)

Otherwise a is bad.

Suppose first that there are at least 46 5-tuples which overlap a in 4 numbers.
Then there are at least ten 5-tuples which (say) hâve the numbers 1234 in

common with a. We list ten such 5-tuples 1234k with fc as close to 5 in the

ordering of 1,..., n as possible. Assume, without loss of generality, that thèse ten
5-tuples are 12346, 12347,..., 1234(15).

If one of thèse 5-tuples is good then we choose one such 5-tuple say 1234k to
be 4(a).

The 5-tuple 1234k receives at most 1()( j 50

associations in this way. (2)

Otherwise each of

12345, 12346,..., 1234(15)

are bad. For 5 < fc < 15, consider the 5-tuple 1234k. There are at least 54 5-tuples
of B which contain the two tuple 4fc. Since each of thèse 5-tuples must overlap
1234k, and hence each of

12345,12346,..., 1234(15)
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in at least three numbers, they each must contain at least two of the numbers 123.

So there exists at least 18 of thèse 5-tuples, forming a set C\ and numbers

a(k), /3(fc), chosen from 123, such that each member of C\ contains a(fc)/3(fc)4/c.
We may suppose a(fc)/3(fc) 12 for four values of k. Similarly, working with the

two tuple 3k, there exists a set C\ and numbers y(fc)ô(fc), chosen from 124, such

that each member of C\ contains y(k)8(k)3k. Consequently there exists two
values of k, say 5,6 with a(5)/3(fe) a(6)j8(6) 12 and y(5)8(5) y(6)ô(6).

Suppose, without loss of generality that every member of C\ contains 124 k

and every member of C\ contains 123fc, k 5,6.
The 4 tuples 1245,1236 only hâve two numbers 12 in common. Apart from

12345, 12456, 12356 the members of C\ and Cf contain one number chosen

from 7,..., n. Further for thèse members the numbers in 7,..., n must be the
same throughout. Consequently C\ and C\ hâve cardinality at most 4 which is

impossible.
So now we may suppose that there are at most 45 5-tuples of B which overlap

a in 4 numbers. Since a is bad there will exist, for each two tuple ij, 1 < i < j < 5, at
least ten 5 tuples in B which contain ij and which overlap a in exactly three
numbers.

Therefore, there are at least four such 5-tuples containing the two tuple 12 and

a fixed third number of a, 3 say. Let Cx be the set of ail 5-tuples in B which meet
a in exactly 123. Similarly there are at least four such 5-tuples containing the two
tuple 45 and a fixed third number, 3 say. Let C2 be the set of ail 5-tuples in B
which meet a in exactly 345.

Notice that no members of the families Cu C2 contain any of the two tuples
14,15,24, 25. The two tuple 15 can be accounted for in three différent ways i.e.
there exists a collection of at least four 5-tuples in B which meet a in precisely one
of

(i) 125 (ii) 135 (iii) 145.

We analyse thèse three cases in some détail.
(i) 125. Let C3 dénote ail the 5-tuples of B which contain 125 and which

overlap a in precisely 125. Then C3 has at least four members. In this case the

triples 123 and 125 share two numbers 12 and so, using Lemma 3, there must be
another number, 6 say, such that each of the 5-tuples in Cx and C3 also contain 6.

No member of Cl9 C2, C3 contains either of the two tuples 14, 24. The two
tuple 14 can be accounted for in three différent ways, i.e. there exists a collection
C4(CS or C6) of at least four 5-tuples in B which meet a in precisely one of the

triples (a) 124, (b) 134, (c) 145.

(a) 124. Applying Lemma 3 to C1 and C4, it foliows that each member of C4

contains 6.
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(b) 134. Applying Lemma 3 to Cx and C5 it follows that each member of C5

also contains 6. Applying Lemma 3 to C2 and C5 it follows that every member of
the families C2 and C5 must share a common number outside a. As C5 contains at
least four members, this number must be 6. Hence every member of Cx contains
1236 and every member of C2 contains 3456. So there must exist a member of Ct
and a member of C2 which meet precisely in two tuple 36, which is impossible. So

case (b) cannot arise.

(c) 145. Applying Lemma 3 to C3 and C6 it follows that each member of C6

contains 6. Applying Lemma 3 to C2 and Q it follows that every member of the
families C2 and C6 must share a common number outside a. As Q contains at
least four members, this number must be 6. So again there must exist a member
of C1 and a member of C2 which meet precisely in the two tuple 36, which is

impossible. So case (c) cannot arise.

(ii) 135. Let C7 dénote ail the 5-tuples in B which contain 135 and which
overlap a in precisely 135. Applying Lemma 3 to Cx and C7, it follows that every
member of Ct and C7 share a common number, 6 say, outside a. Applying
Lemma 3 to C2 and C7 it follows that every member of C2 and C7 share a

common number outside a. As C7 has at least four members, this number must be
6. So again there must exist a member of Cx and a member of C2 which overlap in
precisely 36, which is impossible. So case (ii) cannot arise.

(iii) This case is exactly the same as (i) with 1 and 5, 2 and 4 interchanged.
Consequently the only possible configuration is as in (i) a. i.e. there exists a

number 6 say so that every 5-tuple in C2 and C8 contains 6, where C8 is the family
of 5-tuples in B, with at least four members, which meet a in precisely 145. Also
there exists a family C9 of 5-tuples in B, with at least four members, each of which
contains 6 and meets a in precisely 245.

From thèse considérations it follows that, up to a permutation of the numbers
12345, there is only one possible configuration which can arise, namely that of
case (i) a.

Hence we may assume that there exists four families Cl9 C2, C3, C4 in B, each

with at least four members, and each meeting a in precisely three numbers. There
is also a number, 6 say, such that

1236 belongs to x for each x in Cx

345 belongs to x for each x in C2

1256 belongs to x for each x in C3

1246 belongs to x for each x in C4.

We also suppose that Cl9 C2, C3, C4 are maximal.
We shall show that every member of Cl9 C3 and C4 is good. Because of the
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symmetry, it suffices to show that a member of Cl9 say 12367 is good. Since Cx

has at least four members, we suppose that the four membered set D

12367, 12368, 12369, 1236(10)

is in C\.
If another 5-tuple x x1x2x3x4x5 in B contains the two tuple 17 then, because

of D, x must contain at least two of the numbers 236. This yields three cases

according to whether x contains

(a) 23 (b) 26 (c) 36.

(a) Hère x contains 1237 and so, considering the families C3, C4, x must be

12367. So the two tuple 17 is in only one member of B and hence 12367 is good.
(b) Hère x contains 1267 and so, considering a, x must contain one of 345. So

the two tuple 17 is in at most four members of B and hence 12367 is good.
(c) Hère x contains 1367 and so, considering the families Ç>, C4, x must be

12367. So the two tuple 17 is in only one member of B and hence 12367 is good.
Hence 12367 is good as are ail the members of Cl9 C3, C4. Define <£(a) to be

one of the members of Cl9 C3, C4, <£(a) 12367 say. This complètes the définition
of <t>.

We next look at the number of members of B which could be assigned to
12367 in this way.

Suppose that b b1b2b3b4b5 is such a 5-tuple. Then it may be supposed that
bib2b3 are amongst 12367 and that there exists another number b6 amongst
12367 but différent from bib2b3b4b5 so that there exists four families
Dl9 D2, D3, D4, in B, each with at least four members, and each meeting b in
precisely three numbers. Further

bib2b3b6 belongs to x for each x in Dx
b3b4b5 belongs to x for each x in D2
b!b2b4b6 belongs to x for each x in D3
btb2b4b6 belongs to x for each x in D4.

If b contains only one of 123 then b contains 67. However, b would then meet
some member of Cx in exactly two numbers, which is impossible.

If b contains 123 but not 6 then, using C3 and C4, b a. If b contains 1236
then b is in Ct and hence b is good. So <^(b) b^ 12367.

If b contains 12 but not 3 then, using Cl9 b contains 126. Also, using a, b
contains at least one of 4 and 5. If b contains 4 and 5 then b= 12456. If b
contains 4 but not 5 then b is in C4 and if b contains 5 but not 4 then b is in C3. In
either case b is good and so <^(b) b^ 12367.
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If b contains 13 but not 2 then, using Cl9 b contains 136. Using C3, C4, it
follows that b 13456.

If b contains 23 but not 1 then, using Cu b contains 236. Using C3, C4,

b 23456.

Consequently at most four 5-tuples of B are associated

with 12367 in this manner. (3)

Combining (1), (2) and (3), it follows that for each good 5-tuple b of B, «^(b)
has at most 55 members. Each good 5-tuple b of B contains a two tuple which

two

tuples from the numbers 12 • • • n it follows that

|B|<1485n(n~l) as required.

Remarks. We may construct a suitable B in Theorem 4 by insisting that each
member of B contains 123 and the other two numbers making up the 5-tuple are
chosen in 4,..., n. This yields a set B with |B| |(n-4)(n-5) members which,
using Theorem 4, is essentially best possible.

Generalizing this situation, take 4fc numbers 1,2,... ,4k and consider ail 2k
tuples A chosen from thèse 4fc numbers. Consider a subset B of A such that no
two members of B overlap in exactly k numbers. It seems reasonable to suppose
that B will hâve as many members as possible when B is constructed by insisting
that every member of B contains 12 • • • fc +1 and the other fc -1 numbers are
chosen amongst the numbers k + 2,..., 4fc. If this were so then an application of
Stirling's formula would prove the conjecture mentioned in the introduction.
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