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Isohedral tilings of the plane by polygons1

Branko Grunbaum and G. C. Shephard:

Dedicated to Hugo Hadwiger on his seventieth birthday

1. Introduction and background

Since antiquity, artists and architects as well as mathematicians hâve been
interested in finding the shapes of polygonal tiles that can be used to tile the plane
monohedrally, that is, using only tiles that are congruent (directly, or reflectively)
to each other. Many papers hâve considered this problem or parts of it, mostly by
exhibiting examples of various monohedral tilings (see, besides the papers men-
tioned below, [1, 3, 4, 5, 6, 7, 8,13, 18, 19, 20, 21, 27, 40]), but a complète list of
tiles that admit such tilings is still unknown. Claims occasionally made for the

completeness hâve ail been based either on error or else on (usually tacit)
restrictions imposed on the tiles or tilings. For example, the early work of the
MacMahons [31, 32, 33, 34] was restricted to what we shall call isohedral edge-to-
edge tilings in which only directly congruent tiles are allowed. Gardner [10]
published an expository survey of the problem and what was thought, at that time,
to be its complète solution. However, the incorrectness of this assumption was

pointed out by several readers (see [11] and the up-to-date survey [39]).
There are several natural variants of the problem - a fact that contributes to its

interest, to its difficulty, and to the confusion in the literature. To explain thèse

variants it is necessary to introduce some terminology. We restrict attention to

plane tilings r in which each tile is a closed topological disk. The vertices of r are
the points which belong to three or more tiles, and the edges of r are the arcs

into which the vertices partition the boundaries of the tiles. To prevent confusion,
for a polygonal tile we use the words corners and sides (instead of the more usual

words "vertices" and "edges"). Thus an n-gon has n corners, and n sides each of
which is a straight-line segment joining two corners.

Now consider the following conditions (in order of increasing strength) that

1 Research supported by the National Science Foundation Grant MPS74-07547 A01
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can be placed on the intersections of tiles in a polygonal tiling r:
1.1 The intersection of any two tiles is a connected set.
1.2 The intersection of any two tiles is contained in a side of each.
1.3 The intersection of any two tiles is either empty, or a corner, or a side of

each.

Imposing condition 1.1 éliminâtes tilings such as that of Figure l(a) (the tile
used hère was discovered by Voderberg [41,42]). A tiling which satisfies 1.2 is

called proper and the adoption of this condition éliminâtes tilings such as those of
Figure l(b). One of the advantages of restricting attention to proper tilings is that,
so far as isohedral tilings are concerned, it reduces the possibilités to a finite
number of types (see below). If ail the tiles in t are convex, then r is necessarily

proper. A tiling which satisfies 1.3 is called edge-to-edge, and this condition
excludes tilings such as that of Figure l(c).

Other variants of the problem dépend upon the extent in which requirements
of symmetry are imposed. Two feasonable conditions are:

S.l Tilings must be peripdic, that is, the symmetry group S(t) of r must
contain translations in at least two non-parallel directions.

S.2 Tilings must be isohedral that is, the symmetry group S(r) must act

transitively on the tiles of t.

Although non-periodic monohedral tilings by polygons are easy to find, the

following problem is still unsolved: Does there exist a polygonal tile T which is

aperiodic, that is, admits a tiling of the plane but admits no periodic tiling? Interest
in this problem has been stimulated by Roger Penrose's récent discovery [12,17]
of a pair of tiles Tl9 T2 that form an aperiodic set (that is, there exists a tiling of
the plane using only polygons congruent to 7\ and T2, but no such tiling is

periodic).



544 BRANKO GRUNBAUM AND G. C. SHEPHARD

To enumerate monohedral tilings that satisfy S.l it is necessary to find ail
polygons T with the property that, using tiles congruent to T, it is possible to form
a "patch" of tiles of which translates can tile the plane. Although the détermination

of ail such tiles T has not been carried out, several systematic (if laborious!)
approaches are conceivable.

The présent paper is mainly concerned with proper isohedral tilings by
arbitrary polygons, that is, with polygonal tilings satisfying conditions 1.2 and S.2.

The history of the problem of determining such tilings is of interest and we shall
review it briefly.

The eighteenth of Hilbert's famous problems [26] asks whether (in our
terminology) there is a tile that admits a monohedral tiling of the 3-dimensional

space, but admits no isohedral tiling. From the context (see also [38]) it appears
that Hilbert assumed that the corresponding planar problem has a négative
solution. A similar (although rather vaguely expressed) assumption was made
earlier by Fedorov [5, § 64]. The same opinion was shared by K. Reinhardt, who
was Hilbert's assistant during part of the years of World War I, and whose
dissertation [36] investigated planar tilings by polygons. (We shall mention some
of the results of this dissertation below.) Later, Reinhardt [37] found examples of
3-dimensional tiles that admit only non-isohedral tilings, and in the same paper he

asserted that no such tiles exist in the plane. He even announced that a paper
proving this assertion was in préparation - but Heesch [23] found a counterexam-
ple, a tile that admits a periodic tiling of the plane but no isohedral tiling.
Heesch's tile (see Figure 2) is non-convex, and leads only to improper tilings, but
it was the first example to demonstrate that conditions S.l and S.2 are genuinely
distinct. Variants of Heesch's tile were given in [22, 24, 35]. Another counter-
example, which is not related to thèse and uses a convex tile, will be described
below. Milnor's récent account [35] of developments related to Hilbert's
eighteenth problem dévotes a section to monohedral tilings but goes no further than
Heesch's contribution [23] from 1935.

One of the aims of Reinhardt's thesis [36] was the détermination of ail convex
tiles that admit monohedral tilings of the plane; he expected to establish Hilbert's
conjecture that each such tile admits isohedral tilings. Reinhardt observed that ail

Figure 2
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triangles and ail quadrangles admit monohedral tilings, that ail hexagons with that

property may be grouped into three families, and he found five such families of
pentagons. He acknowledged the possible omission of some types of pentagons
but asserted that their discovery "could be done by the above method; but
carrying out such a discussion is highly cumbersome, very laborious, and offers
little satisfaction. Moreover, there is a certain probability that no other types of
pentagon [besides the five families] will be discovered." [36, p. 85] Actually,
although he chose to consider only tilings that are edge-to-edge (1.3), Reinhardt's
list is incomplète; he even missed some tiles that admit monohedral edge-to-edge
tilings in which the séquences of valences around ail the tiles are the same fsuch

as, for example, those of Figures 3(a) and 3(c)).
The first complète list of convex polygons that admit isohedral tilings appears

in the book by Heesch and Kienzle [25], reporting on work done in part by
Heesch during the nineteen-thirties. They also give examples of non-convex
polygons with at most six sides that admit isohedral tilings, without insisting that
the tilings are proper.

A différent approach was followed by Kershner [28]; he restricted attention to
convex polygons and attempted to find ail such tiles that admit monohedral
tilings. Although - as we hâve remarked above - he did not succeed in this task, or
even in the enumeration of ail tiles that admit periodic tilings, he did produce
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three families of convex pentagons that admit periodic, but not isohedral, tilings
(see Figure 3). He thus improved on Heesch's example, and showed that S.l and
S.2 are distinct even for edge-to-edge tilings by convex tiles. Moreover, the
example in Figure 3(a) (unlike Heesch's) uses only directly congruent tiles.
Kershner's three families, illustrated in Figure 3, should hâve been included in
Reinhardt's list.

Another example of a pentagon that admits a monohedral but no isohedral

tiling is shown in Figure l(c). This was discovered as recently as 1975 by Richard
James (see [11, 39]).

In the works of Reinhardt, Heesch-Kienzle, Kershner and others, for each tile
that admits an isohedral tiling one example of such a tiling is exhibited. However,
it is clearly of greater interest to find ail the possible types of isohedral tilings that
are admitted by a given polygonal tile. The présent paper is devoted to this task.
AH polygonal types of tiling satisfying 1.2 and S.2 will be enumerated and the
results will be described in détail in the next section.

2. The classification of isohedral tilings by convex polygons

Our classification dépends heavily on the notion of isohedral types of tilings
introduced in our paper [15]. We shall assume that the reader is familiar with its

methods and terminology. The classification in [15] deals with tiles of ail shapes
and thus-for polygonal tiles-with both proper and improper tilings. We now
introduce a refinement of this classification which seems appropriate for proper
polygonal isohedral tilings.

We shall say that two proper polygonal tilings rx and t2 are of the same
polygonal isohedral type if the following two conditions hold.

P.l Tj and t2 are of the same isohedral type in the sensé of [15]. This
condition can be stated as follows: there exists a group isomorphism a : S^)-»
S(t2), and a combinatorial isomorphism <p : rx —> r2 (which maps the tiles, edges
and vertices of rx onto the tiles, edges and vertices of t2 and préserves inclusion),
such that

T2

S\ |<r(s)i l-

is a commutative diagram for ail symmetries s e S(tx).
P.2 A vertex v in rx is a corner of a tile T in rx if and only if <p(v) is a corner

of the tile <p(T) of t2.
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Expressed more simply, condition P.2 means that a tile T of rx has the same

number of sides as the tile <p{T) of r2; moreover, if any side e of T is made up of
two or more edges eu e2,... of t1? then the corresponding side <p(e) of <p(T) is

made up of the same number of edges <p(ea), <p(e2),... of r2.
The main purpose of this paper is to establish the following resuit:

THEOREM 1. In the case of convex tiles, there exist 14 polygonal isohedral

types of tiling with triangular tiles; 56 polygonal isohedral types of tiling with

quadrangular tiles; 24 polygonal isohedral types of tiling with pentagonal tiles; 13

polygonal isohedral types of tiling with hexagonal tiles. There are no other proper
polygonal isohedral tilings by convex tiles; in particular no types by n-gons with

The last part of the theorem is the easiest to prove, even with "isohedral"
replaced by "monohedral." It is a conséquence of the fact that monohedral tilings
satisfy Eulefs theorem for tilings and hence the tiles hâve at most six edges and so

at most six sides. Proofs of Euler's theorem for tilings may be found, for example,
in [3, 16, 29, 36]. However, arguments that purport to prove it in many other
papers are spurious; récent examples are [30, 43],

The détails of the other assertions of Theorem 1 are displayed in Tables I to
IV, and examples of thèse tilings by convex tiles appear in the diagrams following
the tables. Hence in order to complète the proof of the theorem it is only
necessary to explain how the tables were constructed.

The first stage has, in effect, already been carried out in [15]. From the ninth
column of Table I of [15] we see that out of the total of 81 isohedral types, 47 can
be realized by convex tiles, that is, by convex polygonal tiles. Thèse yield the 47

types of edge-to-edge tilings listed in the tables that follow, and identified by
an asterisk placed near their référence numbers in Column (1) of the tables. Ail the

non-edge-to-edge types can be derived from thèse 47 by examining each in turn
and deciding whether it can also be realized by polygons with fewer sides. In
effect, we let some of the interior angles of a polygon take the value tt, so that the

corresponding vertex is no longer a corner of the tile. The process of examining
each case is straightforward, but laborious; see the remarks about Column (10)
below.

In Column (2) of the tables we indicate the net, or topological type of the tiling;
this is one of the eleven Laves tilings (see, for example, [24, 29]; for more
information about thèse and the following technical détails see [15]). Column (3)
contains the incidence symbol [A;B], where A is a tile symbol and B is an
adjacency symbol in the sensé of [15]. In Column (4) we give the international
symbol for the symmetry group S(r) of the tiling, and in Column (5) the induced
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tile group (that is the subgroup of S(t) that maps a tile onto itself). In column (6)

we indicate the transitivity classes of the vertices of the tiling that belong to the

boundary of a tile T. Again we follow the conventions of [15] except that hère we

put a symbol in parenthèses if it corresponds to a vertex which is not a corner of
T. To aid identification, in each diagram we mark a tile T and one of its
vertices - that from which we begin listing the transitivity classes in a coun-
terclockwise direction round T. In Column (7) we state the restrictions that are

imposed by the particular isohedral type on the interior angles of T at each vertex
on its boundary. Sometimes there are additional relations derivable from the

given ones and the fact that the sum of the angles of an n-gon is (n-2)7r.) The

spécification that an angle is tt means that the corresponding vertex is not a

corner of T. Angle A is at the marked vertex, and B, C,..., follow cyclically
counterclockwise.

The listing of edge transitivities in Column (8) follows Unes similar to the

vertex transitivities in Column (6). Hère parenthèses enclose two or three symbols
corresponding to edges that together form a side of T. This column also gives
information about restrictions on the lengths of the sides of the polygons that are

imposed by the particular polygonal isohedral type. For example, the entry
corresponding to P4-33 is a((3y)y(3. This means that the corresponding quad-
rangle has its second side (j3y) (counted counterclockwise from the marked
vertex) equal in length to the sum of the third y and fourth j3 sides. It is worth
remarking that ail équations involving edge-length arise from the transitivities in
this way-unlike the case of the angles of T in which additional relations are
forced by the geometry of the tile or tiling. There are, of course, other restrictions
on the edge-lengths in the form of inequalities that arise trivially as conséquences
of the constraints on sides and angles, and convexity. For example, in the case

P3-5 the triangle inequality implies that the edge in transitivity class y must be

shorter than that in j3.

In Column (9) we list the number of différent aspects of the tiles in the tiling.
The notation follows [15]-two tiles are of the same aspect if one is a translate of
the other. In certain cases thèse differ from the corresponding values for the
isohedral types given in Column (8) of Table I of [15]. This is caused by the fact
that the requirement that a vertex is not a corner of a tile may force the tile to
hâve extra symmetries, and so reduce the number of aspects. For example, in the

tiling P3-4 the condition D rr and the equality of two sides of the triangle force

it to hâve symmetry group dl; hence the tiles occur in just 2 aspects instead of
2D, 21? as in the gênerai IH53 tiling. The additional symmetries are "spurious"
in the sensé that the symmetry group of the tile is no longer equal to the induced
tile group of the tiling.

In Column (10) we list, for each type of tiling, the vertices at which the interior
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angles can be increased to ir, thus reducing the number of corners of each tile.
After each such vertex, or pair of vertices, we indicate the polygonal isohedral

type of the résultant tiling. This référence is given in (round) parenthèses when
the new tiling is of the same isohedral type as that from which it was derived; if it
is of a différent isohedral type then the référence in enclosed in [square] brackets.
The latter possibility occurs when making an angle equal to tt increases the

symmetry group and so alters the isohedral type (see Figures 4(a), (b), (c)).
Besides being useful as a cross-check on the accuracy of the tables, the data in
Column(lO) is of interest in connection with the classification of isohedral tilings
using non-convex tiles. This will be discussed in the next section.

Finally, in Column(ll) we indicate the isohedral type of tiling (in the notation
of [15]) as well as références to occurrences of the type in the literature. It is

surprising how few such références we were able to find, and, in spite of their
aesthetic appeal, it seems as if many of the tilings are displayed hère for the first
time.

3. Proper isohedral tilings by non-convex polygons

In a proper tiling by polygons, each edge is a straight-line segment joining two
vertices of the tiling. Hence to convert arbitrary tilings into polygonal ones we

may be able to use a process which we shall call straightening. This means that we

c

0

E

A

F

(c)
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start from a tiling r of given isohedral type (in the sensé of [15]) and then replace
each edge of t by a line segment joining the corresponding vertices if this can be

done so as to form a new tiling rs. Two possibilities arise:

(i) ts is of the same isohedral type as r; in this case we say that the type can
be realized by polygons; or

(ii) whatever tiling of the type of r is chosen, the straightened tiling ts is

always of a différent type. This situation occurs because straightening necessarily
introduces new symmetries, so that S(ts)> S(t). A typical example occurs in the

case of type IH 62 (see Figure l(b)). Hère straightening always produces the

regular tiling by squares, which is of type IH 76.
Examination of each of the 81 isohedral types shows that the distinction

between cases (i) and (ii) is not dépendent upon whether the résultant polygonal tiles

are convex or not. We cannot reproduce hère full détails of the proof of this
assertion, but it is made plausible by the following argument. Let us, as in Figure
2 of [15], label the oriented or unoriented edges of each tile of r and then assign
the same labels to the corresponding edges of each tile in rs. Then the marked

tiling ts, labelled in this manner, is clearly of the same isohedral type as r. We are
concerned with the question whether the type is changed by removing the labels.

But it is évident that this dépends only on the symmetries of a tile T and its

relationship to its adjacents, and not on the convexity character of T.

Now it is easy to check, from the diagrams given in [15], that t can always be

chosen so that the tiles of rs are convex polygons. We deduce the following:

THEOREM 2. Any isohedral type of tiling that can be represented by a proper
tiling with polygonal tiles can necessarily be represented by one with convex
{polygonal) tiles.

COROLLARY. Any polygonal tiling of one of the 34 isohedral types marked

N in column (9) of Table I of [15] is necessarily not proper.

To find ail proper isohedral tilings by non-convex polygons it therefore suffices

to restrict attention to the 47 types whose référence numbers are given in heavy
type in Tables I to IV. In fact, if the previous définition of "polygonal isohedral

type" is retained, we see now that thèse tables give ail the information about the

non-convex case as well. But it is more appropriate to adopt a slightly finer
classification based on the following définition.

Two tilings tx and r2 by (convex or non-convex) polygons are of the same
refined polygonal isohedral type if they are of the same polygonal isohedral type
(that is, satisfy conditions P.l and P.2 of the previous section) and also:

P.3 For each vertex v lying on the boundary of a tile T of rl5 the interior
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angle of T at v is less than, equal to, or greater than tt according as the interior
angle of (p(T) at <p(v) is less than, equal to, or greater than tt.

This new condition may be loosely stated as asserting that the convexity
character of each tile at a vertex on its boundary is unchanged by the mapping <p.

To détermine the refined types of tiling we must therefore décide which angles
of the polygonal tile can exceed tt. It turns out that this is easy to do, for we
already know when it is possible to increase an angle at a vertex to the value
7r-the possibilities are listed in Column (10) of Tables II, III and IV-and it is in

precisely thèse cases that it is possible to increase the angle to a value greater than
7T, leading to a non-convex tile.

To illustra te the définitions and the process just described, see Figures 4 and 5.

From the isohedral tiling by hexagons of type P6-10 shown in Figure 4(a) we
obtain a tiling by pentagons (Figure4(b)) and one by quadrangles (Figure 4(c)) by
increasing angles to tt. Increasing thèse angles still further leads to the hexagonal
tilings of Figures 4(d), 4(e). Thèse are also of type P6-10 according to the
définition of the previous section - but adopting the refined définition thèse tilings
are of différent types. A similar example involving pentagons is shown in Figure 5.

(b)

Figure 5
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P.-3 P.-4

P<-9

Figure 8
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P«-13

Figure 9 (concluded)

Hère three isohedral tilings by non-convex pentagons can be derived, and thèse

are distinct from the original P5-4 according to the refined définition.
Using the refined notion of type and examining the various possibilities that

occur, we arrive at the following resuit.

THEOREM 3. There are 96 refined polygonal isohedral types of proper tilings
by non-convex polygons (6 by quadrangles, 48 by pentagons and 42 by hexagons).
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Thèse types are specified by their non-convex corners listed in Column (10) of
Tables II, III and IV.
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